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The Gaussian Field Latent Class model we developed links the observed in-
festation z to the city street structure, the inter-household distances, the pres-
ence of known cofactors of households infestation, and the inspectors surveying
the households (Fig. S1.1).

1 Spatial component

The spatial component is based on an adaptation of the auto-regressive Gaus-
sian Markov random Field model [1] to allow the estimation of the in�uence of
streets on the spatial auto-correlation structure of infestation. In a Gaussian
Field model the spatial component u of the continuous infestation predictor
w follows a multivariate normal distribution with a centered prior of precision
(inverse covariance) matrix Q (also called concentration matrix [2]). Each coef-
�cient Qij corresponds, in our case, to the opposite of the weightWij between a
household i and a household j as de�ned in the main text. The auto-regressive
model additionally assumes that Qii =

∑
j 6=i
Qij . From this choice, a particularly
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Figure S1.1: Full description of the Gaussian Field Latent Class model.

We present here the information integrated into the model (shown in boxes) as well as the

priors on each parameter. N stands for the multivariate normal distribution, parameterized

with its mean vector and its precision matrix. Γ stands for the gamma distribution with, in

order, its shape and scale parameters. lnN stands for the log-normal distribution with, in

order, its log-scale and shape parameters. Φ is the cumulative distribution function of the

standard normal distribution. For a number of houses n, 0 is the null vector of size n, I is

the identity matrix, and 1 is the matrix of ones, both of size n× n. Parameters are detailed

in the text.

interpretable marginal distribution follows:

∀i ui|u−i ∼ N


∑
j 6=i
Qijuj∑

j 6=i
Qij

,
1∑

j 6=i
Qij

 (1)

The spatial component, ui, for a household i given the value of the spatial
components in all other households u−i follows a normal distribution. Its mean
is a weighted mean of the spatial component in its neighbors. The variance
around this mean being inversely proportional to the sum of the weights implies
that the determination of the spatial component by neighboring households is
relaxed for isolated houses.

The auto-regressive condition Qii =
∑
j 6=i
Qij implies that the precision matrix

Q is not invertible. It also implies the spatial precision for isolated households
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∑
j 6=i
Qij = 0 : the marginal variance for these isolated households is in�nite. To

avoid these problems we add an epsilon τi = 0.01 to the diagonal. The prior on
the spatial variance, particularly important for isolated households, is then 100
and no more in�nite, and a determinant can subsequently be computed for Q.
This second aspect allows computation of the likelihood of Q given u:

π(Q|u) =
|Q|−1/2

(2π)1/2
exp

(
−1

2
uTQu

)

with

{
∀i 6= j Qij = −Wij

∀i Qii = τi +
∑
j 6=i
Wij

and as de�ned in the main text:

Wij = Lij · h(δ,Dij )
σu

where Lij takes the value λ if i and j are on di�erent
city blocks and the value 1 if they are on the same block; h is a spatial kernel
of characteristic distance δ applied to the distance Dij between the neighbors
and σu is a scale parameter for the spatial error of prior σu ∼ Γ (ku, θu) with
ku = 0.001 and θu = 1000 corresponding to a weakly informative prior on the
scale parameter around 1.

We consider four one-parameter kernels describing a wide range of shapes
(Table 1). For computational reasons, when the distance Dij is above a distance
threshold ∆ the neighbors are considered to have no direct in�uence on each
other and thus their weights are set to 0 (sensitivity to ∆ is examined in Text
S2.1).

For all kernels, the priors for the parameters of the kernel are identical:

δ ∼ lnN
(
µδ, σ

2
δ

)
(2)

λ ∼ lnN
(
µλ, σ

2
λ

)
(3)

with µλ = −2 and σλ = 2 corresponding to a mean λ of 1 (no e�ect of streets)
with a standard deviation on the log scale of 2 and with µδ = 1.69 and σδ = 2
corresponding to a mean characteristic distance of 40 meters with a standard
deviation of 2 on the log scale.

2 The city-block as a spatial unit

According to the marginal distribution of the spatial component of infestation
in each household (Eq. 1), the mean of the spatial component of infestation
in a household is an arithmetic mean of the mean spatial components of its
neighbors. The normalized weights in a row i of the precision matrix can then be
considered as additive contributions of the neighbors to the spatial component
of the household i. This in turns allows us to determine for each household
the percentage of the spatial component explained by neighbors of the same
city-block.

We calculate the percent of the spatial component of infestation attributable
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to households on the same city block using the following Same Block Index:

Same Block Index = mean
i


∑

j∈ΩSi

Qij∑
j 6=i
Qij

 (4)

with ΩSi
the set of households in the same city block as the household i. Most

importantly, this measure integrates the �barrier e�ect� (λ) of the kernel along
with a possible �gap e�ect� which describes the interaction between a sharp
shaped kernel and the increased distance to neighbors on di�erent city blocks.
Overall, the Same Block Index measures the total impact of streets on the direct
spatial correlation of infestation between households.

3 Local component of the infestation predictor

The local component is similar to a classic probit model with a local error term.
The indicator matrix C contains as many columns as cofactors and as many
lines as households. For each cofactor k present in the house i, Cik = 1; Cik = 0
elsewhere. The coe�cients ck of each cofactor k is estimated using a normal
prior centered at 0 and of variance 100 (precision τc = 0.01). A local error
term ei is added for each house i. Its prior is a centered normal distribution of
precision τv. This precision, common to all households, itself follows a weakly
informative gamma prior of scale parameter 1000 and shape parameter 0.001
like the spatial precision.

4 Observation by imperfect inspectors

Each participating household has been examined for insect infestation by one
inspector. The sensitivity, qk, of each inspector is estimated separately from a
�at beta prior common to all inspectors: αq = 1 and βq = 1 (sensitivity to the
prior is examined in Text S2.4). The matrix K contains as many columns as
inspectors and as many lines as houses inspected. If the household i is inspected
by the inspector k then Kik = 1 elsewhere Kik = 0. The vector s = K · q then
contain the sensitivity of the inspection in each house. A house i is then observed
as infested (zi = 1) or not (zi = 0) according to the latent true infestation status
yi and the sensitivity of the inspection in this house si.

5 Sampling of the Gaussian Field Latent Class

model

We �t our model using a Monte Carlo Markov Chains (MCMC). To estimate
the coe�cients of the cofactors and the parameters of the precision matrix Q,
we use a Metropolis-Hasting sampler. For all other parameters, a conditional
distribution can be de�ned, and a classical Gibb's sampler is used.
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Each MCMC is run until the Geweke diagnostic [3] and the Raftery and
Lewis diagnostic [4, 5] are satis�ed. Estimates are obtained using the second
half of each chain. All chains are thinned by a factor 20. For the calculation of
the DIC we use only the last thousand iterations of each thinned chain.
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