The Prodomain of *Bordetella* FhaB, a Prototypical Two-Partner Secretion Pathway Protein, Remains Intracellular yet Affects the Conformation of the

Extracellularly-Located Mature C-terminal Domain

Christopher R. Noël^{1,2}, Joseph Mazar^{3,§}, Jeffrey A. Melvin¹, Jessica A. Sexton^{3,¶}, Peggy A. Cotter^{1,2,3,*}

SUPPLEMENTARY INFORMATION

Supplemental Figure Legends

Supplemental Figure 1

Model of the FhaB/FhaC Two-Partner Secretion (TPS) system. (A) FhaB translocation across the *Bordetella* outer membrane. The FhaB preproprotein (labeled) is exported into the periplasm by the general secretory system (not shown). It is not known if the entire polypeptide is translocated into the periplasm before translocation through FhaC occurs. In this figure, the peptidoglycan layer and cytoplasmic membrane are not shown for simplicity. Also note that this figure was drawn to scale, as best as possible. Residue numbers of the FhaB proprotein are indicated. The FhaB TPS domain (orange) interacts with FhaC (purple) to initiate outer membrane translocation of FhaB as a hairpin. Upon extracellular exposure, the C-terminal portion of the TPS domain folds into a β -helix, nucleating folding of the β -helical shaft (blue) in an N- to C-terminal direction. At this point, FHA biogenesis could proceed by two routes, depending on the localization of the prodomain. (B) Possibility that the prodomain remains intracellular. After the MCD (light green) has reached the cell surface, SphB1 (yellow) and an unidentified protease (dark

green) cleave the intracellular prodomain (red) from FhaB and the prodomain is rapidly degraded. Mature FHA (labeled) can be either surface-associated or released. The mechanism for release is unknown. (C) Possibility that the prodomain reaches the extracellular space. In this scenario, prodomain cleavage and degradation would both occur extracellularly.

Supplemental Figure 2

The FhaB prodomain comprises distinct subdomains. At top is a schematic of *B. bronchiseptica* FhaB showing domain locations. At bottom, WebLogo 3.1 display of homology shared amongst TpsA proteins to the ~125 aa *B. bronchiseptica* FhaB prodomain N-terminus (PNT).

Supplemental Figure 3

Insertion of an HA epitope tag before the FhaB proline-rich region (PRR) does not affect FHA maturation or function. (A) Schematic of FhaB proteins used in experiment. Domain layout is the same as that of Figure 1A. The PRR in front of which the HA tag was introduced is labeled for the HAPRR strain. (B) Anti-MCD and anti-HA immunoblot of whole-cell lysates and concentrated supernatants. Introducing an HA tag at the Cterminus of FhaB causes instability of full-length FhaB. Moving the epitope upstream of the PRR does not affect the integrity or maturation of full-length FhaB. FHA release into the supernatants is unaffected by either location of the HA tag.

Supplemental Figure 4

Introduction of an HA tag to the FhaB prodomain suggests an intracellularly-localized prodomain. (A) Schematic of FhaB proteins used in experiment. Domain layout is the same as that of Figure 1A. (B) At the top, anti-MCD and anti-HA immuno-dot-blot of HAPRR and RBX11 strains. Normalized amounts of whole cells and boiled lysates were applied. Below, illustrations of immuno-stained samples. Layout of these illustrations is as described in Figure 5B.

Supplemental Figure 5

A small amount of prodomain is released from *B. bronchiseptica* with a deletion of the MCT. (A) Schematic of FhaB proteins used in experiment. Domain layout is the same as that of Figure 3A. (B) Anti-MCD and anti-HA immunoblot of concentrated supernatants. On the left is a merge showing release of prodomain from HA- Δ CS, HA- Δ MCT, and HA- Δ PNT strain. On the right is an image of the same immunoblot, with the 700 nm (red) channel isolated and enhanced to facilitate the visualization of prodomain bands released into the supernatant of the Δ MCT strain.

