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3. INTRODUCTION
Functional gastrointestinal disorders (FGIDs) are defined by symptom-based diagnostic criteria,

including various combinations of chronic or recurrent symptoms attributable to the gastrointestinal
tract, not explained by other pathologically based disorders *. The FGIDs are classified into 6 major
categories for adults: oesophageal, gastroduodenal, bowel, functional abdominal pain syndrome,
biliary and anorectal. Of these, the functional bowel disorders constitute one of the most common
reasons to seek health care ?, and they are associated with poor health-related quality of life *° and
substantial costs to society ®° . The functional bowel disorders are characterized by combinations of
bowel related symptoms (figure 3.1), and include irritable bowel syndrome (IBS), functional bloating,
functional diarrhoea, functional constipation and unspecified functional bowel disorder. Moreover,
IBS can be further divided into subgroups, namely, IBS with constipation (IBS-C), IBS with diarrhoea
(IBS-D), mixed IBS (IBS-M) and unsubtyped IBS (IBS-U) *°. The pathophysiological mechanisms
underlying these disorders are incompletely known, but abnormal gastrointestinal motility, visceral
hypersensitivity, altered brain-gut function, low-grade inflammation, psychosocial disturbance, and

gastrointestinal microbiota may contribute™ ™.

Infrequent stools
Abdominal distention

Bloating

Hard stools

Pain

Discomfort

Frequent stools

Loose stools

Fig. 3.1. Overlap of symptoms defining functional bowel disorders and functional abdominal pain '*
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The human body is inhabited by a complex community of microbes, collectively referred to as
microbiota . It is estimated that the human microbiota contains 10* cells, which outnumber the
human cells in our bodies by a factor of ten'. A vast majority of these are found in the
gastrointestinal tract, with a continuum from 10" to 10° bacteria per gram of content in the stomach
and duodenum, to 10"-10" cells per gram in the colon'’. Moreover, the microbial composition
differs between these sites'®, and there are also significant differences between the microbiota
present in the gut lumen and the microbiota attached to and embedded in the mucus layer of the
gastrointestinal tract' (figure 3.2). The microbiota is taxonomically classified via the classical
biological nomenclature (figure 3.3), and today more than 50 bacterial phyla have been described,
but the colon is totally dominated by three of these: the Firmicutes, Bacteroidetes and the
Actinobacteria; other sites display a different microbial composition®” %. It is now apparent that the
gut microbiota has co-evolved with us and that it can manipulate and complement our biology in
ways that are mutually beneficial, but ecological or genetic changes may also result in diseases®®*. A
problem for research and clinical work is that most of the microbial diversity in the human Gl tract is
not currently represented by available cultured species 2, but during recent years, the use of culture-
independent techniques to study the gut microbiota has increased the understanding of the role of

gut microbiota in health and disease®.

Proximal GI Tract

Stomach 101

Increasing numbers

Duodenum = 103

Increasing . . .
Jejunum | 104 o Epithelial Mucus Intestinal
nug;‘l::rrssit?!nd Epithelium =S rface layer lumen Faeces
lleum 107

1012

Cells / gram

Distal Gl tract

Fig. 3.2. Variation in the microbiota composition in the Gl tract both with respect to distance from

the mouth and form the lumen.
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Nomenclature Examples
Firmicutes
Bacilli
m Lactobacillales
Lactobacillaceae
Lactobacillus
Lactobacillus acidophilus

Fig. 3.3. Example of bacterial taxonomic classification.

Several lines of evidence now suggest that bacteria may be involved in the pathogenesis and
pathophysiology of functional bowel disorders, through the metabolic capacity of the luminal
microbiota, and the potential of the mucosa-associated microbiota to influence the host via immune-
microbial interactions 2*. For instance, many subjects with IBS report onset of their GI symptoms
following an enteric infection®. There are also studies reporting positive effects of treatments aiming

at manipulating the gut microbiota in patients with functional bowel disorders®® ?’

. Moreover, small
intestinal bacterial overgrowthzg, and altered intestinal microbiota®® have been found in at least
subgroups of patients with functional bowel disorders. However, the clinical relevance of these
findings is at this stage unclear, and therefore, the aim of this Rome Foundation Working Team
Committee was to critically review the existing literature on the role of intestinal microbiota in
functional bowel disorders, mainly IBS. Based on this literature search we aim to provide
recommendations for how to implement the current knowledge into clinical practice and to guide

future research to improve the current knowledge of the role of intestinal microbiota in functional

bowel disorders.
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4. CURRENT KNOWLEDGE OF THE MICROBIOME

Key points

e Humans are born with almost sterile intestines but are rapidly colonised by maternal and
later close family members’ microbiota

e |Initially idiosyncratic, gut microbiota show convergence to a norm with age but remain
unique to each individual

e Diet has a powerful influence with substantial differences seen between rural, high fibre, low
fat diets versus more refined diets seen in industrialised societies

e Host genetics and in particular the host immune response to microbiota strongly influence

gut morphology and function

a. Introduction

Years of co-evolution have allowed the host and the intestinal microbiota to peacefully coexist under
steady state conditions. Evidence, mostly from animal, but also from some human studies, supports
the concept of a bidirectional interaction between the host and its intestinal microbiome. A
conceptual framework is emerging where host genetic and immune, as well as environmental
factors, influence intestinal microbiota composition; while, in turn, the intestinal microbiota

contributes to shape host immunity and physiology, within and beyond the gut.

b. Complexity of the human gut microbiota

Humans acquire bacteria randomly from their environment (initially mainly from the mother in a
conventional birth) and whether these bacteria are transients or become permanent colonizers
depends on genetic makeup, diet, age, infection (reviewed in chapter 6) and lifestyle, including drug
intake such as antibiotics. There is a dominant intestinal microbiota community in mammals

20,30, 31 These

consisting of thousands of bacterial species that belong to a small number of phyla
include Firmicutes, Bacteroidetes, and Actinobacteria; with a substantially greater number of
Firmicutes compared to the other two in both humans and mice*’. However, despite conservation at
the highest taxonomic ranks, most studies find considerable inter-individual variability as assessed by
similarity indices. It is not surprising that several human studies using sequence analysis of cloned
small- subunit ribosomal RNA genes [16S ribosomal DNA] have demonstrated a hitherto unimagined
complexity of the human gut microbiota of which most identified bacteria have not previously been
cultured *.

