## **Supplementary Information**

## **Supplementary Materials and Methods**

#### Brain analysis

Drosophila MBs were analyzed using ZEN 2010 software and a Zeiss LSM700 confocal microscope. The volumes of  $\alpha$  and  $\beta$  lobes were quantified individually using the formula  $V=\pi r^2 h$  (where  $r = \frac{1}{2}$  of lobe width and h = lobe length) and their sum represents  $\alpha/\beta$  lobe volume. The length and the diameter of each lobe were measured from maximum projection images. Ab negative areas were calculated from the analysis of  $\Delta let-7$  and control calyces (72h APF) using the formula  $A=\pi r^2$ , where A is the Ab negative area and r is  $\frac{1}{2}$  of its diameter which crosses the MBN. The Student's t-test was used for statistical analyses.

We used 48h APF brains to quantify Ab positive cells in control and  $\Delta$  *let-7* mutants. In both cases *let-7*-C expressing cells were labeled with membrane GFP; *let-7*-C<sup>GK1</sup>/+; UAS-CD8GFP/+ was used as a control and *let-7*-C<sup>GK1</sup>/*let-7*-C<sup>K01</sup>; UAS-CD8GFP/P{W8, let-7-C<sup>Alet-7</sup>} as a  $\Delta$  *let-7* mutant. Ab expressing cells and double-labeled cells with GFP and Ab were quantified to find out if the deletion of miRNA *let-7* causes Ab misexpression in *let-7*-C expressing cells. For each sample 11 confocal sections (4 µm steps) through the whole calyx were analyzed; at least 4 calices of each genotype were evaluated. Statistical analysis was done using the Student's t-test.

#### Associative olfactory learning and electric shock avoidance assays

Groups of about 100 flies each were trained to avoid the odorants 4-Methylcyclohexanol (MCH, Sigma Aldrich) or 3-Octanol (OCT, Sigma Aldrich) as described by Tully and Quinn (Tully & Quinn, 1985). Four experiments were performed simultaneously in a modified learning apparatus described by Schwärzel et al. (Schwaerzel et al, 2002). Olfactory training started one minute after transferring the flies into the learning apparatus. Each odor was presented for one minute with a one-minute break between odor applications. One of the odours (conditioned stimulus +, CS+) was temporally paired with 12 electric shocks of 90V (1.25 s shock and 3.75 s interpulse interval), the second odor was presented without shock (conditioned stimulus -, CS-). After another minute, the flies were transferred to the T-maze part of the apparatus with both odors presented from each side and tested for odor preference for 2 minutes. Subsequently the flies were counted and a preference index was calculated as the number of flies on the side of the CS- minus the number of flies on the side of the CS+ divided by the total number of flies. Each odor was used equally often as CS+ and CS-, and the results of two reciprocal experiments were averaged to calculate a learning index. Normal distribution of the data from several experiments was confirmed using the Lilliefor's test, and

differences in learning indices of different genotypes were tested for significance using the Student's t-test.

Flies were tested for electric shock avoidance to control for the perception of the shock and for a locomotor performance required to exhibit learned behavior. Groups of about 100 flies were transferred into the T-maze. One arm of the T-maze consisted of a tube with an electrifiable grid. 12 electric shocks of 90V were applied during the first minute of a two minute time interval during which the flies could choose one of the arms of the T-maze. The avoidance index was calculated as described above and subjected to the Student's t-test.

## EdU labeling

To birth label neurons generated at the L3 stage EdU (5-Ethyl-2'-Deoxyuridine) labeling was performed using Click-iT EdU Alexa Fluor 555 Imaging Kit (Invitrogen/Molecular Probes). The feeding of EdU to *Drosophila* larvae was done following the protocol (Daul et al, 2010).

## miRNA target prediction

To identify *let-7* miRNA predicted targets TargetScan Release 5.2 (Ruby et al, 2007) and PicTar (Grun et al, 2005) databases were used.

## RNA preparation and real-time quantitative PCR

To determine the effect of the ecdysone synthesis on the miRNA let-7 expression levels and effect of *let-7* loss on *Fas II* mRNA levels quantitative reverse transcription PCRs (RT-qPCR) were performed on total RNA derived from pupal brains (for let-7 levels) and 1-3 d old adult heads (for Fas II levels). RNAs were extracted from flies using the TRIzol reagent (Invitrogen), followed by reverse transcription using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems) following the manufacturer's protocol. *let-7* levels were tested with 2S rRNA as an endogenous control for q-PCR using TaqMan® MicroRNA Assays and Fas II levels were tested with RpL32 as an endogenous control for q-PCR using Fast SYBR® Green master mix on a Step One Plus 96 well system (Applied Systems). Primers were used as follows: RpL32 forward — AAGATGACCATCCGCCCAGC; RpL32 reverse -GTCGATACCCTTGGGCTTGC; Fas II forward - ACTTGTCGTTGGTCGTGCGG; Fas II reverse - CACCTGGACAAATGCCCCTG. All reactions were run in triplicate with appropriate blank controls. The threshold cycle (CT) is defined as the fractional cycle number at which the fluorescence passes the fixed threshold. The  $\Delta CT$  value was determined by subtracting the average RpL32 CT value from the average Fas II CT value or the average 2S rRNA CT value from the average *let-7* CT value. The  $\Delta\Delta$ CT value was calculated by subtracting the  $\Delta CT$  of the control sample (*OregonR*) from the  $\Delta CT$  of the suspect sample ( $\Delta let-7$  or  $ecd^{lts}$ ). The relative amount of mRNA was then determined using the expression  $2^{-\Delta\Delta CT}$ 

