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1 Area Under the Curve (AUC) as Endpoint

Although both treatment strategy and endpoint may depend on viral load levels, the nature of the

relationship is not known and we exemplify this point via illustration. To illustrate the that switch

to second-line regimen and endpoint are not positively correlated “by definition,” two hypothetical

viral load trajectories are displayed in Figure 1. Patient I and patient II have the same viral load

trajectory over time before week six after confirmed failure. In the left panel, patient I switched

to the second-line regimen within eight weeks after confirmed failure, and then viral load dropped

below 200 copies/mL quickly. Patient II switched to the second-line regimen at week ten and then

viral load dropped below 200 copies/mL immediately. We assume they have the same follow-up

length. Therefore, cumulative viral load for patient I (AUC of purple line with squares Y1) is

less than cumulative viral load for patient II (AUC of blue line with dots Y2) in the left panel.

On the other hand, Y1 > Y2 in the right panel because viral load for patient I does not drop

significantly after switching to second-line regimen. A similar phenomenon occurs for the rate of

time of suppression endpoint.

[Figure 1 about here.]

2 Simulation Studies

We conducted simulation studies to examine the operating characteristics of several estimators.

We consider a special case where all the patients experienced virologic failure and switched to
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the next line treatment either early or late. We simulated data similar to the Monte Carlo stud-

ies in Cao, Tsiatis and Davidian (2009). For each i, Zi = (Zi1, Zi2, Zi3, Zi4)
T was generated

as standard multivariate normal, and the elements of Xi = (Xi1,Xi2,Xi3,Xi4)
T were defined as

Xi1 = exp(Zi1/2),Xi2 = Zi2/(1 + exp(Zi1)) + 10,Xi3 = (Zi1Zi3/25 + 0.6)3 and Xi4 = (Zi1 + Zi2)
2.

Thus, Xi is a nonlinear function of Zi. The true and posited propensity score model is π0(Zi) =

expit(−Zi1 + 0.5Zi2 − 0.25Zi3 − 0.1Zi4). We consider four simulation scenarios:

1. true OR model is Yi = ξT
Xi + ǫi, where ǫi ∼ N(0, 1); the posited OR model is correctly

specified and Xi is observed.

2. same as 1. except that posited OR model uses Xi as well as 10 noise covariates;

3. same as 1. except that posited OR model uses Zi not Xi;

4. true OR model is Yi ∼ Exp(λi), with λi = ξT
Xi, while posited OR model is linear model.

For each scenario of n = 1000 and n = 100, 1000 Monte Carlo datasets were generated. Results for

all simulation scenarios are presented in Table 1.

When the sample size is large, all estimators all showed small Monte Carlo bias. In large samples,

AIPW, REG, RRZ, and CTD estimators exhibited similar variance with modest differences. For

example, in OR model 3, RRZ and AIPW had smaller variance than both REG and CTD. The

CTD estimator had the smallest variance in OR model 2 but had bias twice as large as REG. For

n = 100, the REG estimator was the best overall performer and RRZ was the worst, excluding the

IPW estimator. In OR model 1, CTD showed somewhat smaller bias than REG but its variance

was much larger. Interestingly, the RRZ estimator had smallest variance in OR model 3 and similar

bias to REG. In general, the sandwich estimator for the variance of the estimator was too small

in small samples but improved as the sample size increased. Thus, in many scenarios, the REG

estimator was competitive with other estimators in the scenarios we considered. However, based on

the simulation results, we see that even the REG estimator can perform poorly in small samples,

even when the PS model is correctly specified.

[Table 1 about here.]
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3 Details on Sensitivity and Secondary Analyses

The sensitivity our analytic results depend on many assumptions, some of which are identified and

others of which are not identified by the observable data. Because these statistical assumptions

play no small role in the analysis of observational data, many authors have proposed a wide range

of tools for model diagnostics and sensitivity analyses (cf. Rosenbaum, 1983; Robins, 1999; Robins,

Rotnizky, and Scharfstein, 1999; Rotnizky, Scharfstein, Su, and Robins, 2001). Our sensitivity

analyses included, but not limited to, comparing the effect on our parameter estimates when weak

observed confounders were removed and when all the confounders were included in the models. In

addition, we will conduct analysis to look into the influence of those 50 patients who experienced

virologic failure but only after a protocol-approved substitution. Investigating the sensitivity of our

analytic results to nonidentifiable assumptions is beyond the scope of the current paper. Hence,

our results rest on the validity of the “no unmeasured confounders” assumption. However, this

assumption is ubiquitous in the literature and a well-know limitation of causal inference.