Strain list

Strain name	Description	Reference
RBX11	RB50 containing a deletion of codons 4-	(Julio & Cotter,
	3203 of fhaS	2005)
RBX11∆ <i>sphB1</i>	RB50 containing a deletion of codons 4- 3203 of <i>fhaS</i> and a deletion of codons 5-	This work
	1035 of <i>sphB1</i>	
RBX20	RB50 containing a deletion of codons 4-	(Julio & Cotter,
	3705 of <i>fhaB</i> and a deletion of codons 4-	2005)
	3203 of <i>fhaS</i>	
СТНА	RBX11 containing nine codons encoding	This work

	the HA epitope (YPYDVPDYA) following	
	codon 3703 in fhaB	
HAPRR	RBX11 containing nine codons encoding	This work
	the HA epitope (YPYDVPDYA) following	
	codon 3375 in fhaB	
HAPRRAsphB1	RBX11 containing nine codons encoding	This work
-1-	the HA epitope (YPYDVPDYA) following	
	codon 3375 in <i>fhaB</i> and a deletion of	
	codons 5-1035 of sphB1	
BPSMAQ	Bp strain containing His7 following Q72	This work
	and AcTEV following Y1871 in FhaB	
BPSMAQT-N	Bp strain with His7 at Q72, AcTEV at	This work
	Y1871, truncated at aa 2330 .	
	complemented to aa 2410	
.1\$20	RBX11 with a stop codon after bp 5943	
JS26	IS20"p.IB51 substituting A1983C	This work
0020	containing codons 1815-3710 followed	
	immediately by a stop codon	
1855	IS20" n IB127 substituting A1983C	This work
0000	containing codons 1815-2588 followed	
	immediately by a ston codon	
1927	IS20n IB52 substituting V2032C	This work
5527	containing codons 1815-3710 followed	
	immediately by a ston codon	
1856	IS20 up IR128 substituting V2022C	This work
1330	containing codons 1815 2588 followed	THIS WORK
	immediately by a stop codop	
1628	IS20 up IR52 substituting V2081C	Thic work
J328	containing codons 1815-3710 followed	
	immediately by a stop codop	
1957	IS20 up IR120 substituting V2081C	Thio work
1007	JS20pJB129 Substituting V2001C,	THIS WORK
	immediately by a step and an	
1049	Initiation by a stop couon	This work
J340	approximation and and 1915 2710 followed	THIS WORK
	immediately by a step and an	
1050		This work
1228	JS20pJB130 Substituting G2132C,	This work
	immediately by a step and an	
1050		This work
JS52	JS20::pJB93 substituting A2182C,	I NIS WORK
	containing codons 1815-3710 followed	
1050	Immediately by a stop codon	This was also
1928	JSZU::pJB131 SUDSTITUTING A2182C,	I TIS WORK
	containing codons 1815-2588 followed	
10.40		
J549	JSZU::PJB88 SUDSTITUTING A2233C,	I NIS WORK
	containing codons 1815-3/10 followed	
1000	Immediately by a stop codon	
12.00	JS20::pJB132 substituting A2233C,	This work
	containing codons 1815-2588 followed	

	immediately by a stop codon	
JS51	JS20::pJB89 substituting L2284C,	This work
	containing codons 1815-3710 followed	
	immediately by a stop codon	
JS61	JS20::pJB133 substituting L2284C,	This work
	containing codons 1815-2588 followed	
	immediately by a stop codon	
JS50	JS20::pJB90 substituting I2333C,	This work
	containing codons 1815-3710 followed	
	immediately by a stop codon	
JS62	JS20::pJB134 substituting I2333C,	This work
	containing codons 1815-2588 followed	
	immediately by a stop codon	
JS53	JS20::pJB94 substituting A2382C,	This work
	containing codons 1815-3710 followed	
	immediately by a stop codon	
JS63	JS20::pJB135 substituting A2382C,	This work
	containing codons 1815-2588 followed	
	immediately by a stop codon	
JS54	JS20::pJB95 substituting A2432C,	This work
	containing codons 1815-3710 followed	
	immediately by a stop codon	
JS64	JS20::pJB136 substituting A2432C,	This work
	containing codons 1815-2588 followed	
	immediately by a stop codon	
HA-ΔCS	RBX11-HAPRR containing a deletion of	This work
	codons 2217-2647	
HA-ΔCSΔ <i>sphB1</i>	RBX11-HAPRR Δ <i>sphB1</i> containing a	This work
	deletion of codons 2217-2647	
ΗΑ-ΔΜCΤ	RBX11-HAPRR containing deletion of	This work
	codons 2217-2471	
HA-ΔMCTΔ <i>sphB1</i>	RBX11-HAPRR Δ <i>sphB1</i> containing	This work
	deletion of codons 2217-2471	
ΗΑ-ΔΡΝΤ	RBX11-HAPRR containing deletion of	This work
	codons 2472-2647	
ΗΑ-ΔΡΝΤΔ <i>sphB1</i>	RBX11-HAPRR Δ <i>sphB1</i> containing	This work
	deletion of codons 2472-2647	
DH5a	E. coli molecular cloning strain	BRL;
		Gaithersburg,
		MD
SM10Apir	Conjugation strain	(Miller &
		Mekalanos,
- DU OO		1988)
RHO3	Conjugation strain	(López <i>et al</i> ,
		2009)

