SUPPLEMENTAL MATERIAL: ## Hyaluronan Activation of the Nlrp3 Inflammasome Contributes to the Development of Airway Hyperresponsiveness Feifei Feng^{1,2}, Zhuowei Li¹, Erin N. Potts-Kant¹, Yiming Wu², W. Michael Foster¹, Kristi L. Williams^{1,3†}, and John W. Hollingsworth^{1,4†*} ¹Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Duke University Medical Center, Durham, North Carolina, USA ²Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China ³School of Nursing, Duke University Medical Center, Durham, North Carolina, USA ⁴Department of Immunology, School of Medicine, Duke University Medical Center, Durham, North Carolina, USA Running Title: Hyaluronan activation of the inflammasome and environmental airways disease **Acknowledgements:** This work was supported by National Institutes of Health grants ES016126, AI081672, ES020350 & ES020426 (to JWH), AI089756 (to KLW), and an unrestricted educational grant from the China Scholarship Council (to FF). *Corresponding Author: John W. Hollingsworth M.D., Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, DUMC 103004, 106 Research Drive, Durham, NC 27710, USA; Phone: (919) 684-4588, Fax: (919) 684-5266; E-mail: john.hollingsworth@duke.edu ## **Table of Contents** - **Page 3.** Figure S1: RNA expression of IL- 1β and IL-18 in whole lung macrophages. - **Page 4.** Figure S2. Level of non-inflammasome pro-inflammatory factors in BAL at 24 hours after ozone exposure. - Page 5. Figure S3. Biological response to hyaluronan and genes of the Nlrp3-inflammasome. - **Page 6.** Figure S4. Level of non-inflammasome pro-inflammatory factors in the BAL after HA exposure. ## **Supplement Figures** Figure S1. Figure S1: RNA expression of IL- 1β and IL-18 in whole lung macrophages. (A/B) Whole lung macrophages were isolated after exposure to ozone and evaluated for mRNA expression of IL- 1β and IL-18 by real-time PCR and no differences were detected. (C/D) Whole lung macrophages were isolated after exposure to hyaluronan fragments and evaluated for mRNA expression of IL- 1β and IL-18 by real-time PCR and no differences were detected. Data presented as mean \pm SEM (n=5/group). Figure S2. **Figure S2. Level of non-inflammasome pro-inflammatory factors in BAL at 24 hours after ozone exposure.** BAL IL-1α, IL-6, monocyte chemoattractant protein-1(MCP-1), tumor necrosis factor-α (TNF-α), keratinocyte-derived chemokine (KC), IL-17, and C3a were increased with ozone exposure, and MCP-1 was totally dependent on the presence of Nlrp3-inflammasome, including caspase1, ASC and Nlrp3; IL-1α, IL-6, TNF-α and KC were totally dependent on caspase1 and ASC and partially dependent on Nlrp3; IL-17 was partially dependent on ASC; C3a was partially dependent on Nlrp3-inflammasomes after ozone exposure. Data presented as mean \pm SEM and are representatives from two similar experiments(n=5, *p < 0.05). Figure S3. Figure S3. Biological response to hyaluronan and genes of the Nlrp3-inflammasome. (A) The level of total cells in bronchoalveolar lavage (BALF) was independent of challenge to hyaluronan. (B) The level of BALF protein was independent of hyaluronan exposure. Data presented as mean \pm SEM (n=5/group). Figure S4. Figure S4. Level of non-inflammasome pro-inflammatory factors in the BAL after HA exposure. The release of BAL IL-6, MCP-1, TNF- α and KC were totally dependent on ASC and caspase1 and partially dependent on Nlrp3; IL-1 α was partially dependent on ASC. The level of IL-17 was partially dependent on caspase1 and ASC, but not dependent on Nlrp3; C3a was totally dependent on ASC and caspase1, and partially dependent on Nlrp3 after hyaluronan exposure. Data presented as mean \pm SEM and are representatives from two similar experiments (n=5, *: p < 0.05).