# **Supplementary Tables**

|                                                                                                                                                                                  |           |                                                  |                         | -                |                                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------|-------------------------|------------------|-------------------------------------------------------------|--|
|                                                                                                                                                                                  |           | MB lobes volume <sup>a</sup> relative to control |                         |                  |                                                             |  |
|                                                                                                                                                                                  | Analyzed  |                                                  | (3-6d old adult brains) |                  |                                                             |  |
| Genotype                                                                                                                                                                         | MB lobes, | Va                                               | VB                      |                  | α/β                                                         |  |
|                                                                                                                                                                                  | n         | (AVE±SD)                                         | (AVE±SD)                | Vα/β<br>(AVE±SD) | Statistics <sup>ь</sup><br><i>P-</i> value                  |  |
| <b>Control</b><br>( <i>let</i> -7-C <sup>GK1</sup> /+)                                                                                                                           | n=17      | 1.00±0.22                                        | 1.00±0.23               | 1.00±0.17        | -                                                           |  |
| $\frac{\Delta \text{ let-7}}{(\text{let-7-C}^{\text{GK1}}/\text{let-7-C}^{\text{KO1}}; P\{W8, \text{ let-7-C}^{\Delta \text{let-7}}\})}$                                         | n=18      | 0.60±0.31                                        | 0.36±0.26               | 0.52±0.18        | 2.06x10 <sup>-9</sup> *** <sup>c</sup>                      |  |
| <b>Rescue with <i>let</i>-7-C</b><br>( <i>P</i> { <i>W8, let</i> -7- <i>C</i> }; <i>let</i> -7- <i>C</i> <sup><i>GK1</i></sup> / <i>let</i> -7- <i>C</i> <sup><i>KO1</i></sup> ) | n=8       | 0.80±0.19                                        | 1.06±0.31               | 0.89±0.18        | 0.19 <sup>c</sup><br>4.92x10 <sup>-5</sup> *** <sup>d</sup> |  |
| Apt overexpression<br>( <i>let-7-C<sup>GK1</sup>/UAS-apt</i> )                                                                                                                   | n=8       | 0.83±0.14                                        | 1.23±0.37               | 0.98±0.16        | 0.79 <sup>c</sup>                                           |  |
| Ab overexpression <sup>e</sup><br>( <i>let-</i> 7-C <sup>GK1</sup> /UAS-ab)                                                                                                      | n=10      | 0.10±0.13                                        | 0.82±0.31               | 0.72±0.26        | 3.22x10 <sup>-3</sup> ** <sup>c</sup>                       |  |
| <b>Rescue with ab</b><br>( <i>let-7 miR-125, ab<sup>1/</sup> let-7 miR-125, ab</i> <sup>1D</sup> )                                                                               | n=12      | 0.84±0.19                                        | 1.38±0.51               | 1.04±0.27        | 0.63 <sup>c</sup><br>7.10x10 <sup>-7</sup> *** <sup>d</sup> |  |
| Ab downregulation<br>(ab <sup>1</sup> /ab <sup>1</sup> )                                                                                                                         | n=12      | 0.82±0.18                                        | 0.90±0.18               | 0.85±0.12        | 0.02* <sup>c</sup>                                          |  |
| Ab downregulation<br>(ab <sup>1</sup> /ab <sup>1D</sup> )                                                                                                                        | n=22      | 1.03±0.36                                        | 1.15±0.49               | 1.07±0.37        | 0.46                                                        |  |
| Fas II downregulation<br>(let-7-C <sup>GK1</sup> /Fas2 <sup>RNAi</sup> )                                                                                                         | n=12      | 0.86±0.43                                        | 1.06±0.52               | 0.93±0.43        | 0.57                                                        |  |
| DE-Cadherin downregulation<br>(let-7-C <sup>GK1</sup> /shotgun <sup>RNAi</sup> )                                                                                                 | n=10      | 0.73±0.14                                        | 1.01±0.18               | 0.87±0.11        | 0.055                                                       |  |

## Supplementary Table I. Volume of α/β mushroom body lobes

<sup>a</sup> lobe volumes were quantified separately for  $\alpha$  and  $\beta$  lobes (V $\alpha$  and V $\beta$ ) using the formula  $V = \pi r^2 h$  and  $\alpha/\beta$  lobes volume (V $\alpha/\beta$ ) was calculated as V $\alpha$ +V $\beta$ ;

<sup>b</sup>statistics were calculated using a two-tailed Student's t-test and the *P*-value is presented; \*  $P \le 0.05$ ; \*\*  $P \le 0.01$ ; \*\*\* $P \le 0.001$ 

<sup>c</sup>in comparison to control;

<sup>d</sup>in comparison to rescue;

<sup>e</sup>analyzed at the stage of 90h APF because of lethality

| Le         | Learning index for reciprocal experiment <sup>1</sup>            |                                                                   |  |  |  |  |
|------------|------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| Control    | Δlet-7                                                           | Rescue                                                            |  |  |  |  |
| (Oregon R) | $(let-7-C^{GK1}/let-7-C^{KO1}; P\{W8, let-7-C^{\Delta let-7}\})$ | (P{W8, let-7-C}; let-7-C <sup>GK1</sup> /let-7-C <sup>K01</sup> ) |  |  |  |  |
| 0.71661    | 0.4549                                                           | 0.36066                                                           |  |  |  |  |
| 0.47032    | 0.45644                                                          | 0.40745                                                           |  |  |  |  |
| 0.57601    | 0.14326                                                          | 0.52605                                                           |  |  |  |  |
| 0.75296    | 0.39116                                                          | 0.41800                                                           |  |  |  |  |
| 0.48264    | 0.46275                                                          | 0.61824                                                           |  |  |  |  |
| 0.41282    | 0.37500                                                          | 0.45877                                                           |  |  |  |  |
| 0.46759    | 0.37616                                                          | 0.44683                                                           |  |  |  |  |
| 0.42620    | 0.26126                                                          | 0.46036                                                           |  |  |  |  |
| 0.66006    | 0.32403                                                          | 0.49842                                                           |  |  |  |  |
| 0.63541    | 0.37606                                                          | 0.36941                                                           |  |  |  |  |
| 0.48465    | 0.25714                                                          | 0.61998                                                           |  |  |  |  |
| 0.52577    | 0.32148                                                          | 0.51515                                                           |  |  |  |  |
| 0.51171    | 0.29355                                                          | 0.61906                                                           |  |  |  |  |
| 0.62003    | 0.31851                                                          | 0.58498                                                           |  |  |  |  |
| 0.51050    | 0.29963                                                          | 0.44859                                                           |  |  |  |  |
| 0.64921    | 0.24848                                                          | 0.75565                                                           |  |  |  |  |