It needs to be emphasized that most studies investigating microbiota composition have been

performed using fecal samples. A study in healthy volunteers detected differences in the total
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number of cultivatable aerobic bacteria in faeces and at the mucosal surface. However, in IBS-D
patients the difference found between faecal and mucosal sites was less pronounced®. Thus,
comparisons between luminal and mucosal-associated intestinal microbiota may yield important

pathophysiological insights.

c. Effect of age on the intestinal microbiota

The inter-individual differences in intestinal microbiota composition are maximum in the neonatal
period and decrease with ageing. Babies are in general considered to be born with sterile intestines
but are rapidly colonised. Those born vaginally acquire maternal vaginal and fecal bacteria while
those born by caesarean section have reduced Bifidobacterium spp., Lactobacillus spp.>* and
Bacteroides fragilis with increased risk of Clostridium difficile at 1 month of age®. Early studies using
conventional culture techniques showed breast-fed babies had a simpler microbiota during the first
few months dominated by Bifidobacterium spp and few enterobacteria while formula-fed babies had
more strict anaerobes and a higher diversity of bacteria *°. Introduction of solid food caused a
successive appearance of first enterococci, followed by the strict anaerobes such as Bacteroides spp.,
Clostridium spp. and anaerobic streptococci®®. A more detailed analysis of healthy babies using a
microarray followed by sequencing showed a rapid increase in total bacterial counts from 10* to 10°
16S ribosomal RNA (rRNA) gene copies per gram faeces*®’, rapidly reduced by courses of antibiotics.
The dominant phyla were in all cases Firmicutes, Bacteroidetes and Proteobacteria , but the precise
species were unique to each individual and relatively stable. Early colonisers were mainly aerobes
(staphylococci, streptococci and enterobacteria while late colonisers were strict anaerobes
(Eubacterium spp. and clostridia). As babies grew, “uneven” profiles where one species dominated
became less common and their profiles approached the more complex adult pattern. Early sudden
changes in individual bacterial numbers were not uncommon even in those not receiving antibiotics,
possibly reflecting phage attacks. The same study showed that the efficiency of PCR for bifidobacteria
was 8 fold less than for clostridia, leading to systematic underestimation of numbers, a problem that
is frequently seen in 16S rRNA gene PCR-based approaches, but often neglected in the biological
interpretation.

Denaturing Gradient Gel Electrophoresis (DGGE) of PCR amplified 16S rRNA genes demonstrated that
in the first 4-weeks of life preterm infants had rather simple band patterns that increased in
similarity (11-57%) with other preterm babies with time. By contrast breast-fed remained more
individual with only 11% interindividual similarity®®. The KOALA project in the Netherlands showed
exclusively formula fed babies had more E. coli, C. difficile and B. fragilis, a difference which is lost if

the formula contains oligosaccharides as prebiotics.
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There are few studies of the evolution of faecal microbiota from 1 year to adulthood. One study from
India, where most were lactovegetarians, showed relatively stable Bifidobacterium spp. up to age 17
followed by a steep decline in adults, while from 2-17 there was a gradual increase in Bacteroides
spp. to adult levels®. Lactobacillus spp. declined markedly after age 5 years while Faecalibacterium
prausnitzii increased and then declined. These changes may well reflect changes in diet though this
has yet to be proven.

Extreme old age is associated with a decrease in Bacteroides spp. and increases in Enterococcus spp.

and E. coli®.

d. Effect of diet on the intestinal microbiota

Diet is a modifiable factor significantly affecting human health. The interaction between diet and
intestinal bacteria begins soon after birth and is a complex process. Human milk contains up to 10°
microbes/L including staphylococci, bifidobacteria®* and lactic acid bacteria (LAB)*. It also contains
oligosaccharides which act as prebiotics, increasing the number of bifidobacteria in the gut®.
Therefore, galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) are now commonly
added to baby formula because of their perceived benefits. On weaning, young babies are
traditionally fed fermented dairy products containing LAB such as yogurt and cheese. A
microbiological study of a randomized controlled trial (RCT) of the effect of a probiotic L. paracaseii A
in 12-24 month old infants showed minimal changes overall in the faecal microbiota with a small
decline in Clostridium spp. over 4 weeks and increase in Lactobacillus spp.**. African children living in
rural areas with a polysaccharide-rich diet, when compared with Italian city children, showed a
significant enrichment in Bacteroidetes and depletion in Firmicutes together with an increase in
Prevotella spp. and Xylanibacter spp., bacteria known to contain genes for cellulose and xylan

hydrolysis®. See Figure 4.1.
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Different Microbiota in Italian vs African Children

Florence, Italy Burkina Faso, Africa

BF
B oo s |-Bacteroidetes [l |-Bacteroidetes
M Acetitomaculum M Acetitomaculum
B Faecalibacterium Sl B Faecalibacterium —Firmicutes
] Roseburia irmicutes [ subdoligranulum
- Subdoligranulum [ others
Others B
Firmicutes / Bacteroidetes F/B=2.8 Firmicutes / Bacteroidetes F/B=0.47

