Supporting Information

of

Optimization of Brush-like Cationic Copolymers for Non-viral Gene Delivery

Hua Wei, Joshuel A. Pahang, Suzie H. Pun*

1. Table S1 & S2

2. Figure S1-S5

Condition	No.	Time (min)	Conv. (%)	Real structure determined by NMR
[M]:[Macro- CTA]:[I] = 300:1:0.33 [M] = 1.0 M, T = 70 °C	1	40	5.8	$P(GMA)_{50}$ - b - $P(HPMA)_{18}$
	2	90	9.9	$P(GMA)_{50}$ - b - $P(HPMA)_{33}$
	3	280	16.8	$P(GMA)_{50}$ - b - $P(HPMA)_{49}$
	4	480	27.2	$P(GMA)_{50}$ - b - $P(HPMA)_{83}$

Table S1. Summary of $P(GMA)_{50}$ -*b*-P(HPMA) prepared at different polymerization time using $P(GMA)_{50}$ as a macro-CTA.

Table S2. Summary of $P(GMA)_{50}$ -*b*-P(OEGMA) prepared at different polymerization time using $P(GMA)_{50}$ as a macro-CTA.

Condition	No.	Time (min)	Conv. (%)	Real structure determined by NMR
[M]:[Macro- CTA]:[I] = 200:1:0.33, [M] = 1.0 M, T = 70 °C	1	10	3.0	$P(GMA)_{50}$ - b - $P(OEGMA300)_6$
	2	20	5.5	$P(GMA)_{50}$ - b - $P(OEGMA300)_{11}$
	3	30	7.5	$P(GMA)_{50}-b-P(OEGMA300)_{15}$
	4	40	11.5	$P(GMA)_{50}$ -b- $P(OEGMA300)_{23}$

Figure S1.¹H NMR spectra of (a1) P(GMA)₅₀ in DMSO; (a2) P(HPMA)₃₃-*b*-P(GMA)₅₀ in DMSO; (a3) P(OEGMA)₁₅-*b*-P(GMA)₅₀ in CDCl₃; (b1) P(GMA-TEPA)₅₀ in D₂O; (b2)
P(HPMA)₃₃-*b*-P(GMA-TEPA)₅₀ in D₂O; (b3) P(OEGMA)₁₅-*b*-P(GMA-TEPA)₅₀ in D₂O.

Figure S2. Buffering capacity of various P(GMA-oligoamine)_{50/100} obtained by titrating polymer aqueous solution (0.2 mg/mL) in 0.15 M aqueous NaCl (pH 10, adjusted with NaOH) with 0.1 M HCl. As a reference, the titration curve of 25 kDa bPEI is also presented.

N/P 0 0.5 1 1.5 2 2.5 3 3.5 4 N/P 0 0.5 1 1.5 2 2.5 3 3.5 4 N/P 0 0.67 1.33 2 2.67 3.33 4 4.67 5.33

Figure S3. Agarose gel electrophoresis of various P(GMA-oligoamine) polyplexes formed by complexation with plasmid DNA at N/P ratios ranging from 0/1 to 5.5/1.

Figure S4. Transfection efficiency (A) and relative cell viability (B) of polyplexes formed by $P(HPMA)_{33}$ -*b*-P(GMA-TEPA/PEHA)_{50}. Data are shown as mean \pm SD (n = 3).

Figure S5. Average size distributions (PDIs) of various polyplexes formed at different N/P ratios in 150 mM PBS.