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SI Materials and Methods
Composite II′: Ruling Out Stimulus Artifacts.As a check on our work,
we implemented composite II in two ways. First we created the
composite observer by cascading the two bionic crutches that had
already been programmed to work with the human, but now
without the human. The ideal detector passes an 18-bit feature
map, indicating which features were detected, to the ideal com-
biner. However, one reviewer noted that we create special stimuli,
high-contrast letters, to test the human in composite IH, and
perhaps some artifact in those stimuli is affecting our results. So
we also implemented an ideal to identify the stimuli presented
to the human in composite IH. This alternate implementation
of composite II is formally equivalent, and gave identical results,
assuring us that no stimulus artifact had intruded.

Composite HI′: Ruling Out Unwanted Human Combination Learning in
Composite HI. The whole point of the bionic observer with ideal
combination is to isolate the human detection step, so it is essential
to rule out combination learning by the human participant; we did
that in three ways: by shuffling the order of detection trials to
discourage pattern learning, by testing for it after training, and by
running a modified control experiment that makes such learning
impossible (i.e., a modified implementation of the bionic observer).
Distributing a letter’s 18 possible features over 18 detection

trials does not eliminate the letter’s pattern; it merely converts
a brief spatial pattern into a prolonged spatiotemporal pattern,
extended over 18 detection trials. In principle, the observer could
improve his detection performance by learning each letter’s pat-
tern, combining information across sequential presentations.
We discourage pattern learning by shuffling the order of the

18 detection trials that constitute each identification trial; in fact,
the order is irrelevant, so this does not rule out pattern learning,
but would likely hinder it. Furthermore, because shuffling makes
it hard to guess the location of the next feature presentation, it has
the incidental benefit of extending the relevant area to be attended
to include the whole letter, not just one feature. Thus, the human
participant is expected to attend to the whole letter area both
when he detects as part of the bionic observer and when he
identifies unaided.
At the end of training, we use a recognition test to discover any

unwanted combination learning. On each trial, the human par-
ticipant is shown two Gabor letters, one after the other, feature
by feature, and is asked to indicate which of the two was used in
training. As in training, on each trial, each letter’s features are
presented in random order. One of the letters is old, the other
new. The old letter is a random sample from the training alphabet,
an eight-letter subset of IndyEighteen. The new letter (the foil) is
a random sample from a specially constructed alphabet, also an
eight-letter subset of IndyEighteen, which has the same features as
the old alphabet, rearranged into different combinations. This new
alphabet is formed by shuffling the features of the eight old letters,
across letters, to create the eight letters of the new alphabet. The
two alphabets, old and new, have the same number of features of
each type (first-order statistics), but differ in how these features are
combined (higher-order statistics). Only if the observer has learned
these combinations will he be able to distinguish old from new. No
such learning was found: observers correctly indicated which letter
was old on 46% of trials, not significantly different from chance
(50%), or from performance measured before training, 52%.
To be absolutely sure of this key point, we also created a

modified implementation of the bionic observer that eliminates
the possibility of combination learning by the human detector.

Before, the 18 detection trials were all based on a single target
letter. In the new implementation, there is still a target to be
identified (by the ideal combiner), but each detection trial is based
on an independently selected letter from the eight-letter alphabet,
not necessarily the target. Each detection trial is conducted as a yes/
no test, but scored as right or wrong. If the human detector is right,
then the bionic combiner receives this feature correctly (i.e., present
or absent), as in the target. If the human detector is wrong, then the
combiner receives this feature wrongly (i.e., present if absent in the
target; absent if present in the target). For the human, this abolishes
the letter patterns (which are co-occurrences of features within
a letter) while preserving the frequency of each feature in the
alphabet as a whole; for the bionic combiner, this presents a feature
vector reflecting human accuracy in detecting each feature.
Despite the several differences in our two implementations

of detection, the outcome—separability—was the same for both
the original and the variant, which suggests that the detection step
is performed similarly, just as efficiently, in both cases. In the fu-
ture, it will usually be enough to test for recognition after training
to confirm that the pattern learning is negligible. If such a test
reveals that combination learning has occurred, this modified
implementation of the bionic observer with human detection and
ideal combination can be used to eradicate it.

Participants. Six human participants (JS, AK, DF, CH, SS, and
MC) performed unconstrained H. Four of them (DF, CH, SS, and
MC) also performed in composites HI′ and IH; the other two
performed in composite HI. JS is an author. The others were naive
to the purpose of the experiment. All participants gave informed
consent in writing. Testing of human observers was approved by
the NYU University Committee on Activities Involving Human
Subjects (UCAIHS).

