	Ctrl (DMSO)	Cap 1 µM	Сар 2.5 µМ	Сар 5 µМ	Сар 10 µМ	Сар 15 µМ	Сар 20 µМ	Сар 25 µМ	Сар 30 µМ	Сар 40 µМ	Сар 50 µМ	Cap 100 µM	Сар 300 µМ
	1512.4	1696.8	2125.2	1313.4	1140.5	2754.7	1556.6	2235.9	916.6	957.4	1091.6	2194.2	1892.8
TER _{ini}	±	<u>+</u>	±	±	±	±	±	±	±	±	±	±	<u>+</u>
$(\Omega.cm^2)$	114.6	222.6	168	139.1	109.2	220.9	125.7	164.9	36.0	46.2	78.2	272.9	146.7
	n = 40	n = 16	n =12	n = 12	n = 16	n = 8	n = 13	n = 12	n = 11	n = 7	n = 11	n = 8	n = 8
Isc	0.99	0.90	0.63	1.05	1.03	0.59	0.81	0.61	0.64	0.59	0.62	0.55	0.64
$(\mu \Lambda/cm^2)$	±	±	±	±	±	土	土	±	土	±	±	土	<u>±</u>
(µA/cm)	0.11	0.15	0.77	0.17	0.20	0.64	0.05	0.05	0.02	0.03	0.04	0.04	0.02
	1523.7	1650.1	2117.5	1419.3	1173.7	2502.8	1597.4	2153.6	873.0	860.3	1085.4	1926.1	1559.8
TER ₃₀	±	±	±	±	±	±	±	±	±	<u>±</u>	±	±	±
$(\Omega.cm^2)$	90.3 ^{NS}	166.2 ^{NS}	128.5 ^{NS}	156.9 _{NS}	123.2 ^{NS}	90.5 ^{NS}	139.5 ^{NS}	108.5 ^{NS}	34.6 ^{NS}	55.6*	102.3 ^{NS}	189.3 ^{NS}	167.9 ^{NS}
Ico	1.20	1.11	0.72	1.29	1.35	0.74	0.96	0.76	0.60	0.73	0.70	0.91	1.70
$1SC_{30}$	\pm	±	±	±	±	±	<u>±</u>	±	±	±	±	±	<u>+</u>
(µA/cm)	0.12^{***}	0.20^{*}	0.06^{*}	0.24^*	0.29^{**}	0.07^{***}	0.07^{**}	0.05^{***}	0.15 ^{NS}	0.06^{*}	0.08^{NS}	0.09^{**}	0.19***

Table S1: Transepithelial resistance and short-circuit current during basolateral capsaicin exposure.

TER_{ini} and Isc_{in} represent the mean TER and Isc values at the beginning of the experiment and TER₃₀ and Isc₃₀ after 30 min incubation with vehicle (DMSO, control Ctrl) condition or basolateral capsaicin (Cap). ANOVA analysis showed a difference in the TER_{ini} (P < 0.001), Dunnett's post Hoc test

showed a difference between TER_{ini} Ctrl *vs* Cap 2.5 μ M (P = 0.019), Ctrl *vs* Cap 15 μ M (P < 0.0001), Ctrl *vs* Cap 25 μ M (P = 0.003) and Ctrl *vs* Cap 100 μ M (P = 0.031). Similarly a difference in Isc_{ini} was found by ANOVA (P = 0.03), Dunnett's Post hoc test showed that none were different from control. After 30 min in presence of capsaicin ANOVA analysis found a significant difference (P < 0.0001, one way ANOVA), Dunnett's Post Hoc test showed that Cap 2.5 μ M TER₃₀ (P < 0.0003), Cap 15 μ M TER₃₀ (P < 0.0001), Cap 25 μ M TER₃₀ (P = 0.001), Cap 30 μ M TER₃₀ (P = 0.001), Cap 40 μ M TER₃₀ (P = 0.01) were different from Ctrl. Similarly ANOVA analysis for Isc₃₀ shows a significant difference (P = 0.002, one way ANOVA), Dunnett's Post Hoc test showed that none of the Isc₃₀ were different from Ctrl. Stars represent paired t-test comparison of TER_{ini} *vs* TER₃₀ and Isc_{ini} *vs* Isc₃₀. * P < 0.05, ** P < 0.01 and *** P < 0.001, NS non-significant.

