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Figure S1.
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Supplemental Figure 1. Isolation of cell populations by FACS

(A) To isolate specific cell populations for array or Fluidigm, cells were first sorted into
PBS from their respective tissues and then sorted a second time directly into lysis buffer.
The following are representative analyses of the isolation of the indicated cell
populations after their initial collection into PBS but prior to their final sort into lysis
buffer: (B) CD41"c-kit"CD34" E9 YS, (C) CD45"VE-cadherin® E11.5 AGM, (D) CD45%c-
kit"CD34™ E12.5 placenta, (E) c-kit'CD41" EBs, (F) CD41°""'CD45CD34" EPOCH
cells, (G) Lin'Sca-1*c-kit"VE-cadherin*Mac-1"" E12.5 FL, (H) Lin"Sca-1"c-
kit"CD150"CD48 E13.5 FL, (1) Lin"'Sca-1"c-kit"CD150"CD48  E14.5 FL, and (J) Lin"Sca-
1*c-kit"CD150"CD34 adult WBM.
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Supplemental Figure 2. Pearson correlation and pathway enrichment analysis of
pair-wise comparisons between each developmental hematopoietic population
(A) Pearson correlation between all 53 gene expression profiles. Most samples are well
correlated. The variability among E12.5 placenta samples was anticipated because the
placental HSC phenotype is based on fewer markers than other HSC populations, and
thus less defined (Gekas et al., 2005). (B) Examination of the expression pattern of
known HSC regulators. Sfpi1 (PU.1), critical for definitive hematopoiesis (Scott et al.,
1994), was present in YS and placenta, highest in AGM and E12.5 FL F, and lower
thereafter. Expression of the erythroid factor Gata-1 (Pevny et al., 1991) was high in E9
YS and E12.5 placenta, but low at the FL stage. Hoxa9 was markedly up-regulated as
development progressed: low in the YS, placenta and AGM stage, and high from the FL
stage onward, a pattern highlighting the importance of Hoxa9 as a regulator of definitive
HSC (Lawrence et al., 1997). Other known regulators either did not vary dramatically
during ontogeny (e.g. Hoxb4, Runx1, Fli1) or were consistently expressed during early
development and only slightly up-regulated after the FL stage (Lmo2, Bmi1, Myb, Gata-
2, Etv6, Lyl1, Tal1, Cd34. Tek). These genes are thus characteristic of the global
transcriptional identity of primitive hematopoietic populations but cannot account for the

developmental transitions that occur as HSC mature during ontogeny.
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Supplemental Figure 3. Macrophage gene set expression across samples and
hematopoietic-trained cell type classifier

(A) Gene expression heatmap of the gene set whose expression is required to achieve a
macrophage classification. (B) To ensure that the classification results were not biased
due to incorporation of diverse cell types and tissues, a classifier was trained de novo
using only hematopoietic populations. As in Figure 3A, each row is a biological group
(i.e. WBM HSCs), and each column is a known tissue or cell type, in this case, only
hematopoietic cell types. The classifier determines the posterior probability that a
sample is indistinguishable from each of the tissues or cell types in the reference data
set. Higher probabilities are bright yellow and low probabilities are dark green and black.
(C) Receiver operating curve displaying the performance of the Naive Bayesian
classifier as determined by applying the algorithm to 1300 gene expression profiles of
known origin. The false positive rate, defined as the number of incorrect classifications
divided by the total number of classifications, is shown on the x-axis. The sensitivity,
defined as the total number of correct classifications divided by the number of samples,
is shown on the y-axis. Each point represents the sensitivity and false positive rate at a

given probability cutoff.
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Supplemental Figure 4. GSEA and Pathway Enrichment Analysis of Populations
(A) GSEA pathway enrichment analysis of pair-wise comparisons to find GO Biological
Processes enriched or depleted between developmental populations. (B) NetPath

analysis of pair-wise comparisons to identify signaling pathway-specific transcriptional

responses activated or suppressed in each population.
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Supplemental Figure 5. Identification of stage-specific gene sets and Fluidigm
validation