We include potential confounders only when they are significantly or mildly related to treatment

switching, endpoints, or both, and used the same set of variables throughout. Different endpoints

have different important covariables sets. Baseline viral load, baseline CD4 cell counts, time to

viral failure on initial regimen, race and body weight are found important for cumulative viral

load. Baseline viral load, HIV RNA at virologic failure before switching, baseline CD4 cell counts,

baseline CD8 cell counts, time to viral failure on initial regimen, sex and race have important

effects on proportion of time with non-detectable viral load. Baseline viral load, HIV RNA at

virologic failure, baseline CD4 cell counts, baseline CD8 cell counts, time to viral failure on initial

regimen, body weight, sex and race are significantly associated with cumulative CD4 cell counts. In

Table 1, we report the point estimates of mean outcomes on treatment policies and their standard

error estimates. Compared to the main analysis, we found that point estimates and standard

error estimates changed little when unimportant covariates were removed from the models and

the difference of mean endpoints are still significant between patients who switch to a second-line

regimen within 8 weeks after failure on the first-line regimen than those patients who switch late.

The findings are summarized in Table 2.

[Table 2 about here.]
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[Table 3 about here.]

In our main analysis of the ACTG A5095 data, we computed our endpoints by calculating

length-adjusted AUC of HIV RNA and CD4 cell counts on their log10 transformation of original

scale. Alternatively, we could have computed length-adjusted AUC on original scale, taking natural

logarithmic transformation on AUC. Here, we saw some deviation in the magnitude of the difference

in point estimates for the cumulative HIV RNA endpoint compared to those presented Table 4 in

main analysis. However, our Wald test of significance still rejected the null hypothesis at the

nominal level. Thus, our conclusions remained the same as those presented in the main analysis

for all three endpoints. Point estimates and standard error estimates are displayed in Table 4.

[Table 4 about here.]
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Figure 1: Two exemplary HIV trajectories: patient I has smaller AUC and longer time of viral load
suppression than patient II in the left panel. Right panel shows the opposite phenomenon.
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Table 1: Simulation results based on 1000 Monte Carlo data sets.

n=1000 n=100
Method Bias MCSD AAVE MAVE Bias MCSD AAVE MAVE

PS correct, OR correct
IPW 0.011 4.685 4.453 3.926 1.782 24.274 13.978 22.370
AIPW 0.029 1.149 1.147 1.147 0.127 3.658 3.605 3.596
RRZ -0.312 1.300 1.172 1.164 5.937 9.130 5.348 4.520
REG -0.029 1.149 1.147 1.147 0.123 3.652 3.602 3.598
CTD -0.029 1.150 1.147 1.147 0.120 3.669 3.618 3.612

PS correct, OR incorrect model 1
IPW 0.040 4.869 4.488 3.975 2.660 24.154 20.533 14.165
AIPW 0.029 1.150 1.149 1.148 0.128 3.664 3.612 3.609
RRZ -0.323 1.306 1.175 1.167 8.410 10.997 7.211 6.198
REG 0.030 1.150 1.149 1.148 0.127 3.664 3.607 3.605
CTD 0.030 1.150 1.149 1.148 0.188 3.736 3.912 3.760

PS correct, OR incorrect model 2
IPW -0.497 8.324 7.685 6.757 2.676 41.472 24.535 18.256
AIPW -0.496 2.617 2.381 2.176 0.500 7.813 6.263 5.506
RRZ 0.177 2.619 2.227 2.118 10.303 16.368 9.495 7.989
REG -0.082 2.386 2.201 2.058 1.454 7.655 6.644 5.219
CTD -0.177 2.218 1.973 1.918 1.798 11.279 9.920 7.022

