Supporting Information

Short et al. 10.1073/pnas.1216039110

Fig. S1. $ToxN_{Pa}$ inhibition by $ToxI_{Pa}$. $ToxN_{Pa}$ degrades lpp and DksA RNAs and is inhibited by $ToxI_{Pa}$ in vivo. *Escherichia coli* cells containing separately inducible $ToxN_{Pa}$ -FLAG and $ToxI_{Pa}$ plasmids were grown to log phase, and the effect of expression of $ToxN_{Pa}$ -FLAG and subsequent coexpression of $ToxI_{Pa}$ on *Ipp* and *dksA* transcript levels was analyzed by Northern blot (*Top Two Panels*). Expression of $ToxI_{Pa}$ (*Third Panel*) and $ToxN_{Pa}$ -FLAG (*Bottom Panel*) also were assessed by Northern and Western blot, respectively. Negative controls for $ToxN_{Pa}$ (the frame shifted $ToxN_{Pa}$ -FS) and $ToxI_{Pa}$ (vector) are as indicated.

Fig. S2. (A) $ToxN_{Bt}$ has lower toxicity than $ToxN_{Pa}$ in *E. coli* in vivo. Viable counts of *E. coli* DH5 α cultures carrying either $ToxN_{Bt}$ or $ToxN_{Pa}$ on pBAD30 are shown before and 90 min after induction of ToxN expression. Results shown are mean \pm SD for three biological replicates. (*B*) $ToxN_{Pa}$ has higher activity than $ToxIN_{Pa}$ in vitro. Reactions (6 pmol *ompA* + 6 pmol $ToxN_{Pa}$) were incubated at 37 °C, and samples were taken at the times indicated. $ToxN_{Pa}$ protein and $ToxIN_{Pa}$ complex were purified by FPLC. It was not possible to match the concentration of $ToxN_{Pa}$ in the monomer and complex samples precisely because the monomeric form was less stable in solution.

<

Fig. 53. (*A*) Initial Fo-Fc map following molecular replacement with a modified $ToxN_{Pa}$ protomer as the search model (see *Materials and Methods*). The map is contoured at 2.5 σ . ToxN is shown as cyan in a cartoon. The superimposed $ToxI_{Bt}$ chains are shown as silver sticks for the RNA contained in the asymmetric unit and as sand-colored sticks for the symmetry-related molecule. (*B*) $ToxI_{Bt}$ consensus RNA sequence. The $ToxIN_{Bt}$ locus consists of a single promoter, a series of 2.9 nearly perfect 34-nt repeats, a transcriptional terminator hairpin, and the gene for $ToxN_{Bt}$. The $ToxI_{Bt}$ repeats are transcribed as a continuous series and then are cleaved by $ToxN_{Bt}$ at AAAJAAA sequences to produce two 34-nt processed $ToxI_{Bt}$ RNAs. Each transcript encodes only two final $ToxI_{Bt}$ pseudoknot sequences; therefore the three $ToxI_{Bt}$ RNAs observed in the complex structure must be generated from more than one transcript. Because the two final $ToxI_{Bt}$ RNAs are not identical in sequence, the consensus repeat sequence defined by tandem repeat finder (1) was used to solve the structure and as the wild-type sequence for $ToxI_{Bt}$ mutagenesis and antitoxicity assays. The two processed $ToxI_{Bt}$ RNAs generated from each transcript differ from the consensus $ToxI_{Bt}$ RNAs generated from each transcript differ from the consensus $ToxI_{Bt}$ RNAs sequence in that they contain compensatory mutations in stem II, and the first repeat also contains two nucleotide substitutions in the tail following stem IIb. Sequences are colored as follows: $ToxI_{Bt}$ DNA repeats, orange; $ToxN_{Bt}$ gene, teal; $ToxI_{Bt}$ unprocessed transcript, pink with nonconsensus nucleotides indicated by an asterisk; $ToxI_{Bt}$ processed repeats, orange with nonconsensus nucleotides in blue and base-pairing regions underlined; $ToxI_{Bt}$ consensus pseudoknot, orange with structural features and numbering as indicated.