(A) Presentation of 22 WGCNA-determined co-regulated modules of genes that were not
assigned as “stage enriched”, “definitive HSC”, “YS-like”, “specifying”, or “in vitro”. (B)
The expression pattern across the dataset of the exemplars for stage-enriched modules
(M43, M27, M49, M55, M39, and M29), select definitive HSC modules (M7, M10, M11,
M12, M42), select specifying modules (M2, M17, M19, M38, M40, and M59), and in vitro
modules (M44, M47, M58). (C) Results via gene array were highly correlated with
results via Fluidigm analysis. (D) The majority of samples validated via Fluidigm showed
an R? value of greater than 0.7. (E) Representative analysis of genes from five modules
showing that the pattern of expression seen across development via array is preserved

when independent samples of the same populations are examined via Fluidigm.
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Supplemental Figure 6: The transcriptional regulatory network of HSCs in
development. (A) The CLR (Context Likelihood of Relatedness) algorithm was applied
to each WGCNA-derived gene module to identify putative transcriptional regulators for
each gene set. The resulting predictions at the 0.01 FDR are presented as a network.
Pink squares represent modules and blue squares represent predicted regulators. (B)
The topology of the developing HSC gene regulatory network is scale-free. Histograms
illustrating the node degree for the CLR network at FDR thresholds <0.05 (top) and <
0.01 (bottom). Node degree indicates the number of edges or putative regulatory

relationships connected to each node. Most nodes have fewer than five edges.
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Supplemental Figure 7. Functional validation of select gene candidates implicated
in definitive HSC regulation.

(A) RT-PCR for prdm16 verify the splicing activity of the prdm16-MO. Wild-type product
is 350bp, and the splicing out of exon 4 by the prdm16-MO results in a smaller 200bp
product. (B) Whole mount in situ hybridization for I-plastin was performed on 36 hpf
wild-type embryos that were either not injected or injected with aft3-MO. (C) Whole
mount in situ hybridization for GFP was performed 36 hpf on embryos carrying a CD41-
GFP transgene that were either not injected or injected with atf3-MO (Lin et al., 2005).
(D) Whole-mount in situ hybridization was performed on 35 hpf wild-type embryos that
were either not injected or injected with an independent prdm16-MO. (C) Phospho-
histone H3 and TUNEL staining show no difference in mitosis or apoptosis, respectively,
in prdm16 morphants at 36hpf (n=4 control, n=4 morphants). (D) Knockdown of prdm16
did not affect Notch signaling. The average GFP fluorescence between wild-type
uninjected and prdm16-MO injected Notch reporter embryos were similar (n=5 control,
n=5 morphants). (E) Whole-mount in situ hybridization of embryos 28 hpf either injected
or not injected with prdm16-MO for Flk1 and ephrinB2. (F) Whole-mount in situ
hybridization of embryos at the 16 somite stage either injected or not injected with
prdm16-MO for b-globin e3.



Supplementary Table 1.

Annotation Microarray data Fluidigm
MA/Flu
Symbol Module Type Correlation Z.score Minimum Maximum Mean Median Variance TagMan.ID p-value Correlation

