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Supplemental Figure 1.  Isolation of cell populations by FACS 

(A) To isolate specific cell populations for array or Fluidigm, cells were first sorted into 

PBS from their respective tissues and then sorted a second time directly into lysis buffer.  

The following are representative analyses of the isolation of the indicated cell 

populations after their initial collection into PBS but prior to their final sort into lysis 

buffer:   (B) CD41+c-kit+CD34+ E9 YS, (C) CD45+VE-cadherin+ E11.5 AGM,  (D) CD45+c-

kit+CD34med E12.5 placenta, (E) c-kit+CD41+ EBs, (F) CD41brightCD45-CD34- EPOCH 

cells, (G) Lin-Sca-1+c-kit+VE-cadherin+Mac-1low E12.5 FL, (H) Lin-Sca-1+c-

kit+CD150+CD48- E13.5 FL, (I) Lin-Sca-1+c-kit+CD150+CD48- E14.5 FL, and (J) Lin-Sca-

1+c-kit+CD150+CD34- adult WBM. 
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Supplemental Figure 2.  Pearson correlation and pathway enrichment analysis of 

pair-wise comparisons between each developmental hematopoietic population 

(A) Pearson correlation between all 53 gene expression profiles.  Most samples are well 

correlated.  The variability among E12.5 placenta samples was anticipated because the 

placental HSC phenotype is based on fewer markers than other HSC populations, and 

thus less defined (Gekas et al., 2005).  (B) Examination of the expression pattern of 

known HSC regulators. Sfpi1 (PU.1), critical for definitive hematopoiesis (Scott et al., 

1994), was present in YS and placenta, highest in AGM and E12.5 FL F, and lower 

thereafter.  Expression of the erythroid factor Gata-1 (Pevny et al., 1991) was high in E9 

YS and E12.5 placenta, but low at the FL stage. Hoxa9 was markedly up-regulated as 

development progressed: low in the YS, placenta and AGM stage, and high from the FL 

stage onward, a pattern highlighting the importance of Hoxa9 as a regulator of definitive 

HSC (Lawrence et al., 1997).  Other known regulators either did not vary dramatically 

during ontogeny (e.g. Hoxb4, Runx1, Fli1) or were consistently expressed during early 

development and only slightly up-regulated after the FL stage (Lmo2, Bmi1, Myb, Gata-

2, Etv6, Lyl1, Tal1, Cd34. Tek).  These genes are thus characteristic of the global 

transcriptional identity of primitive hematopoietic populations but cannot account for the 

developmental transitions that occur as HSC mature during ontogeny. 
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Supplemental Figure 3.  Macrophage gene set expression across samples and 

hematopoietic-trained cell type classifier 

(A) Gene expression heatmap of the gene set whose expression is required to achieve a 

macrophage classification. (B) To ensure that the classification results were not biased 

due to incorporation of diverse cell types and tissues, a classifier was trained de novo 

using only hematopoietic populations. As in Figure 3A, each row is a biological group 

(i.e. WBM HSCs), and each column is a known tissue or cell type, in this case, only 

hematopoietic cell types.  The classifier determines the posterior probability that a 

sample is indistinguishable from each of the tissues or cell types in the reference data 

set.  Higher probabilities are bright yellow and low probabilities are dark green and black. 

(C) Receiver operating curve displaying the performance of the Naïve Bayesian 

classifier as determined by applying the algorithm to 1300 gene expression profiles of 

known origin.  The false positive rate, defined as the number of incorrect classifications 

divided by the total number of classifications, is shown on the x-axis.  The sensitivity, 

defined as the total number of correct classifications divided by the number of samples, 

is shown on the y-axis.  Each point represents the sensitivity and false positive rate at a 

given probability cutoff.  
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Supplemental Figure 4.  GSEA and Pathway Enrichment Analysis of Populations 

(A) GSEA pathway enrichment analysis of pair-wise comparisons to find GO Biological 

Processes enriched or depleted between developmental populations.  (B) NetPath 

analysis of pair-wise comparisons to identify signaling pathway-specific transcriptional 

responses activated or suppressed in each population. 
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Supplemental Figure 5.  Identification of stage-specific gene sets and Fluidigm 

validation 

(A) Presentation of 22 WGCNA-determined co-regulated modules of genes that were not 

assigned as “stage enriched”, “definitive HSC”, “YS-like”, “specifying”, or “in vitro”.  (B) 