1. Benson G (1999) Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res 27(2):573-580.

Fig. S4. Comparison of $ToxI_{Pa}$ and $ToxI_{Pa}$ structures. (*A*) Least-squares superimposition of the $ToxI_{Bt}$ (teal) and $ToxI_{Pa}$ (silver) (PDB ID code 2XD0) RNA pseudoknot structures, both represented as cartoons. (*B*) Structure-based alignment of $ToxI_{Bt}$ and $ToxI_{Pa}$ sequences. Base-pairing regions and nucleotides forming triplexes are indicated. Numbers correspond to nucleotides of $ToxI_{Bt}$. (*C*) Detail of $ToxN_{Bt}$ interactions with $ToxI_{Bt}$ backbone at interface 2, shown as view from behind helix H3. $ToxI_{Bt}$ is shown as a cartoon with key nucleotides as pale pink sticks; $ToxN_{Bt}$ is shown as a cartoon in teal with key residues shown as sticks. Black dashed lines indicate hydrogen bonds.

Fig. S5. Sequence alignment of eight diverse ToxN proteins selected from a phylogenetic tree of the ToxN protein family (1) and aligned using CLUSTALW (2). The secondary structure of ToxN_{Bt} is indicated above the alignment. Note that ToxN_{Bt} residues 174–194 were disordered in the crystal structure. The figure was generated using ESPript2 (3).

^{1.} Blower TR, et al. (2012) Identification and classification of bacterial type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res 40(13):6158–6173.

^{2.} Larkin MA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947-2948.

^{3.} Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: Analysis of multiple sequence alignments in PostScript. Bioinformatics 15(4):305–308.

Table S1. Size exclusion chromatography of $ToxIN_{Pa}$ assembly reactions

Sample	Molecular mass (Da)	Elution	К *	Calculated molecular mass (Da) [†]
·		volume (m2)	••av	mass (Bay
ToxIN samples				
ToxIN complex	9,4341	12.77	0.271	73,025
ToxN protein		16.42	0.508	28,376
Toxl monomer		16.48	0.512	28,052
Toxl transcript		11.05	0.160	162,264
ToxN + ToxI single peak 1		12.7	0.267	74,906
ToxN + ToxI single peak 2		16.5	0.513	27,945
ToxN + ToxI transcript peak 1		12.65	0.263	76,300
ToxN + ToxI transcript peak 2		14.56	0.387	42,692
ToxN + ToxI transcript peak 3		16.37	0.505	28,651
Standards				
Blue dextran	Void	8.59		
Lysozyme	14,300	20.17	0.751	15,740
Myoglobin	17,000	16.95	0.543	25,711
BSA monomer	66,780	14.76	0.400	40,625
BSA dimer	133,560	12.35	0.244	85,651
Thyroglobulin	669,000	9.31	0.047	1,032,383

* $K_{av} = (V_e - V_o)/(V_t - V_o)$ where V_e is the elution volume of the sample, V_o is the void volume, and V_t is the total column volume.

^tThe K_{av} and molecular mass values for the five size standards were fitted to an exponential function to give the equation $K_{av} = 452.39(Da)^{-0.663}$, from which molecular mass values for ToxIN samples were calculated.

Table S2. Data collection and refinement statistics

PNAS PNAS

Data collection	
Space group	P6
Cell dimensions	
a, b, c (Å)	127.10, 127.10, 37.74
α, β, γ (°)	90.00, 90.00, 120.00
Wavelength (Å)	0.9795
Resolution (Å)	27.95–2.2
R _{merge} (%) ^{#,1}	5 (54.7)
l/ol	34.8 (4.6)
Completeness (%) [#]	100.0 (99.9)
Redundancy [#]	11.0 (11.1)
Molecular replacement	
Search model	A: 2XDB, protein part only, modified
	B: ToxN _{Bt} -ToxI _{Bt} structure solved using A, with ToxI _{Bt} built into omit map
Rotation and translation	A: Rotation function $Z = 5.9$; translation function $Z = 8.8$; packing clashes = 0;
search score	log likelihood gain = 52
	B: Rotation function $Z = 10.0$; translation function $Z = 21.0$; packing clashes = 0;
	log likelihood gain = 102
Refinement	
Resolution (Å)	27.95–2.2
No. Reflections	34,617
$R_{\rm work}$ (%)/ $R_{\rm free}$ (%) ²	16.23/19.59
No. atoms	
Protein	1,382
RNA	726
Water	174
B-factors (Å ²)	
Protein	46.56
RNA	43.32
Water	48.98
r.m.s. deviations	
Bond lengths (Å)	0.01
Bond angles (°)	1.25
Ramachandran plot	97% favored, 3% allowed, 0% disallowed
Coordinate error (Luzzati plot)	$\sigma = 0.2429$

