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SI Results and Discussion

Genome Scan and GWAS on Plant Height. Because dw3 mutants are
known to show increased upper stem elongation, we additionally
mapped dw3 based on associations with flag leaf to apex distance
(flag-to-apex). In this case, the top association peak is found near
the dw3 locus (114 kb from peak; P < 1077). The strongest asso-
ciation peak for plant height traits (Fig. S4) is a narrow peak on
chromosome 9 around 57.2 Mb, which colocalizes with previously
described plant height locus dw1/SbHt9.1 (1). The top association
for plant height is 29 kb from a GA2-oxidase, a catabolic enzyme in
the gibberellin pathway, which has been proposed as the gene un-
derlying the plant height QTL SbHt9.1/Dw1 (2). Overexpression of
GA20x in rice leads to semidwarf phenotypes (3).

The second most significant peak maps to chromosome 6 be-
tween 39.7 Mb and 42.6 Mb near the classical dwarfing locus Dw2
(4, 5). Dw2 has been mapped adjacent to Mal on chromosome 6
(6), to a region of ~100 kb around 42.2 Mb, but the gene un-
derlying this QTL has not been cloned. The association peak for
total plant height and preflag leaf height maps to a histone de-
acetylase (Sb06g015420), which is homologous to well-studied
global transcriptional regulators in plants (hda) (7, 8). In maize
and Arabidopsis, down-regulation of closely related histone de-
acetylases (hdal01 and AtHD]1, respectively) results in reduced
plant height and a variety of changes in inflorescence architecture
(7, 8). In rice, overexpression of OsHDACT1 increases plant height
(9), whereas the knockdown of many genes in the OsHDAC gene
family lead to semidwarf phenotypes (10). Therefore, we propose
that dw2 phenotype is a result of loss of function in a sorghum
histone deacetylase.

The fourth classical dwarfing locus in sorghum, dw4, has not been
genetically mapped but is known to be unlinked to the other
dwarfing loci (11). Based on the location of the next most signifi-
cant peak in the height GWAS and heterozygosity scan, a potential
physical position of the Dw4 locus is at ~6.6 Mbp on chromosome 6
(Fig. 3B and Fig. S4). Note, because of the simultaneous intro-
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gression of maturity and dwarfing alleles in conversion lines, it may
not be possible to distinguish between them using genome-wide
scans, and additional loci may have been involved.

Origin of Dwarfing Alleles. Did the mutations that underlie classical
dwarfing alleles arise de novo in the early US grain sorghums, as is
suggested in classical breeding literature (12), or were they recruited
from standing variation present in African or Asian landraces? The
haplotypes associated with dwarfism at dwl/SbHT9.1, dw2, and
dw3 are widely distributed among African and Asian landraces
(Fig. 3), but these haplotypes could represent ancestral haplotypes
on which new dwarfing mutations occurred. The classical literature,
however, confirms that dwarfing alleles were already present in
African landraces at the time that dwarf alleles were being adopted
in US grain sorghums. For instance, dwarf durra varieties collected
near Khartoum, Sudan, c. 1920 carry the dw4 allele (Gahan dura)
or both dwl and dw4 (hegari) (11).

GWAS on Inflorescence Branch Length. CMLM GWAS on inflo-
rescence branch length identified candidate genes homologous from
several known regulators of inflorescence development or cell
elongation (Table S2). These genes include LEUNIG (13), The-
seusl (14), Short paniclel (15), Lost meristems3 (16), Dwarf in
light2 (17), Dwarf8 (18), Teosinte branchedl (19), GIGANTEA
(20), Clavatal (21), Bearded earl (22), Indeterminatel (23), Gib-
berillin dependent dwarfl (24), and Aberrant panicle organiza-
tionl (25). Compared with plant height components, mapping of
inflorescence branch length QTL depended more on methods for
controlling population structure (Fig. S4). The top association peak
for branch length (whether population structure is controlled) is
a SNP found in another ID1 homolog (Table S2). The minor allele
at this SNP is restricted to the three broomcorn varieties in the
panel, which display the most extreme branch length phenotypes,
with inflorescence branches more than 0.5 m in length or >8 SDs
above the species-wide mean.
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Fig. S2. Bayesian hierarchical clustering of sorghum accessions based on 265,000 SNPs. Posterior probability of membership (Q) in each population at various
values of K. Color-coding of Q-value bar plots (upper section) is arbitrary, whereas color-coding for rug plots (lower section) indicates morphological type as
given in the legend. For clarity, only African and Asian source-identified accessions are displayed. The lowest cross-validation error was observed at K = 16.
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Fig. $3. Worldwide sorghum accessions mapped over a Kdppen-Geiger climate classification. Plotted are 469 source-identified accessions. Climate classifi-

cation is based on observed precipitation and temperature data from 1976 to 2000 (1).

1. Rubel F, Kottek M (2010) Observed and projected climate shifts 1901-2100 depicted by world maps of the Képpen-Geiger climate classification. Meteorologische Zeitschrift 19:135-141.
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Fig. S4. Genome-wide association studies for plant height components and inflorescence branch length. Manhattan plots and quantile-quantile plots for GLM
and CMLM GWAS with Bonferroni significance threshold of 0.05 [-log1o(p) ~7] noted with the horizontal line for plant height (A and B), flag-to-apex distance
(E and F), preflag leaf height (C and D), and inflorescence branch length (G and H).