rps29 NA control NA NA NA NA NA NA NA Mm02342448_gH* NA NA

angpt1 ME10 exemplar 0.97 0 3.43 10.64 7.64 8.49 4.31|Mm00456503_m1* 1.07E-03 -0.923 1.128
erg ME10 Regulator 0.95 6.62 4.59 10.1 8.12 8.56 2.63|Mm00504897_m1 5.32E-01 0.261 -1
mpl ME10 Regulator 0.91 5.64 4.68 10.34 8.24 8.68 2.74|Mm00440310_m1* 3.69E-04 -0.946 1.011
myb ME10 Regulator 0.92 5.57 4.74 11.68 9.89 10.77 3.54|Mm00501741_m1* 5.10E-03 -0.869 1.223
gimap6 ME11 exemplar 0.93 0 3.5 11 7.9 8.43 4.82|Mm00462641_m1* 1.07E-04 -0.965 0.815
bclila ME11 Regulator 0.93 5.73 4.23 9.18 7.07 7.43 2.28|Mm00479358_m1* 3.91E-01 -0.353 1.139
hif ME11 Regulator 0.87 5.34 3.97 11.22 7.53 7.14 6.04 |Mm00723157_m1* 9.32E-04 -0.927 0.756
runx2 ME11 Regulator 0.82 5.41 3.7 8.26 5.65 5.69 1.44 |Mm00501584_m1* 7.13E-04 -0.933 1.003
2i451617 ME12 exemplar 0.97 0 3.43 8.44 6 6.42 2.15|Mm01162558_m1* 1.85E-03 -0.907 1.149
irfo ME12 Regulator 0.93 7.42 4.71 9.1 7.4 7.75 1.25[Mm00492673_m1 4.44E-03 -0.875 0.98
nmi ME12 Regulator 0.89 5.72 5.15 10.4 8.47 9.08 2.14|Mm00803857_m1* 6.91E-03 -0.854 1.092
osginl ME12 Regulator 0.89 6.13 4.27 8.09 6.71 7.17 1.11 [Mm00660947_m1* 7.67E-03 -0.849 0.805
cxcl2 ME17 exemplar 0.95 0 2.69 13.5 5.52 3.48 12.44(Mm00436450_m1* 3.33E-04 -0.948 0.965
fosl2 ME17 Regulator 0.84 7.21 5.29 9.2 6.64 6.41 0.84 [Mm00484442_m1* 2.05E-02 -0.787 1.029
nr4a3 ME17 Regulator 0.91 7.52 3.83 6.91 4.54 4.28 0.44 [Mm00450074_m1* 4.25E-03 -0.877 1.157
rel ME17 Regulator 0.89 7.71 3.68 9.06 5.98 5.73 1.73|Mm01239661_m1* 3.37E-02 -0.746 0.912
cttnbp2nl ME19 exemplar 0.96 0 3.25 8.69 5.14 4.4 2.3|Mm00518765_m1* 1.46E-02 -0.811 0.777
rps6ka4d ME19 Regulator 0.78 6.05 3.83 7.17 5.25 5.17 0.67 [Mm00451280_m1* 9.27E-03 -0.839 1.324
tefe3 ME19 Regulator 0.87 5.56 6.4 10.55 8.32 7.94 1.16|Mm01341186_m1* 1.51E-02 -0.808 1.24
wwpl ME19 Regulator 0.86 5.4 5.98 8.51 7.07 6.98 0.34|Mm01210682_m1* 2.23E-02 -0.78 1.073
tifab ME2 exemplar 0.97 0 3.17 8.32 4.48 3.89 2.49|Mm04210261_m1* 1,25e-01 -0.588 1.012
ifi204 ME2 Regulator 0.91 6.33 2.21 9.58 3.8 2.66 5.35|Mm00492602_m1* 1.59E-03 -0.912 0.976
irf8 ME2 Regulator 0.86 6.15 3.42 9.78 6.52 6.3 3.03|Mm01250091_m1 1.22E-02 -0.823 0.966
maf ME2 Regulator 0.92 6.18 3.18 9 5 4.31 2.97 |Mm02581355_s1* 3.32E-02 -0.747 0.595
me2r ME27 exemplar 0.97 0 2.22 10.16 3.32 2.87 2.9|Mm01262510_m1* 1.61E-06 -0.991 1.021
dpf3 ME27 Regulator 0.67 4.96 4.34 6.03 4.91 4.82 0.13 [Mm00475440_m1* 2.75E-03 -0.894 0.871
mbd2 ME27 Regulator 0.55 3.32 8.12 10.41 9.15 9.16 0.26 [Mm00521967_m1* 1.64E-01 -0.544 1.05
tcf4 ME27 Regulator 0.53 4.03 5.56 8.81 7.37 7.43 0.38Mm00443210_m1* 3.93E-01 -0.351 0.958
celsrl ME29 exemplar 0.93 0 2.85 7.16 4.74 4.42 1.33 [Mm00464808_m1* 3.55E-02 -0.741 0.977
b930041f14rik ME29 Regulator 0.84 6.83 4.21 7.5 5.88 5.8 0.74 |Mm00844649_s1* 5.23E-02 -0.702 0.751