Plasmid list

Plasmid name Description Reference

pEG7	Suicide plasmid used to construct B.	(Akerley <i>et al</i> , 1995)
	pertussis and B. bronchiseptica strains	
	containing co-integrates	
pEG7S	sacB-containing allelic exchange	(Martínez de Tejada <i>et</i>
	plasmid used to construct <i>B</i> .	<i>al</i> , 1996)
	bronchiseptica strains	
pEG7S-∆ <i>sphB1</i>	pEG7S derivative used to introduce	(Mazar & Cotter, 2006)
	the $\Delta sphB1$ deletion mutation into <i>B</i> .	
	bronchiseptica strains	
pEG7-CTHA	pEG7 derivative containing	This work
	nucleotides corresponding to codons	
	3429-3710 followed immediately by a	
	stop codon and then 500 bp	
	corresponding to the region	
	immediately 3' of <i>fhaB</i> with nucleotides	
	encoding the HA epitope following	
	codon 3703	
pSS4245	pBR322-based allelic exchange	(Inatsuka <i>et al</i> , 2010)
	plasmid for use in <i>Bordetella</i> species.	
	Contains I-Scel cleavage site and	
	encodes restriction endonuclease, I-	
	Scel, under the control of the pertussis	
	toxin (ptx) promoter	
pSS4245-HAPRR	pSS4245 derivative containing	This work
	nucleotides corresponding to codons	
	3208-3567 with nucleotides encoding	
	the HA epitope following codon 3375	
pSORTP1-Bp	Bp mating vector for Y1871AcTEV	This work
MCI/Y1871/AcTEV	mutagenesis in FhaB	
pSORTP1-SS	Bp mating vector for Q72His7	This work
Template/Q72His7	mutagenesis in FhaB	
pJB48	pEG7 derivative containing	This work
	nucleotides corresponding to codons	
	1814-3710 of <i>fhaB</i> followed	
	immediately by a stop codon	
pJB101	pEG7 derivative containing	This work
	nucleotides corresponding to codons	
	1814-2588 of <i>fhaB</i> followed	
	immediately by a stop codon	
pJB28	pCR2.1 derivative containing	This work
	nucleotides 5441-7410 of <i>fhaB</i> . Used	
	for QuickChange substitutions.	
	QuickChange derivatives were	
	subcloned into pJB48 and pJB101.	
pJB51	pJB48 in which codon 1983 has been	This work
	changed to encode Cys instead of Ala	
pJB127	pJB101 in which codon 1983 has been	This work
	changed to encode Cys instead of Ala	
pJB52	pJB48 in which codon 2032 has been	This work
	changed to encode Cys instead of Val	

pJB128	pJB101 in which codon 2032 has been	This work
	changed to encode Cys instead of Val	
pJB53	pJB48 in which codon 2081 has been	This work
	changed to encode Cys instead of Val	
pJB129	pJB101 in which codon 2081 has been	This work
	changed to encode Cys instead of Val	
pJB87	pJB48 in which codon 2132 has been	This work
	changed to encode Cys instead of Gly	
pJB130	pJB101 in which codon 2132 has been	This work
	changed to encode Cys instead of Gly	
pJB93	pJB48 in which codon 2182 has been	This work
	changed to encode Cys instead of Ala	
pJB131	pJB101 in which codon 2182 has been	This work
	changed to encode Cys instead of Ala	
pJB88	pJB48 in which codon 2233 has been	This work
	changed to encode Cys instead of Ala	
pJB132	pJB101 in which codon 2233 has been	This work
	changed to encode Cys instead of Ala	
pJB89	pJB48 in which codon 2284 has been	This work
	changed to encode Cys instead of Leu	
pJB133	pJB101 in which codon 2284 has been	This work
	changed to encode Cys instead of Leu	
pJB90	pJB48 in which codon 2333 has been	This work
	changed to encode Cys instead of lle	
pJB134	pJB101 in which codon 2333 has been	This work
	changed to encode Cys instead of lle	
pJB94	pJB48 in which codon 2382 has been	This work
	changed to encode Cys instead of Ala	
pJB135	pJB101 in which codon 2382 has been	This work
	changed to encode Cys instead of Ala	
pJB95	pJB48 in which codon 2432 has been	This work
	changed to encode Cys instead of Ala	
pJB136	pJB101 in which codon 2432 has been	This work
	changed to encode Cys instead of Ala	
pSS4245-∆CS	pSS4245 derivative containing	This work
	nucleotides corresponding to codons	
	2048-2216 and 2648-2808 of <i>fhaB</i>	
pSS4245-∆MCT	pSS4245 derivative containing	This work
	nucleotides corresponding to codons	
	2048-2216 and 2472-3640 of <i>fhaB</i>	
pSS4245-∆PNT	pSS4245 derivative containing	This work
	nucleotides corresponding to codons	
	2295-2471 and 2648-2808 of fhaB	