Stimuli. Signals are IndyEighteen letters. Each letter is a gray
square with a combination of several Gabors oriented 45° from
vertical, placed at various locations on a 3 × 3 grid. The super-
imposed Gabors are orthogonal, and, despite forming a plaid, they
are detected and perceived independently (1, 2). The center-
to-center spacing of adjacent Gabors is 1.4× the wavelength,
1.4/f. A vertical Gabor pattern is
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where background luminance L0 = 21 cd/m2, spatial frequency
f = 2 cycle/degree, spatial extent λ = 0.61 degree, and contrast c
is chosen using the estimate provided by QUEST.
Noise is added independently to each pixel of the stimulus, such

that the luminance of any particular pixel is the sum of the lumi-
nance assigned to that pixel by the signal and a random increment
or decrement in luminance sampled from a zero-mean Gaussian
distribution, truncated at ±2 SDs. The rms contrast of the noise
is 0.20. There are 25.4 pixels/degree, horizontally and vertically.
The power spectral density N is 10−4.21 deg2.

Presentation. Stimuli are rendered by an Apple Macintosh com-
puter running MATLAB in conjunction with the Psychophysics
Toolbox extension (3, 4). Stimuli are displayed on a cathode-ray
tube monitor, driving only the green gun to achieve 12-bit accu-
racy, at a background luminance of 21 candela/m2 (5). The display
resolution is set to 1,024 × 768 at 60 Hz, 29 pixels/cm. The viewing
distance is 50 cm.
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Procedure. Each threshold measurement is based on a run of 40
letter-identification trials. The identification trial is performed
by the human, either unconstrained or as dictated by the kind of
composite: two steps, one step, or none. Each correct identifi-
cation is rewarded with a short beep. The observer is asked to
fixate a central white dot subtending 0.10° on the monitor. The
observer initiates the run by clicking a mouse. When the human
acts alone or as a combiner, 1,000 ms later the stimulus appears
for 200 ms, followed by a blank screen for 250 ms, followed by a
noise-free response screen containing all of the letters. The ob-
server uses a mouse-controlled cursor to select a letter from the
response screen. Any response automatically initiates the next
trial, 1 s later. When the human acts as a detector, he performs 18
feature-detection trials for each letter-identification trial. On each
detection trial, he reports the presence or absence of the Gabor by
key press. There is no detection-specific feedback; the only feed-
back is the identification reward at the end of the identification
trial, i.e., after the 18th detection trial. The feedback indicates
whether the human and ideal together chose the correct letter.

QUEST. The QUEST sequential estimation procedure provides
threshold estimates over the course of learning (6). The QUEST
procedure estimates from already-known information regarding
both the task and observer (assumed stationary), as well as from
the observer’s performance throughout the run, to provide a
maximum posterior probability estimate of threshold contrast,
the signal contrast (ratio of luminance increment to background
luminance) at which the observer correctly identifies the signal
at criterion performance (75% correct). After each trial, the
QUEST procedure calculates a threshold estimate. We place each
new trial at the current threshold estimate. In practice, if the
observer correctly identifies the signal, the next trial presents a
lower contrast. If he incorrectly identifies the signal, the next trial
presents a higher contrast. QUEST is initialized at the beginning
of each run with log threshold estimate −1 ± 2 (±SD), β 3.5,
lapse rate 0.01, and guess rate 0.125, and is updated after each
identification trial.

Calculating the Slope of Learning. For each unconstrained or com-
posite observer, for each participant, we fit a line to the data (log
threshold contrast as a function of log trial) by linear least-squares
regression. Extrapolating any of these rising lines makes the im-
possible prediction that the human will eventually beat the ideal.
In fact, improvement must saturate eventually, after huge amounts
of practice. Even so, Pelli et al. (7) found good straight-line fits to
letter-learning data out to 50,000 trials. The ideal does not learn;
it is unaffected by practice, so we display best-fit horizontal lines
for I and II in Fig. 2.

SI Methods for Table 1
Here we provide the methods used to estimate the log-log slope of
learning from the 13 studies presented in Table 1, top to bottom.

This Study, Composite Observer HI. The slope, −0.03, is the average
across all participants and is reported in the main text.

Pelli et al. (8), Familiar Letters. Experiment 3.4 of Pelli et al. (ref. 8,
p. 4,658) measured improvement in threshold contrast for the
identification of a letter. Participant RA performed 2,000 trials
of the identification task using familiar letters. His efficiency
increased from 6% (at 40 trials) to 7.3% (at 2,000 trials). We fit
a straight line, in log coordinates, to these two points using linear
least-squares regression; its slope was 0.050. Because efficiency is
inversely proportional to threshold contrast squared, the log-log
slope of efficiency is −2× that of threshold contrast. Therefore,
the log-log slope of contrast learning is 0.050/−2 = −0.0250. Two
other participants, AW and DM, performed ∼2,500 trials (in
blocks of 40) of an identification task using 2 × 3 checkerboard

patterns. Figure 10 of ref. 1 (p. 4659) shows the data. The ver-
tical axis plots the efficiency estimated from each block. The data
are fit with a straight line on log-log axes. The slope of efficiency
learning is 0.076 for participant AW and 0.100 for participant
DM, and so the slope of contrast learning is −0.038 and −0.050,
respectively. Thus, the average log-log slope of contrast learning
across the three participants is −0.04.