kif12 ME29 Regulator 0.84 6.12 3.17 5.47 4.2 4.12 0.32|Mm00516098_m1* 1.79E-02 -0.797 1.033
pml ME29 Regulator 0.87 5.43 5.32 8.76 6.57 6.35 0.77 [Mm00476969_m1* 6.83E-01 -0.173 1.146
eviza ME3 exemplar 0.98 0 2.61 8.07 6.54 6.84 2.02|Mm03030107_s1* 5.80E-02 -0.69 1.124
hcls1 ME3 Regulator 0.97 4.39 2.46 9.11 7.21 7.83 3.27 [Mm00468528_m1* 7.45E-01 0.138 0.196
ifnar2 ME3 Regulator 0.95 4.23 4.87 9.9 8.12 8.35 1.67 |Mm00494916_m1* 1.89E-01 -0.517 0.917
tall ME3 Regulator 0.67 3.95 2.75 11.23 8.79 9.57 4.88Mm01187033_m1* 1.36E-01 -0.574 0.983
pip4k2a ME38 exemplar 0.94 0 5.71 9.51 7.78 8.11 0.77 [Mm00435721_m1* 6.46E-01 -0.194 0.56
foxn2 ME38 Regulator 0.78 4.74 5.48 8.32 6.91 6.83 0.49 |Mm00839106_g1 8.00E-01 -0.108 0.882
zdhhc16 ME38 Regulator 0.75 4.26 7.62 9.12 8.52 8.57 0.13|Mm00470108_m1* 7.98E-02 -0.652 1.085
zdhhc21 ME38 Regulator 0.78 4.39 6.3 8.8 7.54 7.64 0.35[Mm00509795_m1* 4.40E-02 -0.72 0.751
aldhial ME39 exemplar 0.96 0 2.5 10.55 3.51 2.91 3.71[Mm00657317_m1* 2.98E-06 -0.989 0.894
esrl ME39 Regulator 0.95 7.94 2.71 7.13 3.4 3.1 0.99 [Mm00433149_m1* 6.72E-03 -0.856 0.976
foxa3 ME39 Regulator 0.88 6.5 3.25 7.85 4.55 4.31 1.26 |Mm00484714_m1* 4.91E-03 -0.871 1.049
nfix ME39 Regulator 0.76 5.31 4.35 8.42 6.23 6.18 1.11 [Mm00477796_m1 2.41E-04 -0.954 1.097
zbtb20 ME39 Regulator 0.88 6.51 3.72 7.13 4.75 4.57 0.57 [Mm00457765_m1* 1.06E-02 -0.831 1.186
slc16a10 ME40 exemplar 0.91 0 4.24 7.37 5.88 5.95 0.85|Mm00661045_m1* 5.43E-03 -0.866 0.902
cebpa ME40 Regulator 0.87 6.76 3.36 9.56 6.35 6.17 2.95|Mm00514283_s1* 1.75E-01 -0.532 1.218
kIf7 ME40 Regulator 0.83 6.29 5.04 8.61 6.69 6.57 0.98|Mm00728361_s1* 5.08E-01 -0.276 2.144
zbtb16 ME40 Regulator 0.72 4.71 4.23 7.56 5.83 5.64 1.22|Mm01176868_m1* 3.66E-02 -0.738 1.04
Idhb ME42 exemplar 0.93 0 6.53 12.67 9.52 9.82 2.36 |Mm00493146_m1* 8.19E-02 -0.649 14
ddx58 ME42 Regulator 0.81 6.05 3.95 7.29 5.75 5.86 0.6|Mm00554529_m1* 1.05E-01 -0.615 1.197
dedd2 ME42 Regulator 0.7 5.76 5.14 7.47 6.57 6.6 0.38|Mm01149726_m1* 2.69E-01 -0.445 1.094
irfé ME42 Regulator 0.76 5.53 2.75 8.71 5.86 6.13 2.6(Mm00516797_m1* 1.43E-03 -0.915 0.449
reln ME43 exemplar 0.96 0 2.85 7.36 3.69 3.28 1.12 |Mm00465200_m1* 2.27E-06 -0.99 0.812
hoxd1 ME43 Regulator 0.95 8.64 2.06 7.19 3.03 2.56 1.87 |Mm00439370_g1* 1.44E-04 -0.961 0.945
hoxd8 ME43 Regulator 0.9 7.49 3.26 7.85 4.3 3.87 1.29 |Mm03016337_m1* 3.33E-03 -0.887 0.803
kif1 ME43 Regulator 0.78 5.74 4.16 10.29 6.45 6.23 1.99 [Mm00516096_m1* 4.52E-02 -0.717 0.86
nubp1 ME44 exemplar 0.92 0 6.35 8.66 7.51 7.49 0.33|Mm00478752_m1* 4.22E-01 -0.332 1.134
gtf2f2 ME44 Regulator 0.83 6.08 7.83 10.64 9.17 9.1 0.49|Mm01310683_m1* 2.19E-01 -0.489 0.775
psmc3 ME44 Regulator 0.83 6.28 9.71 11.45 10.89 10.95 0.12|Mm00477177_m1* 9.60E-01 -0.021 1.063