PS correct, OR incorrect model 3
IPW 0.373 12.647 12.722 12.067 0.759 50.897 37.851 32.091
AIPW 0.464 12.080 12.113 11.592 3.064 42.294 35.611 32.585
RRZ 0.183 12.071 11.745 11.346 3.583 40.884 33.476 30.598
REG 0.619 12.149 11.929 11.415 3.571 45.991 42.915 33.171
CTD 0.492 13.148 11.833 11.294 3.115 77.481 61.887 44.547

NOTE: The estimators are the inverse probability weighted (IPW) estimator, augmented IPW
(AIPW) estimator, a minimum variance estimator (RRZ) from Robins et al. (1995), and the
proposed regression (REG) estimator. Reported statistics include bias, Monte Carlo standard
error (MCSD), the mean and median of standard error estimates, AAVE and MAVE, respectively.
Incorrect OR models are linear for each of models 1–2 and exponential for model 3. In model 1, the
posited OR model adjusts for 10 noise covariables in addition to the important confounders. The
posited OR model 2 uses nonlinear transformations Zi of the original confounders Xi.
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Table 2: Results for combined efavirenz-containing arms using reduced set of confounders in PS
and OR models.

HIV-1 RNA Days below LOD CD4
Method Switch Est. (SE) T Est. (SE) T Est. (SE) T

Early 2.596 (0.181) 0.553 (0.052) 2.437 (0.055)
COND

Late 2.702 (0.071)
0.600

0.499 (0.023)
0.968

2.473 (0.055)
0.558

Early 1.824 (0.040) 0.824 (0.023) 2.605 (0.074)
IPW

Late 1.901 (0.033)
4.951

0.775 (0.011)
4.563

2.534 (0.013)
0.879

Early 1.875 (0.051) 0.789 (0.015) 2.531(0.016)
IPW (No Aux)

Late 1.901 (0.033)
0.305

0.776 (0.011)
0.932

2.540 (0.011)
0.355

Early 1.838 (0.044) 0.809 (0.012) 2.552 (0.013)
AIPW

Late 1.902 (0.033)
2.811

0.775 (0.011)
10.146

2.535 (0.012)
2.788

Early 1.826 (0.040) 0.806 (0.013) 2.543 (0.021)
RRZ

Late 1.901 (0.033)
4.954

0.775 (0.011)
7.867

2.535 (0.011)
0.185

Early 1.826 (0.039) 0.806 (0.011) 2.559 (0.015)
REG

Late 1.902 (0.033)
5.360

0.776 (0.011)
10.859

2.534 (0.012)
7.629

NOTE: The table shows estimates of the mean potential outcome (standard errors) for six estimators and each of three
endpoints. Each outcome (HIV-1 RNA, Days below LOD, CD4) is computed as the length-adjusted area under the curve
(AUC), i.e. AUC divided by length of follow-up. For HIV-1 RNA (copies/mL), the AUC is computed after transforming
HIV-1 RNA on the base-10 logarithmic scale; LOD is limit of detection; length-adjusted AUC for CD4 cell count is
computed on the base-10 logarithmic scale. The estimators are conditional mean endpoint (COND) considering only
those patients that failed on initial ARV, inverse probability weighted (IPW) estimator, IPW estimator using no auxiliary
variables (IPW no Aux), augmented IPW (AIPW) estimator, a minimum variance estimator (RRZ) from Robins et al.
(1995), and the proposed regression (REG) estimator. The Wald-type test statistic (T) tests the null hypothesis that
the average causal effect between treatment strategies is zero.
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Table 3: Results for combined efavirenz-containing arms excluding 45 patients who were not fol-
lowing initial ARV regimen at first virologic failure (i.4. n = 744 − 45 = 699)

HIV-1 RNA Days below LOD CD4
Method Switch Est. (SE) T Est. (SE) T Est. (SE) T

Early 2.596 (0.181) 0.553 (0.052) 2.437 (0.055)
COND

Late 2.609 (0.081)
0.08

0.517 (0.028)
0.62

2.475 (0.034)
0.56

Early 1.805 (0.037) 0.835(0.020) 2.603 (0.060)
IPW

Late 1.833 (0.032)
0.885

0.793 (0.011)
4.197

2.534(0.015)
1.071

Early 1.829 (0.045) 0.804(0.013) 2.537 (0.014)
IPW (No Aux)