Strain construction

RBX11 Δ *sphB1* was constructed by performing allelic exchange on RBX11 using plasmid pEG7S Δ *sphB1* as described (Martínez de Tejada *et al*, 1996). The strain was confirmed to be constructed as intended by PCR and nucleotide sequence analysis.

HAPRR and HAPRR Δ *sphB1* were constructed by performing allelic exchange on RBX11 and RBX11 Δ *sphB1*, respectively, using plasmid pSS4245-HAPRR as described (Inatsuka *et al*, 2010). The strains were confirmed to be constructed as intended by PCR and nucleotide sequence analysis.

HA- Δ CS and HA- Δ CS Δ *sphB1* were constructed by performing allelic exchange on HAPRR and HAPRR Δ *sphB1*, respectively, using plasmid pSS4245- Δ CS. The strains were confirmed to be constructed as intended by PCR and nucleotide sequence analysis.

HA- Δ MCT and HA- Δ MCT Δ *sphB1* were constructed by performing allelic exchange on HAPRR and HAPRR Δ *sphB1*, respectively, using plasmid pSS4245- Δ MCT. The strains were confirmed to be constructed as intended by PCR and nucleotide sequence analysis.

HA- Δ PNT and HA- Δ PNT Δ *sphB1* were constructed by performing allelic exchange on HAPRR and HAPRR Δ *sphB1*, respectively, using plasmid pSS4245- Δ PNT. The strains were confirmed to be constructed as intended by PCR and nucleotide sequence analysis.

BPSMAQ was constructed by performing allelic exchange on BPSM using plasmids pSORTP1-Bp MCI/Y1871/AcTEV and pSORTP1-SS Template/Q72His7. The strains were confirmed to be constructed as intended by PCR and nucleotide sequence analysis

BPSMAQT-N was constructed by introducing pEG7-FI1a/C&R-N into BPSMAQ by conjugation and selecting co-integrates on BG-Sm-Gm agar as described (Akerley *et al*, 1995) Integration of plasmids at the correct site in the chromosome was confirmed by PCR.

CTHA was constructed by introducing pEG7-CTHA into RBX11 by conjugation and selecting co-integrates on BG-Sm-Gm agar. Integration of the plasmids at the correct site in the chromosome was confirmed by PCR.

JS26, JS55, JS27, JS56, JS28, JS57, JS48, JS58, JS52, JS59, JS49, JS60, JS51, JS61, JS50, JS62, JS53, JS63, JS54, and JS64 were constructed by introducing pJB51, pJB127, pJB52, pJB128, pJB53, pJB129, pJB87, pJB130, pJB93, pJB131, pJB88, pJB132, pJB89, pJB133, pJB90, pJB134, pJB94, pJB135, pJB95, and pJB136, respectively, into JS20 by conjugation and selecting co-integrates on BG-Sm-Gm agar. Integration of the plasmids at the correct site in the chromosome was confirmed by PCR.

Plasmid construction

pJB28 is a pCR2.1 derivative that contains a PCR-amplified 2.0 kb fragment of RBX11 *fhaB* (corresponding to codons 1814 through 2470).

