Support Figure 1944 - Information of the United States Korgaonkar et al. 10.1073/pnas.1214550110

Materials and Methods

Bacterial Strains and Media. Pseudomonas aeruginosa strain PA14 and the isogenic PA0601 and nagE transposon insertion mutants were obtained from the PA14 nonredundant transposon mutant library (1) ([http://ausubellab.mgh.harvard.edu/cgi-bin/pa14/home.](http://ausubellab.mgh.harvard.edu/cgi-bin/pa14/home.cgi) [cgi\)](http://ausubellab.mgh.harvard.edu/cgi-bin/pa14/home.cgi). Transposon insertions were confirmed by PCR. P. aeruginosa was routinely cultured in LB Miller broth/agar or morpholinepropanesulfonic acid (Mops)-buffered defined medium (2) containing 0.1% Socransky vitamin solution (3) and 10 mM succinate, hereby referred to as Mops-V. The ability to catabolize N-acetylgalactosamine (GalNAc) was tested by growth on Mops-buffered medium with 20 mM GlcNAc as the sole source of carbon. Escherichia coli DH5 α or E. coli XL1-Blue was cultured on LB Miller broth/agar. Staphylococcus aureus strain Mu50 (4) was routinely cultured on BHI broth/agar unless specified otherwise. All cultures were grown at 37 °C, shaking at 250 rpm. Antibiotics were used at the following concentrations: ampicillin, 100 μg/mL; carbenicillin, 300 μg/mL for plasmid selection and 150 μg/mL for plasmid maintenance; gentamicin, 50 μg/mL for P. aeruginosa transposon mutants.

Screen for GlcNAc-Unresponsive Mutants. For the screen, mutants arrayed in a 96-well plate format were inoculated into Mops-V supplemented with either 1 mM GlcNAc or 1 mM succinate. Strains were grown with shaking at 37 °C to stationary phase and pyocyanin levels estimated based on the intensity of the blue-green pigment of the culture. Those strains showing no change in the amount of pyocyanin produced in the medium containing GlcNAc compared with the medium lacking GlcNAc were selected. All strains identified in this primary screen were subsequently tested for levels of pyocyanin, lysis of Gram-positive bacteria, and growth with GlcNAc as the primary carbon source.

Pyocyanin Analysis. To quantify pyocyanin, P. aeruginosa strains were inoculated into Mops-V supplemented with either 1 mM succinate, 1 mM N-acetylmuramic acid, 1 mM GalNAc, 1 mM Nacetylneuraminic acid, 1 mM N-acetylglucosamine, or 330 μg/mL peptidoglycan. Cells were grown to an $OD₆₀₀$ of 1.5, and pyocyanin was extracted and quantified from 1-mL cultures as previously described (5).

PQS Extraction and Quantification. Pseudomonas quinolone signal (PQS) was extracted from P. aeruginosa strains after growth in Mops-V supplemented with 1 mM GlcNAc, 1 mM succinate, or 330 μg/mL peptidoglycan. Cells were grown to an OD_{600} of 1.5 and were extracted three times with an equal volume of acidified ethyl acetate (150 μL acetic acid per liter ethyl acetate; Fisher). Extracts were dried under a constant stream of N_2 gas, resuspended in methanol (Fisher), and analyzed by TLC as described previously (6, 7). PQS was identified by comigration with synthetic PQS standards (Syntech) and quantified by creating a standard curve using 150–500 ng PQS. PQS was visualized by fluorescence after excitation with long-wave UV light using a G: Box gel imager (Syngene).

Quantification of Elastase Activity. P. aeruginosa strains were assayed for elastase activity as previously described (8). Briefly, cells were grown in Mops-V supplemented with 1 mM GlcNAc, 1 mM succinate, or 330 μ g/mL peptidoglycan to an OD₆₀₀ of 1.5. Cell-free supernatants were collected by filtering whole-cell cultures using a 0.45-μm filter (Corning). Supernatants were added to

1 mL of Elastin Congo Red (ECR; Sigma) substrate and incubated at 37 °C for 18 h with shaking. The ECR substrate is composed of 20 mg of Elastin Congo Red suspended in 1 mL buffer [0.1 M Tris $HC1$ (pH 7.2) and 1 mM $CaCl₂$]. After 18 h, tubes were placed on ice, and the reaction was stopped by addition of 0.1 mL of 0.12 M EDTA. Insoluble ECR substrate was removed by centrifugation at $16,000 \times g$ for 1 min and absorbance measurements taken at 495 nm.