Fig 4.1. Gut microbiota composition in African children living in rural areas with a polysaccharide-rich

diet when compared with Italian city children **. (Redrawn from DeFilippo et al *°)

Adding 48 g of whole grain cereals daily for 3 weeks to the diet in a RCT increased numbers of faecal
Bifidobacterium spp. and Lactobacillus spp. compared with 48gm wheat bran. Conversely removing
dietary fibre by using enteral low residue diets in paediatric Crohn’s disease showed marked
reduction of numbers of Eubacterium spp., Bifidobacterium spp., Bacteroides-Prevotella and
Clostridium leptum®. Obesity was in one study associated with a decrease in Bacteroidetes and
decrease in diversity suggesting the abnormally high energy input may allow the selective increase of
particular species, though in humans few species accounts for more than 0.5% of the total®.

Clear demonstration of the effect of dietary manipulation on microbiota in adults has been limited by
ability to make substantial changes in diet. However, carefully-controlled diets high in resistant
starch (RS) have been compared with diets high in wheat bran recently in 14 obese human subjects.
This showed a reversible stimulation of two main groups of Firmicutes bacteria among faecal bacteria
with additional RS intake “°. Interestingly, however, despite significant mean changes, responses
differed markedly between individuals. Meanwhile, weight loss diets with carbohydrate contents
have been shown to decrease one group of butyrate-producing bacteria (Roseburia spp. and

relatives) as well as faecal butyrate concentrations *°. Humanised mice have also been used to show

10
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striking changes in the microbiota induced by switch from low fat high plant polysaccharide diet to
Western diet>’. Rats with human faecal microbiota show that brussel sprouts and inulin increase
Bifidobacterium spp. numbers with an increase in butyrate and beta-glucoronidase activity>*.

There have been several RCTS looking at the prebiotic, oligofructose which increases faecal
Bifidobacterium spp. and reduces time to resolution of C. difficile-associated diarrhoea during
antibiotic treatment from 6 to 3 days™".

Lactulose is a synthetic disaccharide, not absorbed by the small intestine but metabolized by colonic
bacteria and widely used as a laxative. The ingestion of lactulose acidifies the proximal colon®,

54, 55

stimulating propulsive motility and leading to an increase in Bifidobacterium spp. counts in

healthy humans®® *’

. A prospective, randomized parallel-group trial to evaluate the effects of
lactulose and polyethylene glycol-4000 on colonic microbiota in chronic idiopathic constipation
showed that lactulose induced a significant increase in faecal Bifidobacterium spp. counts and b-
galactosidase activity. The metabolic activity of the faecal microbiota remained stable in the
lactulose group, but a significant decrease in total short-chain fatty acids, acetate, butyrate and
faecal bacterial mass was observed in the PEG-treated group™. It is unclear whether this matter since
PEG is at least as effective as lactulose and generally better tolerated™.

Other prebiotics such as lupin kernel can increase Bifidobacterium spp. in humans® as can inulin-

containing juices®! and 10 gm of arabinoxylan-oligosaccharides®.

e. Effect of transit on the intestinal microbiota

Modulating intestinal transit by accelerating it with senna or slowing it with loperamide has been
used to explore how this alters the microbiota. Faster transit, which may impair absorption in the
small bowel and increase available nutrients in the colon, increased faecal sulphate, sulphide, bile
acids, methionine and the production rates of acetic acid but reduced fecal methanogens and
methane production. The reverse effects were seen with loperamide®®.

Cisapride-reduced transit time was associated with a significant rise in the concentrations of total
SCFAs (P<0.05), propionic and butyric acids (P<0.05) and appeared to alter the microbiota as seen by
the increase in the rate of metabolism of beet substrate when incubated with faecal innocula for 24
h®.

Endogenous bacterially produced SCFAs modulate gut motility to maintain homeostasis. Thus SCFAs
activate propulsive ileal motor patterns in both dog® and human®, a pattern which ensures that
bacteria and their products are scarce in the ileum and largely confined to the colon. Recent data
indicate that there are specific G protein coupled receptors, GRP41 and 43, located in the distal ileal
and colonic enteroendocrine and mast cells which detect SCFAs and whose activation leads to

changes in motility®’. Acetate, which predominates in the colonic contents, is largely inhibitory while

11
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propionate and butyrate stimulate motility. The GRP43 positive enteroendocrine cells contain PYY, a
hormone which slows gastric emptying and inhibits intestinal motility and secretion. In addition to
these acute effects there are also longer term trophic effects on the enteric nerves. Chronic exposure
to resistant starch or intracaecal infusion of butyrate increases the proportion of nerves expressing
choline acetyl transferase (ChAT) and enhances cholinergic muscle contractility®®. Thus the circuitry
exists whereby colonic bacteria, through their metabolic products can modulate motility and hence

their own environment.

f. Effect of host genes on the intestinal microbiota

Similarities in microbiota composition in homozygotic twins raise the possibility that host genotype
can affect the gut microbiome®. Twin studies comparing those concordant or discordant for obesity
show strong interfamily similarities in microbiota unrelated to BMI*® and using genetically modified
animals, it is possible to show clearly how host mutations in bacterial sensing molecules can alter the

composition of the microbiome’® ”*

. Genus-specific 16S rRNA analysis demonstrated that Bacteroides
were barely detectable in wild-type and heterozygous control mice but, in mice deficient of the
bacterial sensing receptor nucleotide oligomerization domain (NOD)-2, significant amounts of
Bacteroides as well as Firmicutes were detected. This raises the hypothesis that genetic profiles
associated with certain inflammatory conditions of the gut may contribute to selection of specific
microbiome components with pro-inflammatory or altered metabolic capacity. This may be

particularly relevant to the patients with Post infective IBS which has been associated with certain

single nucleotide polymorphisms (SNPs) in the bacterial recognition receptor Toll-like receptor (TLR)9