Table S3. Plasmids used in this study

PNAS PNAS

Name	Primers used*	Description	Source
pACYC184	_	<i>E. coli</i> cloning vector, p15A origin, Cm ^R	(1)
pET21b+	_	Expression vector, Ap ^R , T7 promoter	Novagen
pBAD30	—	Expression vector, Ap ^R , Ara promoter induced by ∟-ara, repressed by p-glc	(2)
pBluScript KSII+	—	Phagemid, T7 promoter, Ap ^R	Stratagene
pHCMC05	_	<i>E. coli-Bacillus</i> shuttle vector, Ap ^R Cm ^R	(3)
pRBJ200	—	E. coli par-deficient single-copy vector, Ap ^R	(4)
pFLS44	FS49, PF196	Toxl _{Bt} promoter, repeats and terminator in pACYC184, Cm ^R	This study
pFLS49	FS59, FS60	E. coli K-12 ompF in pBluScript KSII+, Ap ^R	This study
pFLS50	FS61, FS62	E. coli K-12 ompA in pBluScript KSII+, Ap ^R	This study
pFLS51	FS63, FS64	E. coli K-12 dksA in pBluScript KSII+, Ap ^R	This study
pFLS52	FS65, FS66	E. coli K-12 rpoD in pBluScript KSII+, Ap ^R	This study
pFLS53	FS67, FS68	E. coli K-12 lpp in pBluScript KSII+, Ap ^R	This study
pFLS67	FS45, FS77	ToxN _{Bt} C-terminal 6xHis in pET21b+, Ap ^R	This study
pFLS79	FS105, [FS73, FS74], FS101	ToxIN _{Bt} -frameshift locus in pHCMC05, Ap ^R Cm ^R	This study
pFLS80	FS104, FS101	ToxIN _{Bt} locus in pHCMC05, Ap ^R Cm ^R	This study
pFLS84	FS112, PF185	Toxl _{Bt} single consensus repeat in pTA100, Sp ^R	This study
pFLS88	FS130, PF185	Toxl _{Bt} randomized sequence U4-U31 in pTA100, Sp ^R	This study
pFLS99	FS146, PF185	Toxl _{Bt} G20C in pTA100, Sp ^R	This study
pFLS100	FS147, PF185	Toxl _{Bt} G20U in pTA100, Sp ^R	This study
pFLS103	PF197, [FS144, FS145], PF195	ToxN _{Bt} F29A in pBAD30, Ap ^R	This study
pFLS118	FS49, FS168	ToxIN _{Bt} locus in pRBJ200, Ap ^R	This study
pFLS121	FS169, FS183	ToxIN _{Pa} locus in pRBJ200, Ap ^R	This study
pSLO1	PF197, [SO3, SO4], PF195	ToxN _{Bt} S57A in pBAD30, Ap ^R	This study
pSLO4	PF197, [SO14, SO15], PF195	ToxN _{Bt} K31A in pBAD30, Ap ^R	This study
pSLO5	PF197, [SO18, SO19], PF195	ToxN _{Bt} R58A in pBAD30, Ap ^R	This study
pSLO7	PF197, [SO22, SO23], PF195	ToxN _{Bt} Y110F in pBAD30, Ap ^R	This study
pSLO8	PF197, [SO24, SO25], PF195	ToxN _{Bt} K148A in pBAD30, Ap ^R	This study
pSLO10	PF185, SO9	Toxl _{Bt} U8A in pTA100, Sp ^R	This study
pSLO11	PF185, SO10	Toxl _{Bt} G9U in pTA100, Sp ^R	This study
pSLO12	PF185, SO11	Toxl _{Bt} U10A in pTA100, Sp ^R	This study
pSLO13	PF185, SO12	Toxl _{Bt} G20A in pTA100, Sp ^R	This study
pSLO14	PF185, SO13	Toxl _{Bt} G23A in pTA100, Sp ^R	This study
pTA49	_	ToxN _{Pa} in pBAD30, Ap ^R	(5)
, pTA50	_	Frameshift ToxN _{Pa} in pBAD30, Ap ^R	(5)
рТА76	_	Full Toxl _{Pa} array in pTA100, Sp ^R	(5)
pTA100	_	pQE80-L derivative, Sp ^R	(5)
pTA110	_	Toxl _{Pa} in pBluScript KSII+ for antisense transcription, Ap ^R	This study
pTA111	_	Toxl _{Pa} in pBluScript KSII+ for sense transcription, Ap ^R	(6)
pTA115	_	Full ToxI _{Bt} array in pTA100, Sp ^R	(5)
pTA117	_	ToxN _{Bt} in pBAD30, Ap ^R	(5)
pTRB1	_	ToxN _{Pa} -FLAG in pBAD30, Ap ^R	(5)
pTRB14	_	ToxN _{Pa} in pTYB1, Ap ^R	(6)
pTRB18	-	Toxl _{Pa} promoter, repeats and terminator in pACYC184, Cm^R	(6)

