1 Supplementary Information

- 2 Modification of residue 42 of the active site loop with a lysine-mimetic sidechain rescues
- 3 isochorismate-pyruvate lyase activity in *Pseudomonas aeruginosa* PchB
- 4 Jose Olucha, Kathleen M. Meneely and Audrey L. Lamb
- 5

7

	sample	<i>K</i> _m (μM)	<i>k _{cat}</i> (x10 ⁻³ s ⁻¹)	<i>k _{cat} /K_m</i> (M ⁻¹ s ⁻¹)
WT ^a	control	1.1 ± 0.1	130 ± 0	124,000 ± 4,000
	EtA	5.90 ± 0.03	232 ± 4	39,200 ± 500
	PrA	8.2 ± 0.2	168 ± 1	20,500 ± 700
K42A	control	30 ± 1	45 ± 1	1,510 ± 30
	EtA	48 ± 1	98 ± 1	2,060 ± 20
	PrA	60 ± 1	83 ± 1	1,370 ± 10
WT ^b	control	1.39 ± 0.03	178 ± 1	128,000 ± 3,000
	BrEA	3.13 ± 0.02	166 ± 1	52,900 ± 600
	BrEtOH	1.58 ± 0.02	167 ± 0	106,000 ± 1,000
K42C	control	134 ± 1	8.28 ± 0.04	61.6 ± 0.3
	BrEA	23 ± 1	94.6 ± 0.1	4,200 ± 100
	BrEtOH	125 ± 1	18.4 ± 0.1	147 ± 0
C7A/K42C	control	123 ± 2	8.96 ± 0.01	65 ± 1
	BrEA	15.6 ± 0.3	105 ± 1	6,700 ± 100
	BrEtOH	114 ± 2	12.8 ± 0	103 ± 1
C07A	control	2.10 ± 0.02	200 ± 10	93,000 ± 5,000
	BrEA	1.59 ± 0.03	190 ± 10	120,000 ± 9,000
	BrEtOH	1.73 ± 0.07	190 ± 10	109,000 ± 9,000

6 Table S1: Catalytic constants of all controls and variants

^{*a} exogenous amine conditions* ^{*b*} covalent rescue conditions</sup>

- 1 Figure S1. Circular dichroism of PchB-variants and PchB-variants modified with
- 2 **bromoethylamine.** All traces show that the protein is predominantly α -helical, despite mutation
- 3 or modification with bromoethylamine. \bullet = wildtype PchB; \bigcirc = wildtype PchB modified with
- 4 bromoethylamine; \blacksquare = C7A-PchB; \square = C7A-PchB modified with bromoethylamine; \blacklozenge =
- 5 K42C-PchB; \diamondsuit = K42C-PchB modified with bromoethylamine; \blacktriangle = C7A,K42C-PchB; \bigtriangleup =
- 6 C7A,K42C-PchB modified with bromoethylamine
- 7

9

- 1 Figure S2: Lack of activation of K42A-PchB by added propylamine. Concentrations of
- 2 propylamine (\triangle) are: 1, 5, 25, 50, and 100 mM (isochorismate constant at 50 μ M).
- 3 Concentrations of isochorismate (\Box) are: 1.6, 3.2, 6.3 and 12.5 μ M mM (propylamine constant
- 4 at 500 mM), plotted as found in reference (1). The calculations are generated based on the work
- of Richard and colleagues (1, 2). On the right is a comparison plot generated like those found in
- 6 Go *et al.* (2), which highlights that in the case of PchB the connection energy is larger than the
- 7 overall stabilization in the transition state between the K42A variant and wildtype.

References

3	1.	Barnett, S. A., Amyes, T. L., Wood, B. M., Gerlt, J. A., and Richard, J. P. (2010)
4		Activation of R235A mutant orotidine 5'-monophosphate decarboxylase by the
5		guanidinium cation: effective molarity of the cationic side chain of Arg-235,
6		<i>Biochemistry</i> 49, 824-826.
7	2.	Go, M. K., Amyes, T. L., and Richard, J. P. (2010) Rescue of K12G triosephosphate
8		isomerase by ammonium cations: the reaction of an enzyme in pieces, J. Am. Chem. Soc.
9		<i>132</i> , 13525-13532.
10		
11		