

24	38		2×2		##	3 8
1		2	3		4	5
66	3 5	88	9.0	9 9	88	8.6
6	7	8	9	10	11	12
44	ââ	8.6	1	88	8.8	88
13	14	15	;	16	17	18
3 €	8.8	8.4		8.8	88	
19	20	21	2	2	X	Y

S-Fig 1. Karyotype analysis of human iPS cells and derivative mesenchymal stem cells (MSC). Cytogenetic analysis performed on twenty G-banded metaphase cells from human iPS cells cultured in a clinical compliant system at passage 10 (A) and hiPS cell-derived MSCs at passage 12 (B), demonstrated an apparently normal female karyotype.

1

S-Fig 2. In vitro differentiation of hiPS cell-derived mesenchymal stem cells (MSC) into adipogenic cells. Adipogenic induction was detected by up-regulation of peroxisome proliferator activated receptor gamma (PPAR- γ). Samples were analyzed by qRT-PCR, data normalized to human β -Actin expression and results shown are the mean and SEM of three experiments.

S-Fig 3. Expression of chondrogenic and osteogenic related genes in *in vitro*-differentiated human iPS-MSCs. Q-RT PCR was used to analyzed the expression of genes-related to chondrogenic differentiation of human iPS-MSCs directed towards osteogenic differentiation (A), and osteogenic-related genes in cells induced to chondrogesis (B). White columns show the control group: human iPS-MSCs cultured in growth-medium, while dark columns indicate cells induced to chondrogenic (A) and osteogenic (B) differentiation. *Aggrecan (ACAN)*, *collagen type II alpha-1 (COL2A1)*, *perlecan (HSPG2)*, *glypican 3 (GPC3)*, *syndecan 2 (SCD2)*, bone morphogenetic protein 2 (BMP2), *collagen type I alpha-1 (COL1A1)*, *osteocalcin (BGLAP)*, *alkaline phosphatase (ALP)*, *bone sialoprotein 1 (SPP1)*, *osteonectin (SPARC)* and *distal-less homeobox 5 (DLXS)*. Data was normalized to human β-*Actin* expression and results shown are the mean and SEM of three experiments.