*Overlap PCR primers used to introduce mutations are shown in brackets.

1. Chang AC, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134(3):1141–1156.

2. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177(14): 4121–4130.

Nguyen HD, et al. (2005) Construction of plasmid-based expression vectors for *Bacillus subtilis* exhibiting full structural stability. *Plasmid* 54(3):241–248.
Jensen RB, Grohmann E, Schwab H, Díaz-Orejas R, Gerdes K (1995) Comparison of *ccd* of F, *parDE* of RP4, and *parD* of R1 using a novel conditional replication control system of plasmid R1. *Mol Microbiol* 17(2):211–220.

5. Fineran PC, et al. (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci USA 106(3):894-899.

6. Blower TR, et al. (2009) Mutagenesis and functional characterization of the RNA and protein components of the tox/N abortive infection and toxin-antitoxin locus of Erwinia. J Bacteriol 191(19):6029–6039.

Table S4. Primers used in this study

PNAS PNAS

Name	Sequence 5'-3'*	Restriction site
FS45	GGTGGTCATATGACTAATAAAGATAATCCT	Ndel
FS49	CCTTGGATCCGCAGAGAGAGAGAGAAAAAA	BamHI
FS59	GGAGGAGAGCTCATGATGAAGCGCAATATT	Sacl
FS60	GGAGGAAAGCTTTTAGAACTGGTAAACGAT	HindIII
FS61	GGAGGAGAGCTCATGAAAAAGACAGCTATC	Sacl
FS62	GGAGGAAAGCTTTTTAAGCCTGCGGCTGAGT	HindIII
FS63	GGAGGAGAGCTCATGCAAGGAGGGCAAAAC	Sacl
FS64	GGAGGAAAGCTTTTAGCCAGCCATCTGTTT	HindIII
FS65	GGAGGAGAGCTCATGGAGCAAAACCCGCAG	Sacl
FS66	GGAGGAAAGCTTTTAATCGTCCAGGAAGCT	HindIII
FS67	GGAGGAGAGCTCATGAAAGCTACTAAACTG	Sacl
FS68	GGAGGAAAGCITTTACTTGCGGTATTTAGT	HindIII
F 500	GAAAAACAGCATAATAATCAGTATGGTAATTTGAT	Thirdin
FS7/	TTACCATACTGATTATTATGCTGTTTTTTCTGC	
FS77	GETGAAGCTTAATGGTGATGGTGATGGTGCGCTCTCTCACGCCCCATTTG	HindIII
FS79		
FS80		
FSQ1		
EC82		
F302		—
F303		—
		—
		—
		—
		—
F300		—
F309		—
F390	CIGCAGEGITTGCAGIAC	—
F391		—
F392		—
F393		—
F394 FS05		
F393		—
F390		— Lindill
F397	GTIGAAGCTTCAGATTCCACGCTGGAAA	Hindiii