#### Supplementary Table II. Olfactory learning in *let-7* mutants

<sup>1</sup> represents an avoidance of the shocked odor

It has been previously shown that mutants that had all three (*miR-100*, *let-7* and *miR-125*) miRNAs or just *let-7* miRNA deleted had severe locomotion defects measured by the spontaneous locomotion assay (Sokol et al, 2008). Therefore, we first tested if  $\Delta let$ -7-*C* and  $\Delta let$ -7 animals can be assayed in the olfactory conditioning assay. For this we analyzed if mutants can respond to electric shock stimulation (see experimental procedures) and observed that  $\Delta let$ -7-*C* mutants could not respond to electric shock and therefore could not be assayed for the learning test. Mutants deficient for miRNA *let*-7 had only a slightly decreased electric shock avoidance index in comparison to control.

Avoidance indices: OregonR0.71314 (SEM ±0.06975) n=11 $\Delta let-7$ 0.54743 (SEM ±0.08489) n=7, p=0.15

| Genotypes and conditions        | <i>let-7</i><br>Average C <sub>T</sub> | 2S <i>rRNA</i><br>Average C <sub>T</sub> | ΔCτ <sup>1</sup> | ΔΔC <sub>T</sub> <sup>2</sup> | Average<br>miRNA <i>let-7</i><br>levels relative<br>to control <sup>3</sup> |
|---------------------------------|----------------------------------------|------------------------------------------|------------------|-------------------------------|-----------------------------------------------------------------------------|
| <b>Oregon R</b> , 18°C          | 24.59±0.15                             | 5.03±0.24                                | 19.56±0.31       | 0.00±0.31                     | 1.00±0.23                                                                   |
| <b>Oregon R</b> , 29°C          | 22.54±0.15                             | 4.78±0.23                                | 17.76±0.11       | -1.89±0.11                    | 3.70±0.27                                                                   |
| <b>ecd<sup>1ts</sup></b> , 18°C | 26.02±0.48                             | 12.18±1.01                               | 13.85±1.25       | 0.00±1.25                     | 1.00±0.86                                                                   |
| <b>ecd<sup>1ts</sup></b> , 29°C | 23.76±1.03                             | 9.36±1.74                                | 14.40±0.71       | 0.56±0.71                     | 0.68±0.31                                                                   |

Supplementary Table III. miRNA *let-7* levels in *ecd<sup>1ts</sup>* mutants\*

\*- measurments of *let-7* mRNA levels at 18°C in comparison to 29°C suggests that *let-7* expression is temperature-dependent

<sup>1</sup> the  $\Delta C_T$  value is determined by subtracting the average 2S  $C_T$  value from the average *let-7*  $C_T$  value. Mean (3 independent experiments done in triplicate)  $\pm$  SD (standard deviation). SD is calculated from the SDs of the 2S *rRNA* and *let-7* values using the following formula: SD= $\sqrt{SD1^2+SD2^2}$ ;

<sup>2</sup> the calculation of the  $\Delta\Delta C_T$  involves subtraction by the  $\Delta C_T$  calibrator value.  $\Delta\Delta C_T = \Delta C_T - \Delta C_T$  (control at 18°C).

<sup>3</sup> the range given for *let-7* levels at 29°C relative to control (18°C) was calculated as  $2^{-ACT}$ 