The following plasmids are pEG7 derivatives used to construct co-integrate strains. Sequences cloned into this plasmid between the gentamicin resistance gene and ampicilin resistance gene are described.

pJB48 contains PCR-amplified 2.0 kb, and 3.8 kb fragments of RBX11 *fhaB* (corresponding to codons 1814 through 2470 and codons 2471-3710 followed by a STOP codon) from RBX11 ligated together.

pJB101 contains PCR-amplified 2.0 kb, and 350 bp fragments of RBX11 *fhaB* (corresponding to codons 1814 through 2470 and codons 2471-2588 followed by a STOP codon) from RBX11 ligated together.

pJB51, pJB52, pJB53, pJB87, pJB93, pJB88, pJB89, pJB90, pJB94 and pJB95 contain PCR-amplified 2.0 kb, and 3.8 kb fragments of RBX11 *fhaB* (corresponding to codons 1814 through 2470 and codons 2471-3710 followed by a STOP codon) from RBX11 ligated together with a QuickChange mutagenesis of the residues specified in plasmid list.

pJB127, pJB128, pJB129, pJB130, pJB131, pJB132, pJB133, pJB134, pJB135 and pJB136 contain PCR-amplified 2.0 kb, and 350 bp fragments of RBX11 *fhaB* (corresponding to codons 1814 through 2470 and codons 2471-2588 followed by a stop codon) from RBX11 ligated together with a QuickChange mutagenesis of the residues specified in plasmid list.

pEG7-CTHA contains PCR-amplified 0.6 kb (corresponding to codons 3429 through 3703) and 0.5 kb fragments of RBX11 *fhaB* (corresponding to codon 3703 extending to

457 bp 3' of STOP codon) ligated together with nucleotides encoding an HA epitope following codon 3703.

The following plasmids are pSS4245 derivatives used for allelic exchange in *B. bronchiseptica*. Sequences cloned into this plasmid between the I-SceI cleavage site and the tetracycline resistance gene are described.

pSS4245-HAPRR contains PCR-amplified 0.5 kb (corresponding to codons 3208 through 3375) and 0.6 kb fragments of RBX11 *fhaB* (corresponding to codons 3375 through 3567) ligated together with nucleotides encoding an HA epitope following codon 3375.

pSS4245- Δ CS contains PCR-amplified 0.5 kb (corresponding to codons 2048 through 2216) and 0.5 kb fragments of RBX11 *fhaB* (corresponding to codons 2648 through 2808) ligated together.

pSS4245- Δ MCT contains PCR-amplified 0.5 kb (corresponding to codons 2048 through 2216) and 0.5 kb fragments of RBX11 *fhaB* (corresponding to codons 2472 through 2640) ligated together.

pSS4245- Δ PNT contains PCR-amplified 0.5 kb (corresponding to codons 2295 through 2471) and 0.5 kb fragments of RBX11 *fhaB* (corresponding to codons 2648 through 2808) ligated together.

The following plasmids are pSORTP1 derivatives used for allelic exchange in *B. pertussis*. Sequences cloned into this plasmid between the gentamicin resistance gene and ampicilin resistance gene are described.

pSORTP1-Bp MCI/Y1871/AcTEV contains PCR-amplified 600 bp fragments flanking the codon for Y1871 of RBX11 *fhaB* with nucleotides encoding an AcTEV cleavage site inserted following Y1871.

pSORTP1-SS Template/Q72His7 contains PCR-amplified 600 bp fragments flanking the codon for Q72 of RBX11 *fhaB* with nucleotides encoding a His7 epitope inserted following Q72.

References

- Akerley BJ, Cotter PA & Miller JF (1995) Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. *Cell* **80**: 611–620
- Inatsuka CS, Xu Q, Vujkovic-Cvijin I, Wong S, Stibitz S, Miller JF & Cotter PA (2010) Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. *Infect. Immun.* **78:** 2901–2909
- Julio SM & Cotter PA (2005) Characterization of the filamentous hemagglutinin-like protein FhaS in Bordetella bronchiseptica. *Infect. Immun.* **73:** 4960–4971
- López CM, Rholl DA, Trunck LA & Schweizer HP (2009) Versatile dual-technology system for markerless allele replacement in Burkholderia pseudomallei. *Appl. Environ. Microbiol.* **75:** 6496–6503
- Martínez de Tejada G, Miller JF & Cotter PA (1996) Comparative analysis of the virulence control systems of Bordetella pertussis and Bordetella bronchiseptica. *Mol. Microbiol.* **22:** 895–908
- Mazar J & Cotter PA (2006) Topology and maturation of filamentous haemagglutinin suggest a new model for two-partner secretion. *Mol. Microbiol.* **62:** 641–654

Miller VL & Mekalanos JJ (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. *J. Bacteriol.* **170**: 2575–2583

В

А

В

Supernatant

Supernatant