
Appendix 3: Iterative Correlation Computation

This appendix describes in detail the computation of equation 4 from the text. Specifically, we will
show that
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can be written by using recursive definitions for P
+

and P
−

as follows:
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where
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Here, θ is a constant subject to the constraint θ < 1. I+n and I−n are indicator functions defined by,

I+n =

{
1 if positive feedback was received on trial n

0 otherwise
(B.7)

and

I−n =

{
1 if negative feedback was received on trial n

0 otherwise
. (B.8)

P+
n and P−

n are the response confidence on trial n depending on whether positive or negative
feedback was received on that trial. Specifically,

P+
n =

{
Pn if positive feedback was received on trial n

0 otherwise
(B.9)

and

P−
n =
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To begin, we show that Ω+
n and Ω−

n can be defined recursively as,
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Proof:

By definition we can write,
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Next, we factor a θ out of equation B.13,
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and pull the nth term out of the sum,
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Note that the second term inside the parentheses of equation B.16 is exactly Ω+
n−1, as defined in

equation B.14. Thus, we find that
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The proof for equation B.12 follows identical steps.

We now show that P
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−
n can be defined recursively as,
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Proof: By definition we write,
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Next, we factor a θ out of equation B.20,
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and then pull the nth term out of the sum,
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By multiplying the numerator and denominator of the second term in equation B.23 by Ω+
n−1, we

get
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Note that the term inside the parentheses in equation B.24 is exactly P
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Finally, solving equation B.11 for Ω+
n−1, and substituting into equation B.25 we get,
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Thus, equation B.1 becomes,

r(n) =

∣∣∣∣P+
n

Ω+
n

+
Ω+
n − I+n
Ω+
n

P
+
n−1 −

P−
n

Ω−
n

− Ω−
n − I−n
Ω−
n

P
−
n−1

∣∣∣∣ . (B.27)