#### Table IV. Volume of $\alpha/\beta$ mushroom body lobes in the mutants with the perturbed

#### ecdysone signaling pathway

| Conotyno                                                                           | Stages w             | $\alpha/\beta$ lobe defects in |                          |                                                |                                       |
|------------------------------------------------------------------------------------|----------------------|--------------------------------|--------------------------|------------------------------------------------|---------------------------------------|
| Genotype                                                                           | L3 larva             | Prepupa                        | Pupa                     | Pharate                                        | adult MBs                             |
|                                                                                    |                      |                                |                          |                                                | -                                     |
|                                                                                    |                      | 2 days <sup>1</sup>            |                          |                                                | +                                     |
| ecd1 <sup>ts</sup>                                                                 |                      | 2 da                           | iys                      |                                                | +                                     |
|                                                                                    |                      |                                | 1 day                    |                                                | +                                     |
|                                                                                    |                      |                                |                          | 2 days                                         | -                                     |
| Genotyne                                                                           | Analyzed<br>MB lobes |                                | MB lobes volu<br>(3-6d o | me <sup>a</sup> relative to<br>ld adult brains | control<br>)                          |
| Genotype                                                                           | n n                  | Vα<br>(AVE±SD)                 | Vβ<br>(AVE±SD)           | Vα/β<br>(AVE±SD)                               | Statistics <sup>b</sup><br>P-value    |
| Control ecd <sup>1ts</sup><br>(18°C)                                               | n=7                  | 1.00±0.24                      | 1±0.39                   | 1±0.23                                         | -                                     |
| <i>ecd1ts</i><br>(29°C for 2 days from<br>Prepupa to Pupa)1                        | n=10                 | 0.78±0.58                      | 0.47±0.33                | 0.58±0.40                                      | 0.01** c                              |
| <b>ecd<sup>1ts</sup></b><br>(29°C for 2 days from<br>Pupa to Pharate) <sup>2</sup> | n=12                 | 1.14±0.85                      | 1.38±0.49                | 1.26±0.45                                      | 0.18                                  |
| <i>ecd1ts</i><br>(29°C for 1 day at pupal<br>stage)                                | n=14                 | 0.72±0.33                      | 0.72±0.34                | 0.72±0.29                                      | 0.04*c                                |
| <b>ecd1ts</b><br>(29°C for 2 days from<br>Pharate)                                 | n=4                  | 1.15±0.31                      | 0.93±0.28                | 1.05±0.19                                      | 0.83                                  |
| hsGal4-EcR- <sup>L.B.D.</sup> /TM6 <sup>3</sup>                                    | n=6                  | 0.43±0.13                      | 0.76±0.29                | 0.56±0.17                                      | 2.7x10 <sup>-5</sup> *** c            |
| hsGal4-EcR-L.B.D./UAS-<br>let-7 <sup>3</sup>                                       | n=16                 | 1.17±0.29                      | 1.18±0.39                | 1.14±0.23                                      | 0.059 c<br>1.9x10 <sup>-5 *** d</sup> |
| hsGal4-usp <sup>L.B.D.</sup> /TM6 <sup>3</sup>                                     | n=16                 | 0.62±0.28                      | 0.84±0.30                | 0.70±0.24                                      | 3.2x10 <sup>-5</sup> *** c            |
| hsGal4-usp <sup>L.B.D.</sup> /UAS-<br>let-7 <sup>3</sup>                           | n=22                 | 0.85±0.26                      | 1.2±0.39                 | 0.97±0.24                                      | 0.77 c<br>1.2x10 <sup>-3 *** d</sup>  |

<sup>a</sup>lobe volumes were quantified separately for  $\alpha$  and  $\beta$  lobes (V $\alpha$  and V $\beta$ ) using the formula  $V = \pi r^2 h$  and  $\alpha/\beta$  lobes volume (V $\alpha/\beta$ ) was calculated as V $\alpha$ +V $\beta$ ;

<sup>b</sup>statistics were calculated using a two-tailed Student's t-test and the *P*-value is presented; \*  $P \le 0.05$ ; \*\*  $P \le 0.01$ ; \*\*\* $P \le 0.001$ 

<sup>c</sup>in comparison to control;

<sup>d</sup>in comparison to mutant;

<sup>1</sup>brains analyzed at the stage of 90h APF because of lethality;

<sup>2</sup> a large range of the phenotypes and high pupal lethality were observed in adult escapers; therefore 48h 29°C treatment was reduced to 24h in the next experiment

<sup>3</sup>animals were heat shocked for 2 days at 12hAPF stage: 3 times per day for 1 h in 37°C water bath

| Genotype                                                                                 | n (number<br>of analyzed  | Normally<br>developed α/β | α/β lobes with morphological changes (%<br>α/β |               |         | l changes (%)  |
|------------------------------------------------------------------------------------------|---------------------------|---------------------------|------------------------------------------------|---------------|---------|----------------|
|                                                                                          | $\alpha/\beta \ lobes)^1$ | lobes                     | Slim                                           | Misguided     | β-fused | Underdeveloped |
| Oregon R                                                                                 | 26                        | 100.00%                   | 0.00%                                          | 0.00%         | 0.00%   | 0.00%          |
| ∆ let-7                                                                                  | 32                        | 28.12%                    | 31.25%                                         | 3.13%         | 9.38%   | 28.13 <b>%</b> |
| ecd <sup>1ts</sup> *                                                                     | 18                        | 33.33%                    | 50.00%                                         | 0.00%         | 16.67%  | 0.00%          |
| hsGal4-EcR <sup>LBD</sup> **                                                             | 27                        | 11.11%                    | 40.74%                                         | 11.11%        | 18.52%  | 18.52 <b>%</b> |
| hsGal4-usp <sup>LBD</sup> **                                                             | 36                        | 33.33%                    | 44.44%                                         | 5.56 <b>%</b> | 13.89%  | 2.78%          |
| let-7 <sup>GK1</sup> ; EcR <sup>RNAI</sup>                                               | 23                        | 21.74%                    | 65.22 <b>%</b>                                 | 0.00%         | 4.35%   | 8.69 <b>%</b>  |
| c739Gal4; EcR <sup>RNAi</sup>                                                            | 13                        | 26.16%                    | 50.77%                                         | 0.00%         | 7.69%   | 15.38%         |
| hs EcR.A **                                                                              | 33                        | 45.45 <b>%</b>            | 24.24%                                         | 0.00%         | 12.12%  | 18.19 <b>%</b> |
| hs EcR.B1 **                                                                             | 20                        | 80.00%                    | 20.00%                                         | 0.00%         | 0.00%   | 0.00%          |
| let-7-C <sup>K01</sup> /EcR <sup>Q50</sup> ;<br>P{W8, let-7-C <sup>Δlet-7</sup> }/+      | 30                        | 43.33 <b>%</b>            | 40.00%                                         | 3.33%         | 0.00%   | 13.34%         |
| let-7-C <sup>K01</sup> /EcR <sup>M554fs</sup> ;<br>P{W8, let-7-C <sup>Δlet-7</sup> }/+   | 36                        | 41.67%                    | 41.67%                                         | 2.78%         | 5.56%   | 8.33%          |
| let-7-C <sup>K01</sup> /usp <sup>4</sup> ;<br>P{W8, let-7-C <sup>Δlet-7</sup> }/+        | 6                         | 50.00%                    | 50.00 <b>%</b>                                 | 0.00%         | 0.00%   | 0.00%          |
| usp <sup>4</sup> /+; EcR <sup>050</sup> /+                                               | 29                        | 72.41%                    | 10.34%                                         | 0.00%         | 17.24%  | 0.00%          |
| let-7-C <sup>K01</sup> /Fas II <sup>G0081</sup> ;<br>P{W8, let-7-C <sup>Δlet-7</sup> }/+ | 18                        | 16.66%                    | 61.11%                                         | 0.00%         | 0.00%   | 22.22%         |