72

g. Effect of the immune system on the intestinal microbiome

Innate and adaptive mechanisms can aid in the control and establishment of a balanced intestinal
microbiota. a-defensins or cryptidins are antimicrobial peptides produced in Paneth cells in the small
intestine against enteric pathogens. Recent reports have indicated increased levels of defensins in
patients with IBS though at present its significance is uncertain’®. Significant changes in microbiota
composition were detected mice expressing a human a-defensin gene (DEFA5) and in mice lacking
matrix metalloproteinase 7 (MMP7) an enzyme required for the processing of mouse a-defensins’”.
Activation of TLRs by commensals is important for the maintenance of gut homeostasis via the
stimulation of cytokines and epithelial reparative factors’, and adaptive immunity cooperates with
innate immunity to maintain host-commensal homeostasis’®. The absence of normal secretory IgA

(IgAs) has been shown to lead to a significant shift in anaerobe populations in the small intestine in

12
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mice’’. In addition, IgAs limit translocation of commensal bacteria to mesenteric lymph nodes’®, and

mice lacking sIgA develop low-grade inflammation in the gut’.

h. Host-microbiota bidirectional interaction:

h.i. The intestinal microbiome is a driving force for gut immunity and physiology

Discrimination between commensals and pathogens is in part achieved by a family of receptors that
recognize bacterial components. Two major classes of innate receptors have been identified: 1) TLRs
involved in the detection of extracellular bacterial components®*®? and 2) cytosolic NOD-like
receptors (NLRs) that detect intracellular bacterial components®. Bacterial pattern recognition
receptors are crucial for maintenance of host-microbial homeostasis and play a key role in the innate
immune response that is responsible for retaining the intestinal microbiota in the mucosal
compartment’>. Commensal bacteria regulate innate defense and extrinsic components of the
intestinal barrier such as mucus production and secretion of antimicrobial peptides by intestinal

Paneth cells®*®®

. The intestinal microbiome induces the development of both the mucosal and
systemic immune systems. In germ-free mice, there is a paucity of lamina propria T cells, IgA
producing B cells, and intraepithelial T cells. The absence of microbiota also affects systemic
immunity since germ-free mice have decreased serum immunoglobulin levels and CD4 T-cells in the

spleen’® ¥

. It has been determined that commensals induce a local, mucosal immune response
without activating systemic immune responses. This “systemic ignorance” allows the preservation of
systemic immune responses to commensals in the event that small breeches in mucosal barrier
occur’®,

Evidence that intestinal bacteria are important for normal gastrointestinal function has been
demonstrated in animal models under germ-free conditions that are generated and bred within a
sterile environment. The immune system of germ-free animals is underdeveloped and introduction
of commensals induces significant histological, metabolic and functional changes in the host’® 8%
Intestinal motility is markedly abnormal in germ-free animals. The intervals between phase Il fronts
of the migrating motor complex (MMC) are prolonged, and upon colonization with a specific

pathogen-free (SPF) microbiota, motor patterns are normalized®" *?

. Normalization of motor patterns
does not occur with all species of the intestinal microbiota, and animals that are monocolonized with
E. coli exhibit opposite effects than those colonized with lactobacilli, bifidobacteria, or clostridia®®
Colonization with a common commensal, Bacteroides thetaiotaomicron, modifies, in addition to a
multitude of genes involved in immunity and barrier function, the expression of genes involved in
motility and neurotransmission®®. This selective modulation of gut motility by components of the

intestinal microbiome raises therapeutic possibilities to modulate altered bowel habits using

probiotic bacteria. Studies in animal models of IBS have demonstrated that the probiotic strain

13
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Lactobacillus paracasei NCC2461, its secreted products, or metabolites, modulate contractility of
intestinal smooth muscle®™. The probiotic strains belonging to L. rhamnosus R0011 and L. helveticus
R0052 improved gastric emptying in a model of post-infectious gastric dysmotility®®. Conditioned
media from E. coli Nissle 1917 was shown to modulate contractility of muscle strips isolated from
humans®’. Other studies have shown that co-administration of conditioned media from L. paracasei
NCC2461 with antibiotics reduced visceral hypersensitivity associated with antibiotic treatment and
normalized sensory neurotransmitter expression in the myenteric and submucosal plexuses®. L.
acidophilus NCFM and L. paracasei NCC2461 have also shown capacity to modulate visceral and pain
perception in other models of visceral hypersensitivity® *®. It is likely that the pathways affected by
these specific probiotics differ according to the strains and model used, and their effectiveness in
attenuating visceral pain in humans remains to be determined.

Direct proof that the intestinal microbiome determines gut function in humans is lacking however
there is good evidence that bacterial metabolites particularly SCFAs do as already discussed (see

section e), and indirect evidence from studies in patients receiving antibiotics (see Chapter 8).

h.ii. The intestinal microbiome and the gut-brain axis

Gastrointestinal function is controlled by the central nervous system (CNS). The gut brain axis is a
bidirectional communication system that integrates brain and gastrointestinal (Gl) functions.
Evidence for a microbiota—gut—brain axis that influences brain biochemistry and modulates
behaviour in adult mice comes from a recent study showing that transient perturbation of the
microbiota with antimicrobials increased hippocampal BDNF and exploratory behavior. These
changes were reversible upon normalization of the microbiota after antimicrobial treatment.
Interestingly, antimicrobials did not affect behaviour in germ-free mice, but colonization of germ-free
mice with a specific pathogen free (SPF) microbiota altered behaviour. Moreover, using two germ
free mouse strains as recipients, and a cross-over design, SPF microbiota from mouse strains with
opposite behavioural phenotype, determined behaviour and brain BDNF level in the recipient

mice®*

. This is an exciting new area that raises the hypothesis of a critical contribution of the
intestinal microbiota in behaviour and central neurotrophin expression. These results may have
important clinical implications for the understanding of IBS and its psycho-social co morbidity

(reviewed in Chapter 7).