Gram-Positive Lysis Assays. Lysis assays were performed by thoroughly swabbing a Brain Heart Infusion plate with an overnight culture of S. aureus Mu50. Plates were air dried, followed by placement of a 6-mm filter disk (Whatman) on the agar. Discs were spotted with 5 μ L of an overnight culture of *P. aeruginosa* strains, plates were incubated overnight at 37 °C, and zones of clearing measured.

Complementation of the PA0601 Mutant. The PA0601 gene was PCR amplified from *P. aeruginosa* chromosomal DNA using the primers listed in Table S2. The forward primer was designed such that the ribosome binding site upstream of PA0601 would be randomized during PCR. This procedure allows for optimization of expression for complementation and has been used by our group successfully in the past (9). The resulting 633-bp product was digested with SmaI and HindIII and ligated into SmaI/HindIII digested pEX1.8 (10). Five colonies of the resulting pEX1.8 plasmid containing pAK601 were pooled and transformed into the P. aeruginosa PA0601 mutant by magnesium chloride transformation (2). Transformants were screened for increased pyocyanin production after growth on Mops-V supplemented with either 1 mM GlcNAc or 1 mM succinate. The sequence of PCRamplified PA0601 was confirmed by standard automated sequencing. The complementing clone of PA0601 possessed a ribosome binding site of 5′-CTGCT-3′ modified from the WT PA0601 with a ribosome binding site of 5′-GGCAG-3′.

Reverse Transcriptase PCR. Total RNA was extracted from crops excised from flies infected with *P. aeruginosa* WT 48 h after infection using RNABee (Tel-Test) as previously described (11). cDNA synthesis was performed using SuperScript II reverse transcriptase as outlined by the manufacturer (Invitrogen). P. aeruginosa RNA (100 ng) served as the template for cDNA synthesis using 250 ng of the random primer $(NS)_5$. Twenty nanograms of the resulting purified cDNA was used as template in the subsequent PCR amplification of $pqsA$ and $clpX$. Primers used for PCR are listed in Table S2. For visualization, 5 μ L of the resulting PCR was subjected to agarose gel electrophoresis and stained with ethidium bromide.

P. aeruginosa Oral Infection of Drosophila. Drosophila melanogaster were maintained on standard cornmeal molasses agar [1 L contains 8.2% (wt/vol) cornmeal, 2% (wt/vol) Brewer's yeast, 75 mL molasses, and 1.5% (wt/vol) agar with 0.35% propionic acid, and 0.3% tegosept]. The inoculum for oral infection of Drosophila was prepared as follows: P. aeruginosa strains grown overnight in LB were adjusted to an OD_{600} of 2.0 in 1.5 mL followed by centrifugation at 5000 \times g for 15 min to pellet cells. The supernatant was discarded and the pellet resuspended in 100 μL of sterile 5% sucrose. The resuspended cells were spotted onto a sterile 21-mm filter (Whatman) that was placed on the surface of 5 mL of solidified 5% sucrose agar in a plastic vial (FlyBase). In some cases, 330 μg/mL S. aureus peptidoglycan (Sigma) was added to the sucrose suspension before spotting onto sterile filter paper discs. The filters were allowed to dry at room temperature for ∼30 min before addition of Drosophila. To ensure maximum feeding on the discs containing bacteria, male Canton S flies (1–3 d old) were starved for 3 h before being added to vials (12 flies per vial). Flies were anesthetized by

- 1. Liberati NT, et al. (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 103(8): 2833–2838.
- 2. Ausubel F, et al. (1997) Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology (John Wiley & Sons, New York).
- 3. Mulcahy H, Sibley CD, Surette MG, Lewenza S (2011) Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS Pathog 7(10):e1002299.
- 4. Kuroda M, et al. (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357(9264):1225–1240.
- 5. Essar DW, Eberly L, Hadero A, Crawford IP (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: Interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172(2):884–900.

placing them on ice throughout the sorting and transferring process. Infection vials were stored at room temperature in a humidity-controlled environment. The number of live flies to start the experiment was documented, and live flies were counted at 24 h intervals.

- 6. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437(7057):422–425.
- 7. Pesci EC, et al. (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96(20):11229–11234.
- 8. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179(18):5756–5767.
- 9. Korgaonkar AK, Whiteley M (2011) Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J Bacteriol 193(4):909–917.
- 10. Pearson JP, et al. (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 91(1):197–201.
- 11. Jorth P, Whiteley M (2010) Characterization of a novel riboswitch-regulated lysine transporter in Aggregatibacter actinomycetemcomitans. J Bacteriol 192:6240–6250.