Table V. Morphological changes in  $\alpha/\beta$  mushroom body lobes

<sup>1</sup>MB morphology was analysed in Fas II stained 1-3d old adult brains

\*animals were transferred from 18°C to 29°C environment for 24h at 12hAPF stage

\*\*animals were heat-shocked for 1h in 37°C water bath 3 times per day at 12hAPF stage

| <i>let-7</i><br>target <sup>1</sup> | Con-<br>served<br>sites <sup>2</sup> | Molecular function                                                 | Biological process                                                                                                                                  |
|-------------------------------------|--------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| A3-3                                | 1                                    | transcription factor                                               | nervous system development                                                                                                                          |
| ab                                  | 3                                    | transcription factor                                               | dendrite morphogenesis; neuron development                                                                                                          |
| apt                                 | 1                                    | transcription factor                                               | PNS development                                                                                                                                     |
| Arr1                                | 1                                    | metarhodopsin binding                                              | photoreceptor cell maintenance; endocytosis                                                                                                         |
| bin                                 | 1                                    | DNA binding                                                        | mesodermal cell fate commitment                                                                                                                     |
| CG11050                             | 1                                    | metal ion binding; phosphoric<br>diester hydrolase activity        | unknown                                                                                                                                             |
| CG12130                             | 1                                    | peptidylamidoglycolate lyase<br>activity                           | peptide metabolic process                                                                                                                           |
| CG12701                             | 1                                    | DNA binding                                                        | mitotic cell cycle; cellularization                                                                                                                 |
| CG14614                             | 1                                    | unknown                                                            | unknown                                                                                                                                             |
| CG15887                             | 1                                    | unknown                                                            | unknown                                                                                                                                             |
| CG17090                             | 1                                    | protein serine/threonine kinase<br>activity                        | positive regulation of Wnt receptor signaling pathway; positive regulation of Notch<br>signaling pathway                                            |
| CG17100                             | 1                                    | DNA binding                                                        | regulation of circadian rhythm                                                                                                                      |
| CG18265                             | 2                                    | zinc ion binding                                                   | unknown                                                                                                                                             |
| CG2093                              | 1                                    | unknown                                                            | protein targeting to vacuole                                                                                                                        |
| CG31176                             | 1                                    | unknown                                                            | unknown                                                                                                                                             |
| CG33203                             | 1                                    | unknown                                                            | unknown                                                                                                                                             |
| CG5026                              | 1                                    | protein tyrosine/serine/threonine<br>phosphatase activity          | dephosphorylation                                                                                                                                   |
| CG6014                              | 1                                    | unknown                                                            | tissue regeneration                                                                                                                                 |
| CG6490                              | 1                                    | unknown                                                            | unknown                                                                                                                                             |
| CG8494                              | 1                                    | ubiquitin thiolesterase activity                                   | nervous system development                                                                                                                          |
| CG9098                              | 1                                    | SH3/SH2 adaptor activity                                           | small GTPase mediated signal transduction                                                                                                           |
| CG9514                              | 1                                    | choline dehydrogenase activity                                     | unknown                                                                                                                                             |
| Dh                                  | 1                                    | neuropeptide hormone activity                                      | body fluid secretion                                                                                                                                |
| Eip93F                              | 1                                    | transcription factor                                               | induction of apoptosis; cellular response to hypoxia; autophagic cell death                                                                         |
| hairy                               | 1                                    | protein binding                                                    | response to hypoxia; tube morphogenesis; cell morphogenesis; tracheal system<br>development                                                         |
| hkb                                 | 1                                    | transcription factor                                               | CNS development; glial cell differentiation; germ cell migration                                                                                    |
| ifc                                 | 1                                    | sphingolipid delta-4 desaturase<br>activity                        | spermatogenesis                                                                                                                                     |
| iHog                                | 1                                    | heparin binding; hedgehog<br>receptor; protein<br>homodimerization | smoothened signaling pathway; cuticle pattern formation; wing disc pattern formation                                                                |
| IM2                                 | 1                                    | unknown                                                            | unknown                                                                                                                                             |
| Notum                               | 1                                    | unknown                                                            | Wnt receptor signaling pathway                                                                                                                      |
| rib                                 | 1                                    | transcription factor                                               | tracheal system development; embryonic development via the syncytial blastoderm;<br>digestive tract development; cell polarity; gland morphogenesis |
| Sac1                                | 1                                    | polyphosphatidylinositol<br>phosphatase activity                   | negative regulation of JNK cascade                                                                                                                  |
| sqd                                 | 1                                    | mRNA binding                                                       | RNA splicing; ovarian follicle cell development; RNA metabolic process; oocyte<br>anterior/posterior axis specification                             |
| stet                                | 1                                    | serine-type peptidase activity                                     | epidermal growth factor receptor signaling pathway                                                                                                  |
| ytr                                 | 1                                    | mRNA binding                                                       | hemocyte differentiation                                                                                                                            |