rnfl41 ME44 Regulator 0.75 5.39 6.09 8.06 6.95 6.84 0.28|Mm01130671_g1* 6.37E-01 -0.199 0.949
gstad ME47 exemplar 0.95 0 4.68 13.41 8.61 8 5.15[Mm00494803_m1* 1.20E-02 -0.823 0.778
bc003267 ME47 Regulator 0.8 5.32 3.96 8.03 6.34 6.38 0.92|Mm00728712_s1* 6.91E-01 -0.168 0.758
gtf2h3 ME47 Regulator 0.8 4.73 5.97 9.01 7.8 7.88 0.47 [Mm00619444_m1* 5.06E-03 -0.869 1.03
uba3 ME47 Regulator 0.8 3.97 8.25 10.77 9.42 9.41 0.32|Mm00495866_m1* 1.78E-02 -0.797 1.136
trafl ME49 exemplar 0.93 0 3.39 9.38 4.96 4.61 2.12|Mm00493827_m1* 7.84E-03 -0.848 1.579
foxal ME49 Regulator 0.62 6.83 2.7 5.85 3.39 3.16 0.47 [Mm00484713_m1* 6.27E-02 -0.681 0.18
irf4 ME49 Regulator 0.8 6.5 3.54 6.28 4.32 4.09 0.4|Mm00516431_m1* 3.25E-02 -0.749 1.009
mxd1 ME49 Regulator 0.9 7.19 5.64 9.08 6.73 6.6 0.6|Mm00487504_m1* 4.89E-03 -0.871 1.176
6332401019rik MES5 exemplar 0.97 0 2.97 7.16 3.53 3.39 0.49|Mm00844775_s1* 8.74E-01 0.067 1.25
mafb MES55 Regulator 0.78 4.27 3.96 8.72 4.9 4.42 1.34|Mm00627481_s1* 1.40E-01 -0.57 0.976
nrih3 MES55 Regulator 0.91 4.88 4.7 10.65 5.75 5.46 1.29|Mm00443451_m1* 7.87E-02 -0.654 0.802
spic MES55 Regulator 0.76 3.7 3.13 10.55 4.5 3.94 2.76 [Mm00488428_m1* 6.44E-05 -0.97 1.203
pppiridc ME58 exemplar 0.94 0 2.9 7.3 4.35 3.86 1.13|Mm00652462_m1 1.08E-01 -0.611 0.821
etv2 ME58 Regulator 0.6 5.21 3.99 9.53 5.53 4.95 2.39|Mm00468389_m1* 9.21E-03 -0.839 1.024
hmgcs1 ME58 Regulator 0.81 7.43 3.06 7.02 4.41 4 0.98|Mm00524111_m1 5.91E-03 -0.862 0.937
zfpm2 ME58 Regulator 0.8 5.92 3.08 8.03 4.35 3.79 1.46 |Mm00496074_m1* 5.57E-04 -0.938 1.094
hspalb MES59 exemplar 0.95 0 3.01 11.4 6.83 5.57 7.46 |MmM03038954_s1* 2.31E-01 -0.478 0.818
egr3 ME59 Regulator 0.92 8.68 4.06 8.27 5.65 4.92 1.8|Mm00516979_m1* 2.17E-03 -0.902 0.822
fosb ME59 Regulator 0.88 8.28 2.69 10.63 5.59 3.8 8.33|Mm00500401_m1* 2.15E-03 -0.903 1.195
kife ME59 Regulator 0.93 8.67 5.91 10.9 8.12 7.5 2.32|Mm00516184_m1* 1.17E-03 -0.921 1.235
ampd3 ME62 exemplar 0.85 0 2.61 8.11 6.59 6.81 1.16 [Mm00477495_m1* 1.15E-03 -0.921 1.156
bach2 ME62 Regulator 0.71 4.48 3.96 6.44 5.43 5.35 0.25[Mm00464379_m1* 2.72E-03 -0.894 1.212
fmni2 ME62 Regulator 0.73 5.04 3.8 9.72 8.02 8.27 1.24|Mm00549621_m1 6.20E-02 -0.683 0.986
htatip2 ME62 Regulator 0.68 4.69 4 7.38 5.5 5.58 0.6|Mm00457476_m1* 1.69E-03 -0.91 0.826
eyal ME7 exemplar 0.97 0 3.42 7.63 4.97 4.44 1.52|Mm00438796_m1* 6.38E-02 -0.679 1.212
evil ME7 Regulator 0.87 7.05 2.92 7.89 5.56 5.33 2.49|Mm00514814_m1* 4.58E-02 -0.716 0.827
hoxal0 ME7 Regulator 0.94 7.97 2.41 5.58 3.95 3.49 1.26 |Mm00433966_m1* 2.79E-05 -0.978 0.903
hoxa9 ME7 Regulator 0.89 7.23 3.53 10.22 6.94 7.06 5.61|Mm00439364_m1* 2.46E-05 -0.978 0.753
prdm16 ME7 Regulator 0.91 7.15 3.86 7.71 5.75 5.41 1.3|Mm00712556_m1* 3.29E-03 -0.887 0.775