Furmanski et al. (9). Furmanski et al. (ref. 9, figure 2a, p. 574) show
improvement in threshold contrast for the detection of a Gabor.
The learning curve is the average across six participants and shows
learning over the course of a month. The reported “normalized
threshold” is proportional to threshold and does not affect our
estimate of the slope. We fit a line, in log coordinates, to the 34
normalized thresholds reported in the figure; its slope is −0.06.

This Study, Composite Observer IH. The slope, −0.11, is the average
across all participants and is reported in the main text.

Suchow and Pelli (10). The figure in Result III shows improvement
in efficiency for the identification of an unfamiliar letter from the
Armenian alphabet. Two participants in Suchow and Pelli (10),
SAS and JWS, performed 3,000 trials of the identification task in
blocks of 40 trials. The vertical axis plots the efficiency estimated
from each block. The data are fit with a straight line on log-log
axes. The log-log slope of efficiency learning is 0.21 for participant
SAS and 0.21 for participant JWS. Thus, the average log-log slope
of contrast learning is −0.11.

Pelli et al. (8), Unfamiliar Letters. We used the same method de-
scribed above. Pelli et al. (ref. 8, figure 10, p. 4659) also reports
seven learning curves for participants identifying unfamiliar let-
ters. Each curve includes between 1,500 and 5,000 trials of an
identification task. Participants SE, JB, and AW identified 4 × 4
checkerboard patterns; participants DM and AW identified
Devanagari letters; participant AW identified Hebrew letters; par-
ticipant JF identified English letters. The average log-log slope of
contrast learning was −0.11.

Lu and Dosher (11). Lu and Dosher (ref. 11, figure 4a, p. 50) show
improvement in threshold contrast for the identification of the
orientation of a Gabor tilted±8° from diagonal. This task required
a fine discrimination, which was initially unfamiliar to the partic-
ipants. Participants were tested at each of two criteria (70.7% and
79.3% correct) at each of eight levels of added noise (rms contrast
ranging from 0 to 0.33). In the text, the authors report that at the
highest level of external noise, threshold contrast improved from
0.72 (for sessions 1 and 2 of 10, coded as session 1.5) to 0.48 (for
sessions 9 and 10, coded as session 9.5). We fit a line, in log co-
ordinates, to these two points; its slope was −0.22. The slope is the
same, −0.22, if the line is instead fit to the data from all sessions
at the highest noise level, not just the first and last two. Lower
noise levels produced more shallow slopes of learning. The aver-
age slope across all noise levels and criteria is −0.12 (ranging
from −0.014 to −0.24).

This Study, Observer H. The slope, −0.16, is the average across all
participants and is reported in the main text.

Gold et al. (12), Noise Texture. Gold et al. (ref. 12, figure 3, p. 177)
show improvement in efficiency for the identification of a noise
texture. For each of the two participants, AMC and JMG, we fit
a straight line, in log coordinates, to the points using linear least-
squares regression. The average log-log slope of contrast learning
was −0.32.

Gold et al. (12), Face. Gold et al. (ref. 12, figure 3, p. 177) show
improvement in efficiency for the identification of a face.
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For each of the two participants, AMC and CGB, we fit a
straight line, in log coordinates, to the points using linear least-
squares regression. The average log-log slope of contrast learn-
ing was −0.39.

Michel and Jacobs (13). Michel and Jacobs (ref. 13, figure 6, p. 9)
show improvement in efficiency for discrimination of shapes in
filtered noise. The authors defined efficiency as the ratio of the
sensitivity index d′ of human and ideal, which is similar, but not
identical, to our definition as the ratio of threshold energies. For
each of the three participants who showed evidence of learning
(BVR, WHS, and RAW), we fit a straight line, in log coor-
dinates, to the points using linear least-squares regression. The
average log-log slope of contrast learning was −0.48.

Fine and Jacobs (14). Fine and Jacobs (ref. 14, figure 6, p. 3217)
show improvement in threshold contrast for the discrimination
of a complex plaid pattern. The high spatial frequency compo-
nent of the plaid was placed at a different contrast than the low
spatial frequency component, and so for analysis we separately
measured the slope using the contrast of each component, and
then averaged the slopes together to produce the final estimate.
The across-participant average threshold contrast for sessions 1
and 2 (coded as session 1.5) was 0.081 and 0.27 for the low and
high spatial frequency components, respectively. After the final
sessions, 7 and 8 (coded at session 7.5), thresholds dropped to
0.024 and 0.078, respectively. We fit a straight line, in log co-
ordinates, to the points using linear least-squares regression. The
average log-log slope was −0.78.
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Fig. S1. Learning curves for all participants (as in Fig. 2). The log-log slope of contrast learning, averaged across participants, is 0 (I), 0.019 (II), −0.11 (IH), −0.027 (HI),
−0.16 (HH), and −0.16 (H). The threshold contrast at 1,000 trials, averaged across participants, is 0.010 (I), 0.015 (II), 0.026 (IH), 0.069 (HI), 0.13 (HH), and 0.12 (H).

Suchow and Pelli www.pnas.org/cgi/content/short/1218438110 4 of 4

www.pnas.org/cgi/content/short/1218438110