The expression pattern across the dataset of the exemplars for stage-enriched modules 

(M43, M27, M49, M55, M39, and M29), select definitive HSC modules (M7, M10, M11, 

M12, M42), select specifying modules (M2, M17, M19, M38, M40, and M59), and in vitro 

modules (M44, M47, M58).  (C) Results via gene array were highly correlated with 

results via Fluidigm analysis. (D) The majority of samples validated via Fluidigm showed 

an R2 value of greater than 0.7. (E) Representative analysis of genes from five modules 

showing that the pattern of expression seen across development via array is preserved 

when independent samples of the same populations are examined via Fluidigm. 
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Supplemental Figure 6: The transcriptional regulatory network of HSCs in 

development.  (A) The CLR (Context Likelihood of Relatedness) algorithm was applied 

to each WGCNA-derived gene module to identify putative transcriptional regulators for 

each gene set.  The resulting predictions at the 0.01 FDR are presented as a network.  

Pink squares represent modules and blue squares represent predicted regulators. (B) 

The topology of the developing HSC gene regulatory network is scale-free.  Histograms 

illustrating the node degree for the CLR network at FDR thresholds <0.05 (top) and < 

0.01 (bottom).  Node degree indicates the number of edges or putative regulatory 

relationships connected to each node.  Most nodes have fewer than five edges.  
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Supplemental Figure 7.  Functional validation of select gene candidates implicated 

in definitive HSC regulation.  

(A) RT-PCR for prdm16 verify the splicing activity of the prdm16-MO. Wild-type product 

is 350bp, and the splicing out of exon 4 by the prdm16-MO results in a smaller 200bp 

product.  (B) Whole mount in situ hybridization for l-plastin was performed on 36 hpf 

wild-type embryos that were either not injected or injected with aft3-MO.  (C)  Whole 

mount in situ hybridization for GFP was performed 36 hpf on embryos carrying a CD41-

GFP transgene that were either not injected or injected with atf3-MO (Lin et al., 2005). 

(D) Whole-mount in situ hybridization was performed on 35 hpf wild-type embryos that 

were either not injected or injected with an independent prdm16-MO.  (C) Phospho-

histone H3 and TUNEL staining show no difference in mitosis or apoptosis, respectively, 

in prdm16 morphants at 36hpf (n=4 control, n=4 morphants). (D) Knockdown of prdm16 

did not affect Notch signaling. The average GFP fluorescence between wild-type 

uninjected and prdm16-MO injected Notch reporter embryos were similar (n=5 control, 

n=5 morphants).  (E) Whole-mount in situ hybridization of embryos 28 hpf either injected 

or not injected with prdm16-MO for Flk1 and ephrinB2.  (F) Whole-mount in situ 

hybridization of embryos at the 16 somite stage either injected or not injected with 

prdm16-MO for b-globin e3. 
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Supplemental Methods 
 
Antibodies used for cell sorting 
 
CD41 (MWreg-30), c-kit (2B8), CD34 (RAM34), CD45 (30-F11), VE-cadherin (11D4.1), 

ter119 (ter119), CD3(145-2C11), CD4 (GK1.5), CD8 (536.7), IgM (11/41), CD19 (1D3), 

Gr-1 (RB6-8C5), Mac-1 (M1/70), CD48 (HM48-1, Biolegend), CD150 (TC15-12F122, 

Biolegend), Sca-1 (E13-161.7), anti-rat PE-Cy5, anti-rat FITC, and anti-rat APC.  Unless 

otherwise indicated, all antibodies were obtained from Ebiosciences. 

 
Embryo dissections and cell preparations 

The Children’s Hospital Boston institutional review board approved these studies.  All 

embryonic tissues were dissected from C57Bl/6 mice and treated as previously 

described (McKinney-Freeman et al., 2009).  

