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Geostatistical approaches may also suffer from the misuse of smoothing filters especially 

when a study domain spreads throughout broad spatial scales (i.e., U.S. continent). For example, 

there may exist a problem fitting the different periodicity in time on the west and east portion of 

the U.S. because PM2.5 levels vary inversely by season with the highest levels being observed in 

the east during the summer months and the highest in the west during winter months (Bell et al. 

2007 and also Figure 2A in the main text). 

To show Kriging with the CSTM (KC) is more accurate than Kriging with SSTM (KS) we 

implemented cross-validation procedure: With the measurements at the space/time points 

pcv=[scv,tcv] where scv = randomly selected 25 sites across the U.S. (out of the locations in Figure 

2A in the main text) and tcv = each month in between 2001 and 2006, 1) we remove one 

measurement at a time, 2) re-estimate it using only nearby measurements, 3) iterate this kind of 

estimation procedure for all of the measurements at the 1800 pcv (25 sites × 72 months), and 4) 

compute estimation errors (difference between estimates and measurements left out of the cross-

validation procedure). In the end we calculate Mean Square Error (MSE) (average of the squares 

of the estimation errors) as an indication of mapping accuracy for KS and KC. We test whether 

KC is more accurate than KS (equivalently the CSTM works better than the SSTM), as 

demonstrated below. 

KC uses the covariance information (Eq. S1 and Figure S1) to obtain the kriging weight in 

Eq. [2] in the main text and calculates the mean trend values mX(pd) at data points and mX(pcv) at 

the cross-validation points (1800 spatiotemporal points). The MSE of KC is only 0.0561 (log-

g/m
3
)
2
 whereas that of KS (its covariance was not shown here) is 0.0635 (log-g/m

3
)
2
. The 

MSE change from the latter to the former -11.65% indicating the former is more accurate than 

the latter by 11.65%. KC hardly outperforms KS at certain cross-validation points over space and 

time (thus only the 11.65% improvement overall) where there are no nearby measurements. 

However KC is still more accurate than KS and it is the interpolation method to contrast with the 

PM2.5 estimates using remote sensing (i.e., referred to as RS in the main text). 

With CSTM-induced residuals (PM2.5 measurements - CSTM) we may estimate space/time 

variability (experimental covariance, also see the circles in Figure S1) for a given spatial lag r 

and temporal lag . The covariance may be parameterized by sill (v01 – v04) and range (ar2 – ar4, 

at2 – at4) in a covariance model (red curve in Figure S1) that fits the experimental covariance, i.e.: 
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where v01=0.62 (log-g/m
3
)
2
, v02=0.023 (log-g/m

3
)
2
, v03=0.0267 (log-g/m

3
)
2
, v04=0.0109 (log-

g/m
3
)
2
, (r)=1 if r=0, (r)=0 if r>0, ()=1 if  =0, ()=1.3 if >0, ar2=20 km, at2=1 month, 

ar3=1300 km, at3=2 months, ar4=9000 km, and at4=12 months. The covariance model (Eq. S1) is 

used for obtaining ck,d and ck,d in Eq. [2] in the main text which is an input for the KC estimator in 

Eq. [1] in the main text. The top and bottom plots in Figure S1 denote purely spatial (when 

temporal lag =0) and purely temporal (when spatial lag r=0) covariances, respectively. The 

spatial piece (top plot) is a linear combination of the nugget effect, exponential, and gaussian 

functions in BMElib (unc.edu/depts/case/BMELIB), whereas the temporal portion (bottom plot) 

includes a linear combination of nugget effect, vertical shift, exponential function together with 

cosinusoidal functions associated with the seasonal effects of the PM2.5  attribute. 

 

Supplemental Material, Figure S1: Space/time experimental covariance values and their 

covariance models using the CSTM-induced residuals 
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