Type indicates id the candidate is an exemplar (most higly correlated with module profile), or one of the top three predicted regulators, or a control genes.

Correlation is the Pearson correlation of the candidate gene expression wih the module profile in the microarray data.

Z.score: the CLR-calculated Z-score representing the signit of the iation between the i regulator and module.

Minimum, Maximum, Mean, Median, and Variance: Range, center and variance estimates for the gene expression from the microarray data.

TagMan.ID: Assay identifier used in the Fluidigm experiments.

MA/Flu Correlation: Pearson correlation between the biological-grouped averaged microarray expression values and Fluidigm deltaCts.

Efficiency: TagMan efficiency estimate as determined by estimating the slope of a standard curve with six ten fold dilutions of a pooled sample and the formula: effeciency = 10~(-1/slope)-1.




Supplemental Methods
Antibodies used for cell sorting

CD41 (MWreg-30), c-kit (2B8), CD34 (RAM34), CD45 (30-F11), VE-cadherin (11D4.1),
ter119 (ter119), CD3(145-2C11), CD4 (GK1.5), CD8 (536.7), IgM (11/41), CD19 (1D3),
Gr-1 (RB6-8C5), Mac-1 (M1/70), CD48 (HM48-1, Biolegend), CD150 (TC15-12F122,
Biolegend), Sca-1 (E13-161.7), anti-rat PE-Cy5, anti-rat FITC, and anti-rat APC. Unless

otherwise indicated, all antibodies were obtained from Ebiosciences.

Embryo dissections and cell preparations
The Children’s Hospital Boston institutional review board approved these studies. All
embryonic tissues were dissected from C57BI/6 mice and treated as previously

described (McKinney-Freeman et al., 2009).

Embryoid body and EPOCH cell culture

iNotch or iCdx4 ESC were created, maintained, and differentiated into EBs or ESC-HSC
cells as previously described (Kyba et al., 2002; McKinney-Freeman et al., 2009). For
iNotch cells, ESC were differentiated as previously described with the addition of 0.5
ug/mL doxycycline between days4-day6 EB differentiation. At day 6, EB-derived cells
were isolated, transduced with retroviral HoxB4, and expanded on OP9 stroma exactly
as previously described for iCdx4 ESC (McKinney-Freeman et al., 2009). ESC-HSC
isolated from iNotch or iCdx4 ESC were functionally, phenotypically, and transcriptionally

indistinguishable (McKinney-Freeman S, data not shown).

Zebrafish maintenance and microinjection

Zebrafish (Danio rerio) were maintained according to Animal Research guidelines at
Children’s Hospital Boston. Tlebingen strain and the Notch reporter line TP1bglob:gfp
(Parsons et al 2009) were used. Embryos were developed at 28.5°C and staged
according to hpf and morphological features (Kimmel et al 1995). Morpholinos were
injected at the 1-cell stage. Splice blocking morpholino targeting exon 4 of prdm16 (5'-
ACTCACACTATCACCCACCTTATCA-3’ or 5-ATGACTTGCATTAATCTCACCTTCC-3)
and translation morpholino targeting rfx5 (5'-CTGCCTTTAACTGATCTTCTGCCAT-3")

were ordered from Gene-Tools and dissolved in water.



Protein sequence and genomic synteny revealed locus LOC100151531 as the most
likely candidate for a zebrafish orthologue of the gene GFI1B. Gfi1b morpholino
sequence targeting the intron-exon boundary of exon 5: 5'-
GCTTCTTTCCTGTAAACACAAAACA-3'. Antisense splicing morpholino with sequence
TGTTTATTTAACTTACCACCTCTGT targeting the exon2/intron2 boundary of msrb2
was injected into 1-4 cell embryos and assayed at 36hpf for runx? and c-myb
expression. Antisense splicing morpholino with sequence
TGTAGTAATGGAGTGTTTACCCTGC targeting the exon4/intron4 boundary of fulp4
was injected into 1-4 cell embryos and assayed at 36hpf for runx? and c-myb
expression. Disrupted splicing was verified by RT-PCR with primers 5-
GTGGTGCTGGTGCGCTGGAACGAGCCCTTCC-3 and 5-
GGGTCGGAAGTCACGAGTCTCTCCATCCC-3. For gfi1b, msrb2, and tulp4
morpholinos, 4 ng was injected. 0.5 ng of antisense splicing morpholino with sequence
GGGACAGCCTGAAATAACAACATCT targeting the intron2/exon3 boundary of atf3 was
injected into 1-4 cell embryos and assayed at 36hpf for runx1 and c-myb expression.
Disrupted splicing was verified by RT-PCR with primers 5-
ATTTCGGCATGATGCTTCAGCACCCTGG-3 and 5-
TCTTCGGGGGTCTGGCCGTTCTGAGCG-3. Total RNA was extracted from embryos
staged at 36hpf in 500 uL as previously reported. Primers to amplify exons 3 to 5 of
prdm16 were as follows: forward 5-AAGCAGGAGCGGGAAGACAG-3’ and reverse 5'-
TGTGCTTGTGCTGCTTGAGG-3’ (Draper et al., 2001).