	Ctrl (DMSO)	Сар 1 µМ	Сар 2.5 µМ	Сар 5 µМ	Сар 10 µМ	Сар 15 µМ	Cap 20 μΜ	Сар 25 µМ	Сар 30 µМ	Cap 40 μM	Cap 50 μΜ	Сар 100 µМ	Сар 300 µМ
	1429.9	1375.9	1774.5	1420.5	1277.6	1709.7	1529.4	1966.3	1145.7	1022.4	855.5	1194.9	1436.7
TER _{ini}	<u>+</u>	<u>+</u>	<u>+</u>	<u>±</u>	±	±	<u>+</u>	<u>±</u>	<u>±</u>	±	<u>+</u>	<u>+</u>	±
$(\Omega.cm^2)$	122.6	256.9	209	304.1	218.4	201.6	201.0	196.7	117.7	57.4	32.9	134.6	289.9
	n = 23	n = 11	n = 12	n = 11	n = 13	n = 12	n = 14	n = 8	n = 10	n = 9	n = 10	n = 8	n = 8
Iscer	0.75	0.76	0.62	0.81	0.69	0.59	0.90	0.70	0.69	0.71	0.51	0.46	0.62
$(\mu \Lambda/cm^2)$	\pm	<u>±</u>	±	±	±	±	<u>±</u>	±	±	±	<u>±</u>	±	±
(μΑ/cm)	0.06	0.05	0.06	0.06	0.04	0.06	0.12	0.06	0.04	0.05	0.07	0.05	0.11
TED	1393.8	1408.3	1349.7	1405.8	1337.2	1428.2	1224.9	1243.0	993.4	1053.9	917.9	955.6	898.0
1 EK_{30}	\pm	<u>±</u>	<u>+</u>	<u>±</u>	±	±	<u>±</u>	土	<u>±</u>	<u>±</u>	<u>±</u>	<u>±</u>	±
(<u>Ω.cm</u>)	123.9 ^{NS}	268.8 ^{NS}	111.3*	303.4 ^{NS}	250.2 ^{NS}	67.1 ^{NS}	96.9 ^{NS}	191.1*	99.3 ^{NS}	84.0 ^{NS}	49.2 ^{NS}	98.0 ^{NS}	122.4 ^{NS}
Inc	1.15	0.70	1.51	0.76	0.74	1.37	2.04	2.31	0.95	0.72	0.49	0.83	1.44
$18C_{30}$	<u>+</u>	<u>+</u>	<u>+</u>	<u>±</u>	±	±	<u>+</u>	<u>±</u>	<u>±</u>	±	<u>+</u>	<u>+</u>	±
(µA/cm)	0.24^{NS}	0.06^{*}	0.33**	0.07^{NS}	0.06^{NS}	0.31*	0.43**	0.27^{***}	0.14^{NS}	0.04^{NS}	0.06^{NS}	0.17^{*}	0.40^{*}

Table S2: Transepithelial resistance and short-circuit current during apical capsaicin exposure.

TER_{ini}, Isc_{in}, TER₃₀ and Isc₃₀ have the same meaning as the one described in Table S1. ANOVA analysis shows a difference in TER_{ini} and Isc_{ini} (P = 0.02, and P = 0.008, one way ANOVA), but in each case they were not different from Ctrl as tested by Dunnett's post hoc. After 30 min incubation no

difference was found among the baseline values for TER₃₀ (P = 0.18, one way ANOVA), but difference in Isc₃₀ (P = < 0.0001, one way ANOVA). Dunnett's Post Hoc test shows that Cap 20 μ M and 25 μ M were different from Ctrl (P = 0.03 and P = 0.01) respectively. Stars represent paired *t*-test comparison of TER_{ini} *vs* TER₃₀ and Isc_{ini} *vs* Isc₃₀.* P < 0.05, ** P < 0.01 and *** P < 0.001, NS non-significant.