 

Embryoid body and EPOCH cell culture 

iNotch or iCdx4 ESC were created, maintained, and differentiated into EBs or ESC-HSC 

cells as previously described (Kyba et al., 2002; McKinney-Freeman et al., 2009).  For 

iNotch cells, ESC were differentiated as previously described with the addition of 0.5 

µg/mL doxycycline between days4-day6 EB differentiation.  At day 6, EB-derived cells 

were isolated, transduced with retroviral HoxB4, and expanded on OP9 stroma exactly 

as previously described for iCdx4 ESC (McKinney-Freeman et al., 2009).  ESC-HSC 

isolated from iNotch or iCdx4 ESC were functionally, phenotypically, and transcriptionally 

indistinguishable (McKinney-Freeman S, data not shown). 
 
Zebrafish maintenance and microinjection 

Zebrafish (Danio rerio) were maintained according to Animal Research guidelines at 

Children’s Hospital Boston. Tüebingen strain and the Notch reporter line TP1bglob:gfp 

(Parsons et al 2009) were used.  Embryos were developed at 28.5°C and staged 

according to hpf and morphological features (Kimmel et al 1995). Morpholinos were 

injected at the 1-cell stage.  Splice blocking morpholino targeting exon 4 of prdm16 (5’-

ACTCACACTATCACCCACCTTATCA-3’ or 5’-ATGACTTGCATTAATCTCACCTTCC-3’) 

and translation morpholino targeting rfx5 (5'-CTGCCTTTAACTGATCTTCTGCCAT-3') 

were ordered from Gene-Tools and dissolved in water.   

 



Protein sequence and genomic synteny revealed locus LOC100151531 as the most 

likely candidate for a zebrafish orthologue of the gene GFI1B.  Gfi1b morpholino 

sequence targeting the intron-exon boundary of exon 5:  5'-

GCTTCTTTCCTGTAAACACAAAACA-3'.  Antisense splicing morpholino with sequence 

TGTTTATTTAACTTACCACCTCTGT targeting the exon2/intron2 boundary of msrb2 

was injected into 1-4 cell embryos and assayed at 36hpf for runx1 and c-myb 

expression.  Antisense splicing morpholino with sequence 

TGTAGTAATGGAGTGTTTACCCTGC targeting the exon4/intron4 boundary of tulp4 

was injected into 1-4 cell embryos and assayed at 36hpf for runx1 and c-myb 

expression. Disrupted splicing was verified by RT-PCR with primers 5-

GTGGTGCTGGTGCGCTGGAACGAGCCCTTCC-3 and 5-

GGGTCGGAAGTCACGAGTCTCTCCATCCC-3.  For gfi1b, msrb2, and tulp4 

morpholinos, 4 ng was injected.  0.5 ng of antisense splicing morpholino with sequence 

GGGACAGCCTGAAATAACAACATCT targeting the intron2/exon3 boundary of atf3 was 

injected into 1-4 cell embryos and assayed at 36hpf for runx1 and c-myb expression. 

Disrupted splicing was verified by RT-PCR with primers 5-

ATTTCGGCATGATGCTTCAGCACCCTGG-3 and 5-

TCTTCGGGGGTCTGGCCGTTCTGAGCG-3.  Total RNA was extracted from embryos 

staged at 36hpf in 500 µL as previously reported.  Primers to amplify exons 3 to 5 of 

prdm16 were as follows: forward 5’-AAGCAGGAGCGGGAAGACAG-3’ and reverse 5’-

TGTGCTTGTGCTGCTTGAGG-3’ (Draper et al., 2001). 

 

Whole-mount in situ hybridization, phosphoH3, and TUNEL staining 

Whole-mount in situ hybridization in zebrafish embryos was performed as described 

previously (Thisse and Thisse, 2008).  Stained embryos were mounted in glycerol and 

imaged on a Nikon E600 compound microscope with a Nikon Coolpix 4500 camera.  

Phospho-histone H3 staining was performed as decribed previously (Shepard et al 

2005) with diaminobenzidine/H2O2 (Invitrogen).  TUNEL staining was performed on fixed 

embryos as described (Shepard et al., 2005).  Equal number of control and morpholino 

injected embryos were imaged in the tail region above the yolk sac extension, and the 

images were used for counting the number of mitotic or apoptotic cells, averaging the 

results.  