Whole-mount in situ hybridization, phosphoH3, and TUNEL staining

Whole-mount in situ hybridization in zebrafish embryos was performed as described
previously (Thisse and Thisse, 2008). Stained embryos were mounted in glycerol and
imaged on a Nikon E600 compound microscope with a Nikon Coolpix 4500 camera.
Phospho-histone H3 staining was performed as decribed previously (Shepard et al
2005) with diaminobenzidine/H,0O, (Invitrogen). TUNEL staining was performed on fixed
embryos as described (Shepard et al., 2005). Equal number of control and morpholino
injected embryos were imaged in the tail region above the yolk sac extension, and the
images were used for counting the number of mitotic or apoptotic cells, averaging the

results.

Fluidigm



The exemplar and top 3 CLR-predicted regulators for 22 modules were validated via
gRT-PCR on the Fluidigm BioMark 96x96 platform (Fluidigm, San Francisco, CA,
Supplemental Table 2). cDNA from 200 cells per sample was pre-amplified using the
pool of TagMan probes per the Fluidigm instructions. As a quality control for each
assay, we performed a standard curve of six 10-fold dilutions of pre-amplified cDNA
pooled from all samples. The 80 of 92 non-control assays with amplification efficiencies
between 0.75 and 1.25 were considered reliable and assessed for correlation with the
microarray data. Delta Cts were calculated in reference to the housekeeping gene
Rps29. To determine whether a gene replicated the expression pattern observed in the
microarray data, we calculated the correlation coefficient between the average of the
deltaCts for each replicate of a biological group and the average gene value from the
microarrays. We considered genes validated when the p-value of the correlation

coefficient <0.10.

Microarray

Raw microarray signal intensities were RMA-summarized and quantile normalized using
R/BioConductor (Bolstad et al., 2003; Gentleman et al., 2004; Irizarry et al., 2003). To
correct for batch effects, we applied the ComBat batch correction algorithm to the
normalized data (Johnson et al., 2007), then multiple probesets mapping to the same
gene were averaged, resulting in 21,308 gene expression measures per sample. The
expression of all genes was used in the analyses displayed in Figure 2. We used
hierarchical clustering with the ‘average’ linkage method for the dendrogram in Figure
2A. In subsequent analyses steps we used the 13,530 genes detected as expressed in
at least one biological group. To find genes differentially expressed between biological
groups, we performed pair-wise Student’s T-tests, treating genes with nominal p-
values<0.05 and fold change>2 as differentially expressed. Stage-specific and stage-
enriched modules were identified as described in the Methods section. To find sets of
positively correlated genes (modules), we used WGCNA, setting beta=15. To find
enrichment of Gene Ontology and NetPath gene sets, we applied Gene Set Enrichment
Analysis to gene lists ranked by fold change for each specified comparison. All analysis
results, including differentially expressed gene lists, genes in modules, and transcription
factor regulators of modules, and raw data, are freely available through the companion

website, http://hsc.hms.harvard.edu/. The Context likelihood of relatedness (CLR)

algorithms uses mutual information to determine the statistical dependence between



transcription factor and putative target module expression. To compute mutual
information, we used a B-spline smoothing and discretization method, implementing the
Freedman-Diaconis rule to estimate the bin width size. All mutual information values
were computed using 6 bins and third order B-splines and a MatLab interface to B-spline

mutual information estimation code library is available at the companion website.

Naive Bayesian classifier and context-dependent gene regulatory networks

We trained a Naive Bayesian classifier (Mitchell, 1997) using 130 gene expression
profiles from three independent experiments representing 44 cell types and tissues
(GSE10246, GSE14012, and GSE10806). The classifier uses Bayes’ Theorem to
compute the posterior probability that a query gene expression profile is
indistinguishable from biological replicates of each of 44 distinct cell types and tissues
that are in the training data set, given distributions of inter- and intra-cell type distances:
Pr(que = Ref; | Disty; = X) = Pr(Distq; = X | que = Ref;) * Pr(que = Ref) / ( Pr(Disty; = X|
que = Refj) + Pr(Disty; = X | que # Ref;) ),

where que = query sample, Ref; = reference sample i, Disty; = distance between query
and Ref; profiles. Assuming equivalent prior probabilities that a query is indistinguishable
from each reference sample, this becomes:

Pr(que = Ref; | Distq; = X) = Pr(Distq; = X | que = Ref;) / ( Pr(Distq; = X | que = Ref;) +
Pr(Distq; = X | que # Ref;) )