14
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Fig 4.2. Gut microbiota and the intrinsic and extrinsic factors that can affect its distribution and
composition. A number of host mechanisms participate in gut microbiota modulation, including
gastric acid secretion, fluid, anti-commensal sIgA and antimicrobial peptide production, and Gl
motility. Drugs that block acid secretion and affect Gl motility, can indirectly alter the microbiota.
Antibiotics, depending on spectrum and dosage, will directly affect microbiota composition inducing
dysbiosis. Dietary modifications, including probiotic and fibre supplements will also affect microbiota
composition. (MMC: migrating motor complex; PPI: proton pump inhibitor; NSAID: non steroidal
anti-inflammatory drugs).
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5. APPROACHES TO THE stupy OF MICROBIOTA

Key points

e Breath tests are not validated to accurately detect SIBO.

e Rapid molecular approaches have largely replaced cultural approaches for enumeration of
the dominant Gl tract microbiota; nevertheless cultural microbiology remains crucial for
investigating microbial diversity and for the selective isolation of representatives of key
functional groups, including pathogens

e Culture-independent approaches to study the Gl tract microbiota have revolutionized our
insight into this complex microbial ecosystem.

e The possibilities of using high throughput approaches and their depth of analysis are
increasing explosively, but it is important they are applied with careful reference to well-

defined scientific questions.

Interest in the Gl tract microbiota in relation to health and disease is increasing as it is evident that
the microbiota plays a crucial role. For more than a decade insights into the Gl tract microbiota have
increased which is in part due to the emerging developments in culture-independent technologies to
study different aspects of the microbiota (Table 5.1). This chapter will provide an overview of the

different approaches with focus on its application in Gl tract microbiota research.

a. Breath testing

a.i. Overview. The lactulose (LBT) or glucose (GBT) breath tests have become the most widely used
breath tests to determine small intestinal bacterial overgrowth (SIBO) in for example patients with

28, 102104 These tests involve serial measurements of breath

irritable bowel syndrome (IBS)
hydrogen (H,) or methane gas (CH,) levels following the ingestion of a standard dose of the sugar
substrate. A complete technical review of these tests has recently been published'®. Other sugar
substrates and radio-labelled sugars, including fructose, sucrose, and xylose, as well as bile acids
have also been used in a small number of studies. They do not offer any apparent advantages '® and
will not be discussed further.  The results of the LBT in IBS studies, and to a lesser degree the GBT,
were pivotal in developing the concept that SIBO is associated with the irritable bowel syndrome
(1BS) 0% 17110 This has led to much greater use of these diagnostic tests in North America and
Europe for the assessment of patients with IBS. While the results continue to be promoted as a

110-112

rationale for using antibiotics to treat these patients , there is considerable controversy
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concerning their accuracy for diagnosing SIBO in IBS patients and hence their contribution to

understanding the pathogenesis of 1BS **>*°.

a.ii. Rationale underlying the use of the GBT and LBT in IBS patients. The proposed rationale for

using the LBT and GBT tests is based on the fact that H, and CH, gas are produced almost exclusively

117

in the gastrointestinal tract and that bacteria (colonic microbiota) can produce measureable

changes in breath H, gas levels within a few minutes of contact with small quantities of these sugar

substrates & 11°

. For example, in healthy control subjects where lactulose was infused directly into
the cecum or just a few cm proximally within the distal terminal ileum, and simultaneous
measurements of breath H, were obtained, infusion of 0.5 g lactulose (i.e. 5% of 10 g test dose) was
sufficient to increase H, gas levels 5-10 parts per million (PPM) in breath samples within 2 min
Thus, if abnormal numbers and/or possibly microbial species were present in the small intestine this
would theoretically lead to an early rise in H, and/or CH, production. The use of the LBT versus the
GBT also has implications for detecting SIBO in IBS because of the differences in the transit of glucose

| 102, 105, 109

and lactulose in the small bowe . Glucose has been reported to provide a better measure

of fermentation in the proximal small intestine because it can be absorbed before reaching the distal
small bowel whereas lactulose is a non-absorbable sugar and therefore also provides a measure of
fermentation in the distal small bowel or colon. Proponents of the SIBO hypothesis in IBS have

suggested the pivotal event is the migration of colonic microbiota into the distal small intestine in

these patients and therefore the LBT would be a much more accurate means of detection ** %7,

This reasoning however has not been consistently applied in the literature. For example, the same

106, 110

authors have argued that using glucose instead of lactulose can be problematic and may

explain why others have not found evidence for SIBO in IBS

, yet in their recent meta-analysis of
breathing testing in IBS, 6 of the 11 studies examined used glucose or a related sugar other than
lactulose. The results of this analysis were then used to suggest, despite their conclusion in yet

another study that currently there are no tests that can accurately diagnose SIBO ', that breath

testing is merited in IBS and that the results support the idea that SIBO is important in IBS %%,
The separate measurement of CH, gas in LBTs and GBTs may also be important because

changes in this gas were strongly correlated with constipation-predominant 1BS **!