Fig. S1. Induction of pyocyanin is specific to GlcNAc and GlcNAc-containing polymers. Pyocyanin levels produced by WT P. aeruginosa grown in Mops-V in the presence of 1 mM succinate, 1 mM N-acetylmuramic acid (MurNAc), 1 mM GalNAc, 1 mM N-acetylneuraminic acid (Neu5Ac), 1 mM N-acetylglucosamine, 1 mg/ mL chitin, or 1 mg/mL mucin. *P < 0.001 by Student t test compared with the no-inducer (succinate) control. Error bars represent SD, $n = 3$.

Fig. S2. (A) Monoculture growth of WT P. aeruginosa (PA14), the PA0601 mutant (PA0601−), and S. aureus in a chemically defined medium (CDM). SD was <10% of the mean for all data points and were not included for the sake of clarity, $n = 3$. (B) P. aeruginosa PA0601 mutant shows reduced killing of S. aureus during in vitro coculture. S. aureus was grown in CDM in monoculture and coculture with WT P. aeruginosa (PA14) or the PA0601 mutant (PA0601⁻) in vitro. Baird-Parker agar was used for enumeration of S. aureus cfu/mL. SD was <10% of the mean for all data points and were not included for the sake of clarity, $n = 3$.

AC

Fig. S3. (A) Number of P. aeruginosa recovered from Drosophila crops is not impacted by inactivation of PA0601, antibiotic treatment of flies, or feeding flies peptidoglycan. P. aeruginosa cfu per fly were determined by viable counts on Pseudomonas isolation agar. Error bars represent SD, $n = 3$. (B) Number of Grampositive bacteria in the Drosophila crop before and after antibiotic treatment. The cfu per fly were enumerated by viable counts on phenylethyl alcohol agar. Error bars represent SD, $n = 3$.

PNAS

 $\overline{\mathbf{A}}$

Fig. S4. GlcNAc transport is essential for P. aeruginosa virulence in polymicrobial infections. Kaplan-Meier survival curves of (A) Antibiotic-untreated Drosophila after infection with WT P. aeruginosa (PA14), the nagE mutant (nagE−), and the genetically complemented nagE mutant (nagE− complement). (B) Antibiotic-treated flies infected with WT P. aeruginosa or the nagE mutant. (C) Antibiotic-treated flies infected with WT P. aeruginosa or the nagE mutant in the presence and absence of peptidoglycan. Curves are representative of a minimum of two biological replicates, $n = 60$ for each replicate. *P < 0.0001 by the log-rank test for comparison of percentage survival after infection with WT P. aeruginosa compared with infection with nagE[−].

Fig. S5. Monoculture growth yields of WT P. aeruginosa (PA14), the PA0601 mutant (PA0601⁻), and S. aureus after 4 d in the murine wound infection model. Error bars represent SD, $n = 6$. The difference between WT P. aeruginosa and PA0601⁻ was not statistically different as determined by Student t test, $n = 6$.

Table S1. GlcNAc-unresponsive P. aeruginosa mutants

*From www.pseudomonas.com. †

JAS

^{*}Strains were screened for their ability to catabolize GlcNAc, indicated by + for growth and − for no growth with GlcNAc as the sole carbon source; $n = 3$. Increased pyocyanin levels in the presence of GlcNAc or peptidoglycan. +, Increase in pyocyanin production in the presence of GlcNAc or peptidoglycan; −, no change in pyocyanin levels in the presence of GlcNAc or peptidoglycan; $n = 3$.

§Lysis of S. a*ureus* by P. aeruginosa determined using zone of clearing assay [1]. +, A zone of clearing similar to WT P. aeruginosa; —, a decreased zone of clearing; $n = 3$.

1. Korgaonkar AK, Whiteley M (2011) Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J Bacteriol 193(4): 909–917.

 \overline{A}

AS PY

1. Pearson JP, et al. (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 91(1):197–201.

2. Sambrook J, Fritsch EF, Maniatis T (1989) *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor Lob Press, Cold Spring Harbor, NY).
3. Liberati NT, et al. (2006) An ordered, nonredundant library of *Pseudomonas a*

Table S3. Primers used in this study Use/primer Sequence Complementation of *PA0601*[−]
FCCO TCCCCCGGGGAACAGCGTGNNNNNGCAAAG 601-R CCCAAGCTTACCTGGCGCACAAGCCGCGAG Complementation of nagE⁻ nagE-F TCC<u>CCCGGG</u>GAACAATCGNNNNNNACCGCC

nagE-R CCCAAGCTTTTGGCCGGGGTCCAGCCCTCC CCCAAGCTTTGGCCGGGGTCCAGCCCTCC RT-PCR pqsA-F CAGCCTGGTGGTACGTGAAG pqsA-R GCCAGGCGCACGCTGCTCAAC clpx-F CCGCGAGGAGGTGCAGGAAGC clpX-R GAGGCAACGGTGCCCTCGATG

Restriction sites are underlined.