The likelihoods Pr(Dist,; = X | que = Ref;) and Pr(Distq; = X | que # Ref) are computed
directly from the estimated distributions of module profile distances between replicates
(approximated using an exponential distribution) and between different tissues and cell
types (approximated using a normal distribution) from the training data. Distances are
based on gene set (rather than individual gene) profiles, and gene sets were determined
by clustering approximately 20,000 genes across the 44 cell types and tissues using
WGCNA (Zhang and Horvath, 2005). The output of the classifier is vector of
probabilities. To test whether the classification results were biased due to the inclusion
of diverse cell types in the training data, we constructed the classifier de novo using only
hematopoietic populations (HSCs, CMPs, GMPs, MEPs, macrophages, granulocytes, T-
cells, B-cells, natural killer cells, mast cells, and dendritic cells). When we applied this
classifier to our developmental gene expression profiles, we found that the results were
highly similar to the original classification results, with AGM and FL12 A still classified as

macrophages, and Definitive samples as HSPCs (Figure S3B). To test the overall



performance of the classifier, we applied it to a validation data set of 1,300 publicly
available gene expression profiles (GSE10733, GSE10744, GSE11056, GSE11110,
GSE11207, GSE11220, GSE12464, GSE12545, GSE13032, GSE13155, GSE13224,
GSE13402, GSE13526, GSE13753, GSE13805, GSE13873, GSE14270, GSE15129,
GSE16073, GSE16150, GSE16364, GSE16994, GSE17263, GSE17923, GSE18500,
GSE18669, GSE18746, GSE19299, GSE19403, GSE20352, GSE21754, GSE21842,
GSE22527, GSE22935, GSE2389, GSE2869, GSE3203, GSE3440, GSE3554,
GSE3653, GSE4035, GSE4040, GSE4142, GSE4413, GSE4816, GSE5127, GSE5296,
GSE5763, GSE6210, GSE6461, GSE6466, GSE6506, GSE6514, GSE6591, GSE6623,
GSE6676, GSE6686, GSE7069, GSE7196, GSE7333, GSE7381, GSE7407, GSE7764,
GSE7793, GSE7798, GSE8000, GSE8044, GSE8199, GSE8249, GSE8582, GSE9630,
GSE9711, GSE9810, GSE9913, GSE9954, GSE24637, GSE25140, GSE10627,
GSE21018, GSE12982), demonstrating that the classifier achieved a sensitivity of 94%

at a false positive rate <56% (data not shown).

We used the same training data (130 gene expression profiles) and gene sets described
above to reconstruct the gene regulatory networks of adult cell types and tissues. We
searched for potential gene set regulators by computing the Pearson correlation
coefficient between the expression level of each transcription factor and each gene set
profile both globally (using all cell types and tissues) and in a context-specific manner
(using only the subset of cell types and tissues that share a developmental origin).
Reasoning that TFs central to module regulation would also be highly correlated to the
same gene set profiles in independent data sets of the same cell types and tissues, we
computed TF and gene set correlations in the validation data set (1,300 publicly
available gene expression profiles) and removed relationships in which either the

direction of the correlation differed or was not significant.

Companion website

There is more information within our data set than can be described in detail here.
Furthermore, we believe that this data and analyses will be informative beyond our focus
on the development of the HSC. For example, our analyses can be further leveraged to
determine the extent to which the developmental programs are re-activated in cancer, or
in diverse physiological conditions. In the hope that other investigators will leverage this

resource to complement their research, we created a website and database



(http://hsc.hms.harvard.edu) to facilitate data mining and data integration. We designed

the website to be user-friendly so that visitors can quickly perform one-off queries (e.g.
“What is the expression profile of my gene in HSC development?”). We also
implemented a feature to allow visitors to upload a gene list and the website will
determine the modules in which the gene list is enriched. We also provide access to all
the data and analysis results, so that visitors can use more sophisticated tools to mine
the data (e.g. GSEA). A complete list of the website features is below:

(1) Download normalized data, the transcriptional regulatory network in Cytoscape
format, the sample annotation table, and a .GMT file containing the modules for use with
Gene Set Enrichment Analysis (GSEA).

(2) View the expression profiles of selected genes.

(3) Explore the genes differentially expressed by pair-wise comparison between
individual biological groups (e.g. AGM vs YS) and between HSC states (e.g. Definitive
vs Specifying).

(4) Explore each module by viewing module profiles, and by viewing the gene members.
(5) Find the predicted transcriptional regulators of modules.

(6) Determine whether a user-supplied gene list is enriched in any of the modules.

The website’s FAQ fully describes how the resource can be used. All genes listed on
the website are linked to NCBI's Entrez Gene and MGI, providing a source of up-to-date

annotation.
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