, methanogens
may falsely lower H, gas levels, CH; gas may play a pathogenic role in constipation, possibly by
inhibiting motility**>, and may provide a useful measurement in patients where changes in H, gas is
not detectable '®. However, this association is also found in non-IBS constipated subjects and in high

numbers of controls and thus the significance of this finding in IBS remains to be clarified ‘%%
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a.iii. Summary of Test Criteria and Study Results. In IBS studies, a number of criteria have been used
to define an abnormal breath test. In studies employing the LBT, the most commonly used criteria
for H, gas were: 1) a double peak rise in H, (variably defined), 2) a rise in H, > 20 PPM by 180 min, or
3) a rise in H, >20 PPM by 90 min (which currently appears to be most widely recommended) % 2.
Criteria for changes in CH, gas have also been variable between studies with some studies using a
rise of 1 PPM or more by 90 min after lactulose ingestion ' or a rise in CH, >20 PPM **! in the same
time period. Similarly, various criteria for H, gas have been used to define an abnormal GBT but
most commonly it has been defined as a rise in H, of 12 PPM above baseline ** '®. When these
criteria were applied in LBTs in the early clinical trials, a very strong association between SIBO and IBS
was reported, with prevalence rate as high as 84% 2. Two meta-analyses of studies using breath
testing to diagnose SIBO in IBS have been performed, one evaluated 12 studies (1921 patients) '*
and the other 11 studies . Both studies reported that abnormal breath testing was more common
among IBS patients than healthy controls (OR = 4.46, 95% Cl = 1.69 -11.80 and OR = 3.45, 95% Cl, 0.9-
12.7, respectively). However, there was tremendous heterogeneity in the studies, including study
design, the type of sugar substrate ingested, and criteria used to define a positive test, as well as
evidence of a possible publication bias, and as a result, the implications of the findings are unclear.

a.iv. Limitations of the Breath Tests. Although there are technical issues *®

and other possible
confounding variables, the critical limitation of breath testing for diagnosing SIBO in IBS patients is
the lack of validated criteria to accurately define an abnormal test %> %1% Ag highlighted above,
these criteria have varied widely between investigators and even in different studies conducted by

the same groups %% ',

The negative implications of using criteria which had not been validated
were underscored by several studies which compared the prevalence of an abnormal LBT test in IBS
patients and healthy controls. These studies found no difference in the prevalence of positive tests
between IBS patients and controls, regardless of the criteria applied > 116 124125,

There have been very few attempts to validate specific criteria, in large part because there is no
readily accepted gold standard. Traditionally, cultures obtained from small bowel aspirates have

17 This test has been

been considered the gold standard (> 10° CFUs/ml colonic microbiota)
criticized because of technical difficulties in ensuring accurate cultures and that these cultures would
not be representative in IBS patients because the overgrowth occurs in the more distal small

intestine where aspirates cannot be readily obtained '%.

However when this technique has been
applied in IBS patients **, no increase in overgrowth was detected, although a post-hoc analysis
using a cut-off of > 5 X 10°> CFU/ml detected in increase IBS patients (43% ) vs. controls (12%).
Another approach has been to measure combined LBT with oral *™ Tc scintigraphy to determine

whether the rise in H, occurs before or after the test meal reaches the cecum and more distal large
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bowel ™. This study found that 63% of the 40 Rome Il positive IBS patients had an abnormal LHBT
and that, in 88% of cases (22/25), the 9MTc had > 5% accumulation in the cecum before the rise in H,
occurred. This suggested that the “abnormal” LHT reflected variations in small intestinal transit in

most cases rather than the presence of SIBO.

a.v. Summary. In summary, breath tests do not provide an accurate means of diagnosing SIBO due to
the absence of proper validation studies of the diagnostic criteria; they should not be used in routine
clinical practice to screen for or confirm presence of SIBO. The use of a test - treat - test/outcome
paradigm *** may also problematic because antibiotics will also suppress microbiota in the colon,
which could account for changes in subsequent testing and or symptoms, and thus obscure the true
meaning of an altered post-antibiotic result. It may be advisable not to use breath tests in clinical
care settings for IBS until they are validated. If SIBO is suspected, the GBT may be the most specific
test, particularly if high thresholds are applied, because it is not as vulnerable to changes in small

bowel transit compared to the LBT.

b. Culture-based approaches to microbial diversity and enumeration

Culturing of GI tract microbes has for many decades been the gold standard for detection and
classification of microbes from the human Gl tract. A major advantage of cultivation of microbes is
that pure cultures of microbes are obtained and hence, their function can be studied in detail with
respect to their physiology, genetics and interactions with hosts and other microbes in controlled
experiments. However, numerous molecular surveys of the human faecal and colonic microbiota
have reported that 70-80% of the phylotypes, i.e. species defined by 16S rRNA sequencing (see
paragraph 5Se for details) do not correspond to well characterized, cultured species of bacteria 2> **
126 On the other hand, it appears that the most abundant phylotypes are also the most likely to have
been cultured. Walker et al *’found that 66% of phylotypes that individually accounted for >0.5% of
sequences corresponded to cultured species, while only 30% of those accounting for <0.5% of total
sequences corresponded to cultured species. This suggests that the majority of bacterial cells in
normal faecal samples will be related to cultured species, whilst it is the rarer species that are under-
represented by cultures. This also suggests that a lack of well-characterized isolates, rather than any
intrinsic resistance to cultivation, may be an additional reason for the low coverage of gut microbial
diversity by cultured strains.