 

Fluidigm 



The exemplar and top 3 CLR-predicted regulators for 22 modules were validated via 

qRT-PCR on the Fluidigm BioMark 96x96 platform (Fluidigm, San Francisco, CA, 

Supplemental Table 2). cDNA from 200 cells per sample was pre-amplified using the 

pool of TaqMan probes per the Fluidigm instructions.  As a quality control for each 

assay, we performed a standard curve of six 10-fold dilutions of pre-amplified cDNA 

pooled from all samples. The 80 of 92 non-control assays with amplification efficiencies 

between 0.75 and 1.25 were considered reliable and assessed for correlation with the 

microarray data.  Delta Cts were calculated in reference to the housekeeping gene 

Rps29.  To determine whether a gene replicated the expression pattern observed in the 

microarray data, we calculated the correlation coefficient between the average of the 

deltaCts for each replicate of a biological group and the average gene value from the 

microarrays.  We considered genes validated when the p-value of the correlation 

coefficient <0.10. 

 

Microarray 

Raw microarray signal intensities were RMA-summarized and quantile normalized using 

R/BioConductor (Bolstad et al., 2003; Gentleman et al., 2004; Irizarry et al., 2003). To 

correct for batch effects, we applied the ComBat batch correction algorithm to the 

normalized data (Johnson et al., 2007), then multiple probesets mapping to the same 

gene were averaged, resulting in 21,308 gene expression measures per sample.  The 

expression of all genes was used in the analyses displayed in Figure 2.  We used 

hierarchical clustering with the ‘average’ linkage method for the dendrogram in Figure 

2A.  In subsequent analyses steps we used the 13,530 genes detected as expressed in 

at least one biological group.  To find genes differentially expressed between biological 

groups, we performed pair-wise Student’s T-tests, treating genes with nominal p-

values<0.05 and fold change>2 as differentially expressed.  Stage-specific and stage-

enriched modules were identified as described in the Methods section.  To find sets of 

positively correlated genes (modules), we used WGCNA, setting beta=15.  To find 

enrichment of Gene Ontology and NetPath gene sets, we applied Gene Set Enrichment 

Analysis to gene lists ranked by fold change for each specified comparison.  All analysis 

results, including differentially expressed gene lists, genes in modules, and transcription 

factor regulators of modules, and raw data, are freely available through the companion 

website, http://hsc.hms.harvard.edu/. The Context likelihood of relatedness (CLR) 

algorithms uses mutual information to determine the statistical dependence between 



transcription factor and putative target module expression.  To compute mutual 

information, we used a B-spline smoothing and discretization method, implementing the 

Freedman-Diaconis rule to estimate the bin width size.  All mutual information values 

were computed using 6 bins and third order B-splines and a MatLab interface to B-spline 

mutual information estimation code library is available at the companion website. 

 

Naïve Bayesian classifier and context-dependent gene regulatory networks  

We trained a Naïve Bayesian classifier (Mitchell, 1997) using 130 gene expression 

profiles from three independent experiments representing 44 cell types and tissues 

(GSE10246, GSE14012, and GSE10806).  The classifier uses Bayes’ Theorem to 

compute the posterior probability that a query gene expression profile is 

indistinguishable from biological replicates of each of 44 distinct cell types and tissues 

that are in the training data set, given distributions of inter- and intra-cell type distances: 

Pr(que = Refi | Distq,i = X) =  Pr(Distq,i = X  | que = Refi) * Pr(que = Refi) /  ( Pr(Distq,i = X | 

que = Refi) + Pr(Distq,i = X | que ≠ Refi) ),  

where que = query sample, Refi = reference sample i, Distq,i = distance between query 

and Refi profiles. Assuming equivalent prior probabilities that a query is indistinguishable 

from each reference sample, this becomes: 

Pr(que = Refi | Distq,i = X) = Pr(Distq,i = X  | que = Refi) /  ( Pr(Distq,i = X | que = Refi) + 

Pr(Distq,i = X | que ≠ Refi) ) 

The likelihoods Pr(Distq,i = X | que = Refi) and Pr(Distq,i = X | que ≠ Refi) are computed 

directly from the estimated distributions of module profile distances between replicates 

(approximated using an exponential distribution) and between different tissues and cell 

types (approximated using a normal distribution) from the training data. Distances are 

based on gene set (rather than individual gene) profiles, and gene sets were determined 

by clustering approximately 20,000 genes across the 44 cell types and tissues using 