# Supplementary Table VI. Predicted *let-7* targets

<sup>1</sup>targets predicted by TargetScan (Ruby et al, 2007) and PicTar (Grun et al, 2005) databases; <sup>2</sup>conserved binding sites predicted by TargetScan

| maunus                                                                                                              |                                                             |                         |                                   |                              |  |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|-----------------------------------|------------------------------|--|--|
|                                                                                                                     | Number of Ab-                                               | GFP and Ab dou<br>per c |                                   |                              |  |  |
| Genotype                                                                                                            | per calyx Number<br>AVE <u>+</u> AVEDEV AVE <u>+</u> AVEDEV |                         | Percentage<br>AVE <u>+</u> AVEDEV | <i>P</i> -Value <sup>1</sup> |  |  |
| <u>Control</u><br>let-7-C <sup>GK1</sup> /+; UAS-CD8GFP/+                                                           | 63.25±13.63                                                 | 553.50±30.75            | 11.37±2.33                        | -                            |  |  |
| <u>Δlet-7</u><br>let-7-C <sup>GK1</sup> / let-7-C <sup>K01</sup> ; UAS-<br>CD8GFP/P{W8, let-7-C <sup>Δlet-7</sup> } | 158.75±31.63                                                | 621.25±38.75            | 25.46±4.45                        | 6.7x10 <sup>-3</sup> **      |  |  |

Supplementary Table VII. The frequency of Ab positive cells is increased in  $\Delta$  *let-7* mutants

<sup>1</sup>statistics were calculated using a two-tailed Student's t-test and the *P*-value is presented; \*\*  $P \leq 0.01$ 

# Supplementary Table VIII. Chronological lineage analysis of MB neurons using the MARCM technique shows that miRNA *let-7* and the nuclear factor Ab are required cell autonomously for establishment of $\alpha/\beta$ and $\alpha'/\beta'$ neuronal cell fate respectively

| Stage of<br>clonal<br>induction <sup>a</sup> | Genotype                         | Analyzed<br>MB lobes<br>(n) | Lobes<br>with<br>MBN-<br>derived<br>clones | Lobes with<br>GMC/neuron-<br>derived<br>clones | <i>P</i> -value <sup>b</sup> | Single/double<br>cell clones<br>within γ lobe <sup>c</sup> | Single/double<br>cell clones<br>within α'/β'<br>lobe <sup>c</sup> | Single/double<br>cell clones<br>within α/β<br>lobe <sup>c</sup> |
|----------------------------------------------|----------------------------------|-----------------------------|--------------------------------------------|------------------------------------------------|------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|
|                                              | Parental<br>control <sup>d</sup> | 38                          | 60.53%                                     | 39.47%                                         |                              | 100%<br>n=15                                               | -                                                                 | -                                                               |
| L1                                           | let-7                            | 54                          | 75.93%                                     | 24,07%                                         | 0.11                         | 100%<br>n=13                                               | -                                                                 | -                                                               |
|                                              | ab <sup>k02807</sup>             | 30                          | 73.33%                                     | 26.67%                                         | 0.28                         | 100%<br>n=8                                                | -                                                                 | -                                                               |
|                                              | Parental<br>control              | 42                          | 33.33%                                     | 66.67%                                         | -                            | -                                                          | 100%<br>n=28                                                      | -                                                               |
| L3                                           | let-7                            | 29                          | 55.17%                                     | 44.83%                                         | 0.07                         | -                                                          | 100%<br>n=13                                                      | -                                                               |
|                                              | ab <sup>k02807</sup>             | 50                          | 52.00%                                     | 48.00%                                         | 0.07                         | 53.85%***<br>n=21                                          | 5.13%***<br>n=2                                                   | 41.03%***<br>n=16                                               |
|                                              | Parental<br>control              | 19                          | 68.42%                                     | 31.58%                                         | -                            | -                                                          | -                                                                 | 100%<br>n=6                                                     |
| Р                                            | let-7                            | 56                          | 58.93%                                     | 41.07%                                         | 0.15                         | -                                                          | 68.00%***<br>n=17                                                 | 32.00%***<br>n=8                                                |
|                                              | ab <sup>k02807</sup>             | 25                          | 28.00%                                     | 72.00%                                         | 0.54                         | -                                                          | -                                                                 | 100%<br>n=18                                                    |

<sup>a</sup> for the possible outcome of clonal induction at different developmental stages please refer to Supplementary Figure 2A

<sup>b</sup> significance between MBN-derived versus single/double cell clones was calculated using a twotailed Student's t-test and the *P*-value is presented; 3-5 independent experiments were performed for each stage of heat shock induction and genotype

<sup>c</sup> In order to analyze the significance between the frequencies of cell identities ( $\gamma$ ,  $\alpha'/\beta'$  or  $\alpha/\beta$ ) acquired by single/double cell MARCM clonal neurons induced at different developmental stages (L1, L3, P) in different genetic backgrounds (*Parental control, let-7*, and *ab*<sup>*k*02807</sup>) two-way tables and chi-squared test with 4 degrees of freedom were used

<sup>d</sup> due to the leakiness of heat-shock promoter even without heat pulse, MARCM clones can be generated with the frequency of 3.20±1.68 clonal cells per brain; however, only 0.10±0.18 clones per MB cell cluster, which is not significantly different from the null. After heat-shock induction every brain had at least one or more single/double-cell MB clone. See also data below:

| hsFlp, UAS-<br>CD8GFP/+; tubGal80<br>FRT 40A/FRT 40A; | Single cell clones<br>per brain<br>(Mean±AveDev) | NB derived<br>clones per brain<br>(Mean±AveDev) | Single cell<br>clones per MB<br>(Mean±AveDev) | MBN derived<br>clones<br>(Mean±AveDev) | Number of<br>analyzed<br>brains (MBs) |
|-------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------|
| tubGal4/+                                             | 3.20±1.68                                        | 0.10±0.18                                       | 0.10±0.18                                     | 0.00±0.00                              | 10 (20)                               |
| <b>p-Value</b><br>(compared to 0)                     | 1.72x10 <sup>-4</sup>                            | 0.15                                            | 0.15                                          | ND                                     | -                                     |
| *** 10.004                                            |                                                  |                                                 |                                               |                                        |                                       |