With the advent of sequence-based molecular methodologies there is a tendency to dismiss culture-
based approaches as ‘old technology’. In the past enormous effort went into describing the human

128-130

faecal microbiota using careful anaerobic cultivation methods (eg. ). Although it has been widely

assumed that cultivation methods must severely bias the bacteria that can be recovered, recent work
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suggests that the dominant species described in such studies correspond quite closely to the most

127 Conversely clone libraries of amplified 165 rRNA

dominant species detected by molecular surveys
sequences have tended to underestimate certain groups such as bifidobacteria that are readily
recovered by cultivation "'

The sheer laboriousness of cultural approaches makes it unlikely that large scale anaerobic culture
work will be undertaken as an approach to describing microbial diversity in the future. On the other
hand, viable counts offer a straightforward estimate of total bacterial numbers in gut samples. Total
anaerobe counts estimated in faecal samples from healthy adults using ‘non-selective’ media

typically yield >10" cfu/g compared with around 10%/g for facultative anaerobes'®

although
facultative numbers are higher in the elderly **3. Total bacterial numbers can also be estimated by
DAPI (4',6-diamidino-2-phenylindole) staining and by FISH (fluorescence in situ hybridization)
microscopy using total bacterial probes, giving numbers that are of the same order *** or somewhat

134

higher " than those obtained by viable counting. Most other molecular methods such as gPCR and
direct sequencing either do not give reliable estimates of total numbers, or give only relative
proportions. Selective plating methodologies using anaerobic media include Beerens medium,
considered selective for bifidobacteria, and MRS medium considered selective for lactobacilli and

lactococci 133 13% 136

. Verifying that counts obtained on such media correspond to a given phylogenetic
group, however, requires further molecular analysis of the colonies obtained. Another problem is in
verifying that all representatives of a given groups are equally likely to be recovered on the selective
medium. For these reasons anaerobic selective plating has been largely discontinued as an approach
to the enumeration of particular phylogenetic groups, being replaced by molecular methodologies,
although its value in describing functional groups of gut bacteria remains crucial as discussed further
below. In principle, improved selective approaches could be developed in the future for enumerating
key groups of obligately anaerobic bacteria. This would however require a detailed knowledge of
growth characteristics that is currently lacking. It has proved possible to detect single strains of
butyrate-producing strict anaerobes when introduced into a background of total human gut bacteria
in fermentor simulations, but this relied on introducing antibiotic resistance mutations 137

In contrast, selective culture-based approaches remain of great value for the enumeration of specific
groups, especially the many important pathogens that are facultative anaerobes. The predominant
obligate anaerobes are eliminated under aerobic conditions, and media can be made highly selective
for the relevant target organisms. Furthermore they allow detailed strain typing and characterization,
which is particularly important for pathogens. Magnetic beads carrying antibodies that selectively
bind a given serotype have also been used to enhance recovery of bacteria present in low numbers

eg. for E. coli 0157 .
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c. Isolation and function-based molecular detection
An important benefit from the ability to culture micro-organisms is that functions can be identified

139 Relevant

and putatively associated with phylogroups defined by 16S rRNA (or other) sequences
functions that appear to show limited phylogenetic distribution among organisms that colonise the
human large intestine include methanogenesis (confined to certain Archaea) and sulphate reduction
(certain genera of Proteobacteria). Functions such as butyrate production or lactate utilization occur
within several different phylogenetic groups, but particular subgroups that are responsible for these
traits can be identified and independently targeted '*°. 16S rRNA —based probes and PCR detection
methods that target relevant functional/phylogenetic groups have now provided important
information on responses to dietary change and disease states in a number of studies *** %43,

The use of selective culture media provides an important approach for estimating populations of

organisms concerned with particular functions, especially the utilization of specific substrates** **

or cross-feeding of fermentation products **

. This has led to the isolation and description of new
species with defined functions, e.g. the utilization of lactate 196 “mucin **’ or cellulose **. Isolations
from non-selective media have also been used to identify organisms that produce specific short chain

9

fatty acids **. Isolated strains are providing fundamental information on substrate utilization, and

on microbe-microbe and microbe- host interactions for key members of the microbial community **%

150.

Valuable functional information can also be obtained from studies that combine cultivation of the
mixed community with molecular analyses. One such approach is stable isotope probing, in which
the substrate of interest is labelled, usually with *C, and incubated with mixed faecal
microorganisms. Organisms that utilize the substrate will incorporate 3C label into their RNA and
DNA, and the labelled nucleic acid can be recovered after density gradient centrifugation.
Amplification and sequencing of 16S rRNA genes can then be used to identify the organisms involved.

151
h ="

This approach has been applied successfully to utilization of starc Another approach allows

132 Mixed faecal bacteria

identification of organisms that selectively adhere to insoluble substrates
are incubated with substrate in a fermentor system, and attached bacteria again identified by 16S

rRNA sequencing.

d. Functionally relevant gene targets

One application of functional information from cultured strains has been to identify functional gene
targets that can be used for culture-independent molecular enumeration. In this approach, the
molecular characterization of the community is not based on species or phylotype identity, but on
functional properties. This is extremely useful for functions that can be performed by micro-

organisms from different phylogenetic groups or functions that are only represented in specific
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strains from a species, since these functions cannot be directly extrapolated from species or
phylotype data. For example, it has been shown that most isolated human colonic bacteria that
produce butyrate rely on the butyryl CoA: CoA transferase gene for the final step in butyrate

153, 154

formation . Degenerate PCR primers have now been developed that allow the amplification of

133 Other examples of this approach

this gene from phylogenetically diverse Gram-positive bacteria
are provided by the sulfatase *°® and Archaeal mcrA genes *’. While the same information could in
principle be obtained by metagenomics, such targeted approaches can be quicker and cheaper and

remove the need for extensive bioinformatics.

e. From culturing to 16S rRNA gene characterization of microbial communities.
Although large numbers of bacterial strains are continuously isolated with help of recent innovations

in high throughput microbial cultivation **® and targeted cultivation of microbial groups with specific

