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Fig. S1. Venn diagram: distribution of the 960 probe sets between the three cell groups. A total of 960 probe sets was retained for all of the subjects across
the three different cell groups. A core of 183 probe sets is shared by the three groups.
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Fig. S2. Each graphic represents genes in a specific categorical time label (1–4, from left to right) and their connections, showing how the signal is spreading
through the aggressive network.
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Fig. S3. DUSP1 is the targeted gene for the knock-down experiment. We show its expression before and after the inhibition experiment.
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Fig. S4. Principle of the validation experiment. Graphic A represents a gene expression before inhibition of a targeted gene. Graphic B shows how this gene
expression evolves after silencing this targeted gene, and graphic C shows the predicted gene expression. For these two last graphics, for time t2–t4 we assigned
a plus (+), minus (−), or equal (=) sign label if gene expression after silencing is greater, smaller, or equal, respectively, to gene expression before silencing. For
this gene, graphic D shows that we made two good predictions of three in this example.
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Fig. S5. Schematic representation of specific constraints related to prediction abilities in model inference. This ability to predict the transcriptional effect of
a modulation in the network is crucial to predict a gene expression level modification after a knockdown experiment. For instance, given a situation where
a gene A regulates the expression of a gene B (with a time lag between activation of gene A and gene B, as schematically shown in A, which in turn regulates
gene C, we want to predict the absence of a link between B and C if gene A is knocked down. Importantly, this predictive capacity requires much more
complexity than inference alone. More than inferring a network topology, a predictive method should be able to learn how the biological signal spreads in this
network. To go further, the best algorithms for reverse-engineering are not necessarily the best methods for predicting purposes, as explained in B with two
simple examples. In the first example, a real network is composed of a gene A that activates a gene B, which in turn activates gene C (Upper Left). An inference
method could infer a statistical link between A and C, leading to two false-negative links (two existing links are not present) and one false-positive link (Upper
Right). However, to predict gene C’s expression, given the expression of gene A, this inference method will probably give adequate results. In the second
example (Lower Right), a better inference method could give six true-positive inferred links and only one false negative, omitting the link between A and B.
However, in this case, we have a dramatic situation for prediction purposes because gene A can no longer activate gene B.
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Fig. S6. Significance of selected patterns in the clustering step. To evaluate the relevance of our selected patterns used for enrichment, we compared these
patterns with various temporal gene clusters obtained with a gold standard unsupervised clustering method. One of the most widely used clustering methods
is fuzzy c-means (1). The preponderant aspect of this algorithm relies on the fuzzy parameter that allows taking into account the inherent noise of tran-
scriptional data (when this parameter increases, more genes are randomly assigned into clusters). For comparison purposes, we focused on the biological data
set of patients with more-aggressive CLL, and we first select relevant genes with Limma (2), using a P value of 0.01. An unsupervised temporal clustering of the
8,113 genes retained with Limma (2) is then performed showing 16 distinct clusters. Importantly, these clusters emphasize the existence of genes with transient
expressions (peaks) at t1 (cluster 1, 7, 9), t2 (within cluster 2, 4), t3 (cluster 2, 3, 4, 11, 13, 15), and t4 (cluster 5, 6, 8, 10, 12, 14, 16), as shown by our method. The
fact that through this unsupervised clustering method we reach patterns similar to those produced by our method confirms the pertinence of our own gene
selection process.
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Table S1. Short description of selected methods used for inference methods comparison

Method
Possible

prediction
Designed for large

networks Short description

TD-ARACNE (1) No No Time-delay regression combined to ARACNE method (2).
ARACNE is an information theory model based on
mutual information

GeneNet (3) No Yes Graphical Gaussian model using partial correlation
GeneReg (4) Yes No Regression with spline interpolation to increase the

number of time points
Morrissey et al. (5) Yes No Dynamic Bayesian network

Table S2. Settings of selected methods used for inference methods comparisons

Method User-fixed parameter Note

TD-ARACNE (1) The number N of bin in the
discretization process

The best-performing value of N was
retained after sequential tests (N value
varying from 6 to 20, by 0.5)

GeneNet (2) None None
GeneReg (3) Number of interpolated

time points
The ratio (number of interpolated time points)/

(number of initial time points) used by the
authors has been conserved

Morrissey et al. (4) None None

Table S3. Comparison of our method with three other benchmark
methods applied to the more-aggressive CLL data set

Our method TD-ARACNE GeneNet GeneReg

Our method 1,528 28 39 7
TD-ARACNE (1) 28 5,236 87 66
GeneNet (2) 39 87 2,241 86
GeneReg (3) 7 66 86 1,567

Total number of inferred links for each selected method and intersection
between the methods, in total common inferred links. The biological data
set of patients with more-aggressive CLL type is used.
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