WGCNA (Zhang and Horvath, 2005). The output of the classifier is vector of 

probabilities. To test whether the classification results were biased due to the inclusion 

of diverse cell types in the training data, we constructed the classifier de novo using only 

hematopoietic populations (HSCs, CMPs, GMPs, MEPs, macrophages, granulocytes, T-

cells, B-cells, natural killer cells, mast cells, and dendritic cells).  When we applied this 

classifier to our developmental gene expression profiles, we found that the results were 

highly similar to the original classification results, with AGM and FL12 A still classified as 

macrophages, and Definitive samples as HSPCs (Figure S3B).  To test the overall 



performance of the classifier, we applied it to a validation data set of 1,300 publicly 

available gene expression profiles (GSE10733, GSE10744, GSE11056, GSE11110, 

GSE11207, GSE11220, GSE12464, GSE12545, GSE13032, GSE13155, GSE13224, 

GSE13402, GSE13526, GSE13753, GSE13805, GSE13873, GSE14270, GSE15129, 

GSE16073, GSE16150, GSE16364, GSE16994, GSE17263, GSE17923, GSE18500, 

GSE18669, GSE18746, GSE19299, GSE19403, GSE20352, GSE21754, GSE21842, 

GSE22527, GSE22935, GSE2389, GSE2869, GSE3203, GSE3440, GSE3554, 

GSE3653, GSE4035, GSE4040, GSE4142, GSE4413, GSE4816, GSE5127, GSE5296, 

GSE5763, GSE6210, GSE6461, GSE6466, GSE6506, GSE6514, GSE6591, GSE6623, 

GSE6676, GSE6686, GSE7069, GSE7196, GSE7333, GSE7381, GSE7407, GSE7764, 

GSE7793, GSE7798, GSE8000, GSE8044, GSE8199, GSE8249, GSE8582, GSE9630, 

GSE9711, GSE9810, GSE9913, GSE9954, GSE24637, GSE25140, GSE10627, 

GSE21018, GSE12982), demonstrating that the classifier achieved a sensitivity of 94% 

at a false positive rate <5% (data not shown). 

 

We used the same training data (130 gene expression profiles) and gene sets described 

above to reconstruct the gene regulatory networks of adult cell types and tissues. We 

searched for potential gene set regulators by computing the Pearson correlation 

coefficient between the expression level of each transcription factor and each gene set 

profile both globally (using all cell types and tissues) and in a context-specific manner 

(using only the subset of cell types and tissues that share a developmental origin). 

Reasoning that TFs central to module regulation would also be highly correlated to the 

same gene set profiles in independent data sets of the same cell types and tissues, we 

computed TF and gene set correlations in the validation data set (1,300 publicly 

available gene expression profiles) and removed relationships in which either the 

direction of the correlation differed or was not significant. 

 

Companion website 

There is more information within our data set than can be described in detail here.  

Furthermore, we believe that this data and analyses will be informative beyond our focus 

on the development of the HSC. For example, our analyses can be further leveraged to 

determine the extent to which the developmental programs are re-activated in cancer, or 

in diverse physiological conditions. In the hope that other investigators will leverage this 

resource to complement their research, we created a website and database 



(http://hsc.hms.harvard.edu) to facilitate data mining and data integration.  We designed 

the website to be user-friendly so that visitors can quickly perform one-off queries (e.g. 

“What is the expression profile of my gene in HSC development?”).  We also 

implemented a feature to allow visitors to upload a gene list and the website will 

determine the modules in which the gene list is enriched.  We also provide access to all 

the data and analysis results, so that visitors can use more sophisticated tools to mine 

the data (e.g. GSEA).  A complete list of the website features is below: 

(1) Download normalized data, the transcriptional regulatory network in Cytoscape 

format, the sample annotation table, and a .GMT file containing the modules for use with 

Gene Set Enrichment Analysis (GSEA). 

(2) View the expression profiles of selected genes. 

(3) Explore the genes differentially expressed by pair-wise comparison between     

individual biological groups (e.g. AGM vs YS) and between HSC states (e.g. Definitive 

vs Specifying). 

(4) Explore each module by viewing module profiles, and by viewing the gene members. 

(5) Find the predicted transcriptional regulators of modules. 

(6) Determine whether a user-supplied gene list is enriched in any of the modules. 

The website’s FAQ fully describes how the resource can be used.  All genes listed on 

the website are linked to NCBI’s Entrez Gene and MGI, providing a source of up-to-date 

annotation.
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