\*\*\*p≤0.001

|                                                                                              | Fas II                 | RpL32                  | ∆C <sub>T</sub> <sup>1</sup> | ΔΔC <sub>T</sub> <sup>2</sup> | Average Fas II                                     |
|----------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------------|-------------------------------|----------------------------------------------------|
| Genotype                                                                                     | Average C <sub>T</sub> | Average C <sub>T</sub> |                              |                               | mRNA levels<br>relative to<br>control <sup>3</sup> |
| Control <sup>ª</sup><br>(Oregon R)                                                           | 33.04±1.20             | 28.77±1.17             | 4.27±0.35                    | 0.00±0.35                     | 1.02±0.23                                          |
| Δ let-7<br>(let-7- $C^{GK1}$ /let-7- $C^{KO1}$ ;<br>$P{W8, let-7-C^{\Delta let-7}})$         | 32.79±0.42             | 26.62±0.12             | 6.17±0.38                    | 1.90±0.38                     | 0.27±0.08                                          |
| <b>∆ let-7, ab</b><br>(let-7 miR-125, ab <sup>1</sup> /<br>let-7 miR-125, ab <sup>1D</sup> ) | 32.62±0.12             | 27.67±0.12             | 4.95±0.17                    | 0.68±0.17                     | 0.63±0.07                                          |
| <b>Fas Ⅱ</b><br>( <i>Fas2<sup>RNAi</sup>/let-</i> 7-C <sup>GK1</sup> )                       | 31.81±0.28             | 26.21±0.28             | 5.6±0.56                     | 1.32±0.56                     | 0.42±0.15                                          |
| Control <sup>b</sup><br>(ab <sup>1</sup> /CyO)                                               | 19.65±0.09             | 14.09±0.33             | 5.57±0.09                    | 0.00±0.09                     | 1.00±0.06                                          |
| ab<br>(ab <sup>1</sup> /ab <sup>1D</sup> )                                                   | 20.40±0.02             | 15.37±0.07             | 5.03±0.03                    | -0.53±0.03                    | 1.44±0.03                                          |

## Supplementary Table IX. Fas II mRNA levels

<sup>1</sup> the  $\Delta C_T$  value is determined by subtracting the average *RpL32*  $C_T$  value from the average *Fas II*  $C_T$  value. Mean (2 independent experiments done in triplicate)  $\pm$  SD (standard deviation). SD is calculated from the SDs of the *RpL32* and *Fas II* values using the following formula: SD= $\sqrt{SD1^2+SD2^2}$ ;

<sup>2</sup> the calculation of the  $\Delta\Delta C_T$  involves subtraction by the  $\Delta C_T$  calibrator value.  $\Delta\Delta C_T = \Delta C_T - \Delta C_T$  (Control).

<sup>3</sup> the range given for *Fas II* levels in  $\Delta$  *let*-7 mutant relative to Control<sup>a</sup> (*Oregon R*) or in *ab* mutant relative to Control<sup>b</sup> (*ab*<sup>1</sup>/*CyO*) was calculated as  $2^{-\Delta CT}$ 

# Supplementary Table X. Viability and MB phenotypes of studied mutants <u>Supplementary Figure Legends</u>

| Gal4 driver              | UAS-transgene                   | Lethality stage | α/β lobe phenotype                               |
|--------------------------|---------------------------------|-----------------|--------------------------------------------------|
|                          | UAS-ab                          | Pharate         | underdeveloped, slim $\alpha/\beta$ lobes        |
|                          | UAS-apt                         | viable          | no visible phenotype                             |
| lot 7 ( <sup>GK1</sup> x | UAS-fas2 <sup>RNAi</sup> viable |                 | fused β lobes (50%),<br>vacuolated α/β lobes     |
|                          | UAS-shotgun <sup>RNAi</sup>     | viable          | no visible phenotype                             |
|                          | UAS-ECR <sup>RNAi</sup>         | viable          | underdeveloped,<br>slim α/β lobes, fused β lobes |
|                          | UAS-Fas II                      | viable          | no visible phenotype                             |
| c2096al4 x               | UAS-let-7                       | pharate         | mislocalized Fas II                              |
| C3030014 X               | UAS-mut-let-7                   | viable          | no visible phenotype                             |
| c205aCal4_x              | UAS-Fas II                      | viable          | Trio-positive cells project into α/β<br>lobes    |
| C3U3UGUI4 X              | UAS-ab                          | pupa            | -                                                |
| c739Gal4 x               | UAS-ab                          | viable          | weak Fas II staining                             |
|                          | UAS-ECR <sup>RNAi</sup>         | viable          | underdeveloped, slim $\alpha/\beta$ lobes        |

## Supplementary Figure Legends

#### Figure S1. *let-7-C* expression in adult *Drosophila* brain

(A) *let-7-C* is expressed in the lobula (*lo*) and lobula plate (*lo p*), (**B**) antennal lobes and (**C-D**) central complex ellipsoid body (*eb*), fun-shaped body (*fb*), superior arch (*sa*), and mushroom bodies (*mb*). *let-7-C* expression is marked with membrane GFP – green and nuclear LacZ – red (*let-7C*<sup>GK1</sup>; UAS-CD8-GFP, UAS-nLacZ). MicroRNA *let-7* (**E-F**) has a broad expression signal in the control (*Oregon R, E*), but not *let-7* mutant (*let-7-C*<sup>GK1</sup>/*let-7-C*<sup>KO1</sup>; *P*{W8, *let-7-C*<sup>dlet-7</sup>}, **F**) pupal brains as detected by locked nucleic acid (LNA) *in situ* hybridization.