Morris et al. www.pnas.org/cgi/content/short/1215985110

50of 8


www.pnas.org/cgi/content/short/1215985110

L T

/

1\

BN AS  PNAS D)

£ - v .\7 - . .I\I'I\
J A g S VY

v
W

BICOLOR
CAUDATUM
GUINEA
KAFIR
DURRA
MIXED

~

A
A

\

Fig. S5. Worldwide allelic distribution for a functional SNP (K162N) in the Ma1/SbPRR37 gene.

Table S1. Decay of linkage disequilibrium in sorghum diversity panels

All unconverted Source-identified Sorghum association Breeding lines
lines (n = 635) landraces (n = 330) panel (n = 377) (n =98)
Chromosome r<0.1 <02 r?<0.1 ? <02 r<0.1 <02 ?<0.1 <02
1 125-150 20-30 600-700 30-50 250-300 30-50 >50,000 600-700
2 150-175 20-30 500-600 30-50 225-250 30-50 >50,000 300-400
3 100-125 20-30 400-500 30-50 200-225 30-50 >50,000 400-500
4 125-150 20-30 1000-1500 30-50 300-400 20-30 >50,000 400-500
5 150-175 20-30 900-1000 50-75 200-225 30-50 >50,000 400-500
6 300-400 30-50 1500-2000 50-75 500-600 50-75 >50,000 500-600
7 125-150 10-20 400-500 20-30 250-300 20-30 >50,000 600-700
8 100-125 10-20 800-900 20-30 175-200 10-20 >50,000 400-500
9 125-150 10-20 500-600 20-30 400-500 20-30 >50,000 800-900
10 225-250 20-30 1500-2000 30-50 400-500 30-50 >50,000 300-400
Mean 153-185 18-29 810-1030 31-49 290-350 27-44 >50,000 470-570

Distance in kilobases until the linkage disequilibrium decays to the given r* value. The ranges reflect the resolution of the analysis
given the window sizes used.
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Table S2. SNPs with significant association to inflorescence branch length

Minor allele Effect  Candidate Distance to

Chromosome  Position P frequency size gene peak SNP Description (Putative function) Ref(s).

1 206,185 8.35e-09 0.07 0.04 Sb01g000300 40 kb LEUNIG transcriptional repressor 1
(Floral organ identity)

1 47,634,163 2.03e-09 0.11 0.04 Sb01g027530 30 kb, nearest Receptor-like kinase, homolog 2
of Theseus1 (Cell elongation)

1 48,244,999 1.30e-07 0.09 0.03 Sb01g027730 In gene PTR transporter, homolog of 3
Short panicle1 (Branch elongation)

1 51,696,651 1.13e-07 0.08 0.03 Sb01g029650 27 kb GRAS transcription factor, orthologous 4
to Lost meristems3 (Shoot determinancy)

1 54,759,786 3.73e-08 0.13 0.03 Sb01g032020 8 kb IAA synthase, homologous to Dwarf 5
in light2 (Cell elongation)

1 55,738,033 5.17e-08 0.07 0.03 Sb01g032800 3 kb, nearest GRAS transcription factor similar to 6
Dwarf8 (Cell elongation)

2 46,367,440 2.24e-08 0.01 0.03 Sb02g019110 In gene C2H2 transcription factor, homolog 7
of Indeterminate1 (Inflorescence
determinancy)

2 55,006,467 1.49e-07 0.07 0.03

2 71,878,020 3.79e-08 0.22 0.03 Sb02g037550 47 kb C2H2 transcription factor, homolog 7
of Indeterminate1 (Inflorescence
determinancy)

3 1,776,750 7.12e-08 0.13 0.03 Sb03g001940 3 kb, nearest TCP transcription factor, homolog 8
of Teosinte branched1 (Cell
elongation)

3 3,903,938 3.40e-08 0.02 0.03 Sb03g003650 15 kb Ortholog of GIGANTEA (Flower development) 9

3 5,815,653 2.20e-08 0.14 0.03 Sb03g005740 In gene Serine-threonine kinase, homolog 10
of Clavata1 (Inflorescence
determinancy)

3 19,383,642 7.95e-08 0.12 0.03

3 59,676,964 9.40e-08 0.39 0.03

4 10,182,131 6.87e-09 0.15 0.04

4 61,683,384 1.05e-07 0.10 0.03 Sb04g031750 1 kb, nearest MADS transcription factor, ortholog 11
of Bearded ear1 (Inflorescence
architecture)

4 62,154,189 1.48e-07 0.04 0.03 Sb04g032140 In gene C2H2 transcription factor, homolog 7
of Indeterminate1 (Inflorescence
determinancy)

5 51,442,603 4.45e-08 0.10 0.03 Sb059g020940 7 kb, nearest Kinesin-like protein, homolog 12
of Gibberellin dependent dwarf1
(Inflorescence length)

9 55,320,240 1.60e-07 0.01 0.03

10 760,293 5.05e-08 0.03 0.03

10 9,137,944 1.58e-07 0.13 0.03

10 56,004,421 4.41e-08 0.07 0.03 Sb10g026580 In gene F-box protein, ortholog of Aberrant 13

panicle organization1 (Inflorescence
architecture)

pWN =

v

N o

0 ®©

10.
11.
12.

Chr., chromosome.
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