ES00	GTTGAAGCTTATCAACGCTTTCATCAC	LindIII
FS101	GETGCCCCCCCTTATCACCCCTTCACCCCCCCCTTCACCCCCCC	Smal
ES104	GETECCCEGETTATCTCACECCCATTE	Jilai
FS105		Knnl
FS112		HindIII
FS120		Hindill
FS1//		
FS1//5		_
FS146	TTTAAGCTTtttagcacctactagggtaaggttacaccaatttTTGAATCTATTATAATTGTTATCCG	HindIII
FS147	TTTAAGCTTtttagcacctactagggtddggtddggtddcacctatttTTGAATCTATTATAATTGTTATCCG	HindIII
FS168	TTTCTCGAGATCTCTCACGCCCC	Xhol
FS169	ΤΤΤΤΟΓΟΛΙΟΥΤΟΤΟΙΟΙΟΟΟΟΟ	BamHI
FS183	TTTTCTCGAGCTATTACTCGCCTTCTTCC	Xhol
M13 Fwd -20	GTTTTCCCAGTCACGAC	_
MI12		HindIII
PF185	AAACAAATAGGGGTTCCG	_
PF195	TTTAAGCTTATCTCTCACGCCCC	HindIII
PF196	TTTAAGCTTCAACTTTCTTCTCCCCC	HindIII
PF197	TTTGAATTCGGAGAAGAAAGTTGACTAATAAAG	FcoRl
polyC Race	CGTATCGATGTCGACCCCCCCCCCCD	Sall, Clai
SO3	GTACCTTTAACAGCCCGTAACGATAAAAATTTTAAC	_
504	TTTATCGTTACGGGCTGTTAAAGGTACAAAATAATCATG	_
SO9	TTTAAGCTTtttagcacctactacggtaaggttactccaatttTTGAATCTATTATAATTGTTATCCG	HindIII
SO10	TTTAAGCTTtttagcacctactacggtaaggttaaaccaatttTTGAATCTATTATAATTGTTATCCG	HindIII
SO11	TTTAAGCTTtttagcacctactacqqtaaqqtttcaccaatttTTGAATCTATTATAATTGTTATCCG	HindIII
SO12	TTTAAGCTTtttagcacctactatggtaaggttacaccaatttTTGAATCTATTATAATTGTTATCCG	HindIII
SO13	TTTAAGCTTtttagcacctattacggtaaggttacaccaatttTTGAATCTATTATAATTGTTATCCG	HindIII
SO14	AAAGTACCTTTTAATGCCGATGAACAGCATAGCAGA	_

Table S4.	Cont.	
Name	Sequence 5'-3'*	Restriction site
SO15	ATGCTGTTCATCGGCATTAAAAGGTACTTTACTATCCGC	_
SO18	GTACCTTTAACATCAGCCAACGATAAAAATTTTAACAGT	—
SO19	ATTTTTATCGTTGGCTGATGTTAAAGGTACAAAATAATC	—
SO22	GCAGACCCTCAGTTTGGTAATTTGATGTTAAAACAG	—
SO23	TAACATCAAATTACCAAACTGAGGGTCTGCTGCTGT	_
SO24	GGAAAGCCTTCACATGCCCAAAAATTCTTAAAAGGAGTT	—
SO25	TAAGAATTTTTGGGCATGTGAAGGCTTTCCTTG	—
TRB57	TTTGAGCTCAAGGTGATTTGCTACCTTTAAG	Sacl
TRB230	GCGTAATACGACTCACTATAGGGCGATCAGTTGAACGCCCTGAG	_

*For $ToxI_{Bt}$ primers, the sequence corresponding to the $ToxI_{Bt}$ repeat is shown in lowercase.

PNAS PNAS