#### Figure S2. *let-7-C* deficiency in $\gamma$ neurons does not affect $\gamma$ lobe formation

(A) A scheme depicting the possible types of GFP marked MB neurons obtained after heatshock at different stages, which also depends whether MARCM recombination event was induced in MBNs or GMCs and differentiating neurons. (**B-C**) Upon induction of MARCM clones at the 1<sup>st</sup> instar larval stage, GFP positive control  $\gamma$  neurons (*hsFlp UAS CD8GFP; FRT* 40A tubGal80/FRT 40A; tubGal4/+) and GFP positive  $\Delta let-7 \gamma$  neurons (*hsFlp UAS CD8GFP; FRT 40A tubGal80/FRT 40A let-7 miR-125; tubGal4/P{W8, let-7-C<sup>dlet-7</sup>}*) correctly remodel and project their axons to form  $\gamma$  lobes. Fas II (**B**) and Trio (**C**) mark  $\gamma$  lobes - red, GFP marks clonal neurons - green, DAPI marks nuclei – blue. MB lobes are outlined and marked.

#### Figure S3. Ecdysone signaling in the developing Drosophila brain

(A-C) Brains of wild type animals at the different stages of development in which active ecdysone signaling (*EcRE.lacZ*) was visualized via  $\beta$ -Gal staining. The highest signal for ecdysone signaling was observed at 48h APF (**B**).

#### Figure S4. The Apt expression pattern is not changed due to *let-7* deficiency

(A) *Drosophila* larval brain contains multiple neuroblasts, while in the pupal brain (B) only four MB neuroblasts per MB cell body cluster can be detected marked with a NB specific marker Miranda (Mira, arrows). (C). In the pharate brain only four MBNs (yellow arrow), and their direct progeny GMCs (white arrow) are mitotically active and positive for the mitotic marker phosphohistone-3, PH3. (D) At the pharate stage Ab staining is seen in differentiated neurons, but not in MBN (marked by Mira, D'). (E) In the pharate brain Apt staining is

restricted to MBNs (Mira positive cells) and few cells that are juxtaposed to MBNs (GMCs and immature neurons) (**E**"). (**F**) *let*-7 deficiency does not affect the Apt expression pattern when compared to the control in Figure\_3C. (**G**) Overexpression of Apt in *let*-7-*C* expressing neurons does not affect MB development.

#### Figure S5. Expression pattern of different MB specific drivers used in this study

(A) 201y-Gal4 - specific for  $\gamma$  lobe (larval brain), (B) c305a-Gal4 - specific for  $\alpha'/\beta'$  lobes (adult brain), (C) 309c-Gal4 - specific for all MB lobes, Fas II marks  $\gamma$  and  $\alpha/\beta$  MB lobes.

#### Figure S6. Ab is required for $\alpha'/\beta'$ MB lobes formation.

(A-B) When induced at the L1 stage of development *ab* clonal GMCs give rise to normally developed  $\gamma$  lobe neurons (A, left side) and *ab* clonal MBNs generate  $\gamma$  and  $\alpha/\beta$ , but not  $\alpha^2/\beta^2$  lobe neurons (A, right side; B). (C-E) When induced at the L3 stage of development, *ab* clonal MBNs fail to form  $\alpha^2/\beta^2$  lobe neurons, but produce underdeveloped  $\alpha/\beta$  lobes that result from morphological defects such as midline crossing (C) or premature collapse (D-E) of mutant neurons. Blue arrows point to the places where  $\alpha^2$  lobe neurons should be seen if they would develop. Yellow outlines  $\alpha/\beta$  lobes. (F) Ab overexpression in MB neurons (*hsFlp; act.CD2.Gal4;UAS-ab*) induced at L2 stage results in the axon guidance phenotype. (G-H) Forced expression of Ab in  $\alpha/\beta$  neurons using  $\alpha/\beta$  specific driver *c739Gal4* (H) decreases Fas II levels in  $\alpha/\beta$  MB lobes in comparison to Control (G). MARCM MBN-derived clone induced at L1 contains early- and late-born neurons (GFP positive cells). After clonal induction at L1, larvae were fed EdU at L3 to mark the late born  $\alpha^2/\beta^2$  neurons. Unlike wild type neurons born at L3 (EdU positive, GFP negative), *ab* mutant neurons (EdU positive, GFP positive neurons that are born at L3.

#### Figure S7. The Cadherin expression pattern in Drosophila MBs

DE-Cadherin is expressed in the pupal MB cell body cluster and is enriched around MBNs and GMCs (**A**) and in the adult MB lobes (**B**, **B**').

# **Supplementary Figures** Figure S1













Figure S7



## **Supplementary References**

Daul AL, Komori H, Lee CY (2010) EdU (5-ethynyl-2'-deoxyuridine) labeling of Drosophila mitotic neuroblasts. *Cold Spring Harb Protoc* **2010:** pdb prot5461

Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. *PLoS Comput Biol* **1**: e13

Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. *Genome Res* **17**: 1850-1864

Schwaerzel M, Heisenberg M, Zars T (2002) Extinction antagonizes olfactory memory at the subcellular level. *Neuron* **35**: 951-960

Sokol NS, Xu P, Jan YN, Ambros V (2008) Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. *Genes Dev* **22**: 1591-1596

Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. *J Comp Physiol A* **157**: 263-277