	Ctrl	Cap 5 µM	AMG-9810	AMG-9810	
	eur	Cup 5 µm	1 μM	10 µM	
TER _{ini}	1602.3 ± 55.5	1621.3 ± 101.6	1534.8 ± 75.6	1710.7 ± 128.5	
$(\Omega.cm^2)$	n =12	n =12	n =12	n =12	
Isc _{ini}	0.85 ± 0.03	0.82 ± 0.03	0.77 ± 0.05	0.81 ± 0.04	
$(\mu A/cm^2)$					
TED	1688.2	1885.7	1874.1	1887.9	
1LK ₃₀	±	<u>±</u>	±	±	
$(\Omega.cm^2)$	119.5 ^{NS}	154.5***	154.5**	258.8^*	
Isc ₃₀	$1.26 \pm 0.05^{***}$	$1.22 \pm 0.05^{***}$	$1.24 \pm 0.04^{***}$	$1.13 \pm 0.4^{***}$	
$(\mu A/cm^2)$					

Table S3: Transepithelial resistance and short-circuit current during capsaicin and AMG-9810 exposure.

TER_{ini}, Isc_{in}, TER₃₀ and Isc₃₀ have the same meaning as the one described in **Error! Reference source not found.** No significant difference among the baseline values in TER_{ini} and Isc_{ini} was found P = 0.62 and P = 0.59, one way ANOVA respectively. After 30 min incubation in presence of capsaicin or DMSO, no significant difference in the TER₃₀ values (P = 0.7, one way ANOVA) or Isc₃₀ values was found (P = 0.2, one way ANOVA). Stars represent paired *t*-test comparison of TER_{ini} *vs* TER₃₀ and Isc_{ini} *vs* Isc₃₀. * P < 0.05, ** P < 0.01 and *** P < 0.001, NS non-significant.

	Ctrl	Cap 20 µM	CPZ 10 µM
TER _{ini}	1102.9 ± 40.9	1123.6 ± 32.6	1100.9 ± 41.39
$(\Omega.cm^2)$	n =19	n =16	n =19
$Isc_{ini} (\mu A/cm^2)$	1.03 ± 0.22	0.54 ± 0.02	0.81 ± 0.13
	1098.8	1042.5	1102.1
TER_{30}	±	±	±
(<u>1</u> 2.cm)	38.12 ^{NS}	38.2***	41.5 ^{NS}
Isc ₃₀	$1.17 \pm 0.25^{*}$	$0.68 \pm 0.03^{***}$	$096\pm0.18^*$
$(\mu A/cm^2)$			

Table S4: Transepithelial resistance and short-circuit current during capsaicin and capsazepine exposure

TER_{ini}, Isc_{in}, TER₃₀ and Isc₃₀ have the same meaning as the one described in Table S1. No significant difference in TER_{ini} and Isc_{ini} among the three groups was found P = 0.9 and P = 0.11, one-way ANOVA respectively. After 30 min incubation ANOVA comparison found no difference in the TER₃₀ (P = 0.5, one way ANOVA) and Isc₃₀ values (P = 0.22, one way ANOVA). Stars represent paired *t*-test comparison of TER_{ini} *vs* TER₃₀ and Isc_{ini} *vs* Isc₃₀. * P < 0.05, and *** P < 0.001, NS non-significant.

	Ctrl (DMSO)	OLDA 10 µM	RTX 1 µM
TER _{ini}	1551.2 ± 77.6	1533.6 ± 76.8	1664.4 ± 69.6
$(\Omega.cm^2)$	n = 24	n = 24	n = 24
$\frac{\text{Isc}_{\text{ini}}}{(\mu \text{A/cm}^2)}$	0.64 ± 0.02	0.59 ± 0.02	0.64 ± 0.03
	1786.9	1879.5	1820.3
TER_{30}	±	±	±
(Ω.cm)	86.5***	87.4***	86.6***
Isc ₃₀	$0.73\pm0.09^{\text{NS}}$	$0.78 \pm 0.03^{***}$	$0.93 \pm 0.4^{***}$
$(\mu A/cm^2)$			

Table S5: Transepithelial resistance and short-circuit current during capsaicin, N-Oleoyldopamine and resiniferatoxin exposure.

TER_{ini}, Isc_{in}, TER₃₀ and Isc₃₀ have the same meaning as the ones described in Table S1Error! Reference source not found. No significant difference in the TER_{ini} and Isc_{ini} values was found among the groups (P = 0.41 and P = 0.37, one way ANOVA). At the end of the incubation period no difference in the TER₃₀ and Isc₃₀ was found among the groups (P = 0.74 and P = 0.057, one way ANOVA). Control (Ctrl), *N*-Oleoyldopamine (OLDA), resiniferatoxin (RTX). Stars represent paired *t*-test comparison of TER_{ini} *vs* TER₃₀ and Isc₃₀. *** P < 0.001, NS non-significant.