Late 1.831 (0.032)
0.005

0.797 (0.011)
0.390

2.545 (0.012)
0.363

Early 1.813 (0.040) 0.824 (0.013) 2.558(0.012)
AIPW

Late 1.833 (0.032)
0.405

0.794 (0.011)
8.106

2.540 (0.012)
3.720

Early 1.804 (0.038) 0.824 (0.013) 2.548 (0.017)
RRZ

Late 1.833 (0.032)
0.909

0.793 (0.011)
7.609

2.537(0.013)
0.909

Early 1.805 (0.037) 0.820 (0.010) 2.555 (0.011)
REG

Late 1.834 (0.032)
1.094

0.795 (0.011)
10.269

2.540 (0.012)
4.152

NOTE: The table shows estimates of the mean potential outcome (standard errors) for six estimators and each of three
endpoints. Each outcome (HIV-1 RNA, Days below LOD, CD4) is computed as the length-adjusted area under the curve
(AUC), i.e. AUC divided by length of follow-up. For HIV-1 RNA (copies/mL), the AUC is computed after transforming
HIV-1 RNA on the base-10 logarithmic scale; LOD is limit of detection; length-adjusted AUC for CD4 cell count is
computed on the base-10 logarithmic scale. The estimators are conditional mean endpoint (COND) considering only
those patients that failed on initial ARV, inverse probability weighted (IPW) estimator, IPW estimator using no auxiliary
variables (IPW no Aux), augmented IPW (AIPW) estimator, a minimum variance estimator (RRZ) from Robins et al.
(1995), and the proposed regression (REG) estimator. The Wald-type test statistic (T) tests the null hypothesis that
the average causal effect between treatment strategies is zero.
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Table 4: Results for combined efavirenz-containing arms using alternative transformation of AUC
endpoints

HIV-1 RNA Days below LOD CD4
Method Switch Est. (SE) T Est. (SE) T Est. (SE) T

Early 9.557 (0.321) 0.592 (0.054) 5.692 (0.056)
COND

Late 9.306 (0.129)
0.790

0.534 (0.024)
1.018

5.764 (0.058)
0.524

Early 7.875 (0.105) 0.836 (0.024) 5.972(0.156)
IPW

Late 8.083 (0.073)
5.553

0.790(0.011)
3.689

5.859(0.029)
0.500

Early 8.120 (0.103) 0.806 (0.015) 5.853 (0.037)
IPW (No Aux)

Late 8.059 (0.073)
0.541

0.791 (0.011)
1.001

5.870 (0.028)
0.311

Early 7.914 (0.079) 0.826(0.014) 5.904(0.032)
AIPW

Late 8.087 (0.073)
12.734

0.791 (0.011)
8.477

5.859(0.028)
4.234

Early 7.896 (0.082) 0.826 (0.013) 5.896(0.040)
RRZ

Late 8.063 (0.074)
10.983

0.790 (0.011)
8.794

5.859 (0.028)
1.313

Early 7.901 (0.080) 0.827(0.010) 5.904 (0.029)
REG

Late 8.087 (0.073)
13.884

0.791 (0.011)
16.901

5.859 (0.028)
6.700

NOTE: The table shows estimates of the mean potential outcome (standard errors) for six estimators and each of three
endpoints. Each outcome (HIV-1 RNA, Days below LOD, CD4) is computed as the length-adjusted area under the curve
(AUC), i.e. AUC divided by length of follow-up. For HIV-1 RNA (copies/mL), the length-adjusted AUC is computed
on the original scale, then we take the natural logarithm; LOD is limit of detection; length-adjusted AUC of CD4 cell
count is computed on the original scale, then transformed on the natural logarithm scale. The estimators are conditional
mean endpoint (COND) considering only those patients that failed on initial ARV, inverse probability weighted (IPW)
estimator, IPW estimator using no auxiliary variables (IPW no Aux), augmented IPW (AIPW) estimator, a minimum
variance estimator (RRZ) from Robins et al. (1995), and the proposed regression (REG) estimator. The Wald-type test
statistic (T) tests the null hypothesis that the average causal effect between treatment strategies is zero.
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