142 147

functions such as butyrate production or mucin degradation ~, it is evident that laborious
cultivation approaches are not suitable for studying the diversity and population dynamics of the
gastrointestinal tract microbiota. Therefore, approaches that do not rely on selective cultivation are
indispensable to obtain insight into the true diversity. About two decades ago, Carl Woese *°*°
discovered ribosomal RNA (rRNA) to be an extremely useful phylogenetic marker for microbial
identification and systematics and this has led to the discovery of the Archaea as the third domain of

159,162 (RNA is part of the ribosomes, which are

life and the construction of the famous tree of life
also called the “factories” of protein synthesis. Since ribosomes are universal in structure and
function in all life forms, it has very low mutation and transformation rates. Therefore, differences in
rRNA sequences are inversely correlated to the relatedness between the organisms they derive from
and hence, rRNA is ideal for phylogenetic identification of organisms. From the three rRNA molecules
the small subunit (SSU) RNA or (16S rRNA in Bacteria and Archaea, 18S rRNA in Eukarya) is the most
widely used marker due to its manageable size (approximately 1.5 kb) and its discriminative power. It
contains nine hypervariable regions that enable identification and differentiation of specific species.
Since 16S rRNA and its corresponding gene can be directly obtained from any environmental sample
without cultivation procedures, it has been recognized as a marker to detect and identify basically all
members of the respective ecosystem, including the microbes that have never been obtained in
culture. This has led to the new research expertise called molecular microbial ecology and as a result
the number of nearly complete 16S rRNA sequences in the databases is approximately 1.5 million,
which is far more than what can be found for any other gene *®. A variety of 165 rRNA based
approaches has been developed and include classical cloning and sequencing, fingerprinting, FISH,

and gPCR, which have been employed to determine the bacterial diversity of ecosytems or to detect
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184 1t has to be realized that none of the

and quantify specific bacterial groups in the human Gl tract
approaches gives an unbiased view of the diversity of the microbiota and abundance of its different
members. Therefore, it should be noted that these nowadays called classical approaches are not
competitors of each other, but can best be seen as complementing approaches as they differ in
terms of sensitivity, selectivity and phylogenetic resolution (Figure 5.1).

The most commonly used 16S rRNA approach is the PCR amplification of 16S rRNA genes followed by
subsequent cloning and sequencing to directly access the phylogenetic diversity of bacteria within
the Gl tract using universal primers that cover most currently known microbes . This classical
approach still provides the highest phylogenetic information as nearly complete 16S rRNA genes are
sequenced. Exploring diversity based on sequencing 16S rRNA genes requires a novel different
classification system because cultivation is not involved. Therefore, classical taxonomic approaches,
which include physiological characterization, cannot be applied to classify uncultured microbes into
species. As the 16S rRNA gene is the only marker to detect uncultured microbes, classification is
based on comparative sequence analysis that results in species-level phylogenetic types or
phylotypes. Phylotypes are defined as groups of 16S rRNA gene sequences with a certain level of
similarity. Phylotype definition is based on a cut-off value of 16S rRNA sequence similarity and
currently that is not consistently used with variations between 97 and 99%. As a consequence
different cut-off values will result in different estimates of diversity. Moreover, it has to be
emphasized that 16S rRNA gene sequences and their copy numbers may vary within the same
microbial genome and hence it is difficult to extrapolate 16S rRNA gene numbers to actual cell
numbers. Cloning and sequencing of 16S rRNA genes has been used to characterize a wide variety of
ecosystems, including the Gl tract.

Sequence specific fingerprinting of 16S rRNA genes has also been frequently applied in studying the
Gl tract microbiota composition and population dynamics'®*. These approaches do not provide direct
insight into the microbiota composition, but provide a so-called fingerprint of the 16S rRNA gene
diversity within a sample. Denaturing- and Temperature Gradient Gel Electrophoresis (D/TGGE) as
well as terminal-restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes are the most
commonly applied approaches. Sequence specific separation of 16S rRNA amplicons by D/TGGE
relies on the melting behaviour of melting domains in the amplicons within a temperature or
chemical gradient of a gel while T-RFLP based separation relies on the size of amplicons after being
cut by sequence specific restriction enzymes ***. This results in a banding pattern that represents the
diversity of the different rRNA gene sequences present in the sample. The intensity of a band is a
semi-quantitative measure for the relative abundance of this sequence in the population. The
banding profiles do not provide any phylogenetic information unless amplicons are excised from the

gel and sequenced. The benefit of fingerprinting is that multiple samples can be easily compared and
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provide information about the overall community and its dynamics. Moreover, fingerprinting can
monitor population dynamics of the total community as well as that of specific groups of microbes,
which can be determined by the choice of primers '*°*,

Fingerpinting of 16S rRNA genes or other approaches based on classical PCR do not provide
guantitative information about the microbiota. Real-time or quantitative PCR (qPCR) on the other
hand is a method that is used to quantify the amount of DNA or a gene-of-interest present in
biological samples. During gPCR the amount of DNA produced at the end of each amplification cycle
is quantified using fluorescent technology. In contrast to regular PCR, gPCR focuses on the onset of
the logarithmic phase (threshold) of PCR product accumulation rather than the end-point abundance
of PCR product since this is a more accurate estimate of the amount of PCR product obtained
because it is less affected by the amplification efficiency of the reaction or depletion of reagents. The
power of 16S rRNA gene-specific qPCR is that it can be used to quantify any population of interest

169,170 However, it remains difficult to extrapolate 165

and can target even low abundance microbes
rRNA gene copies to actual numbers due to various numbers of gene copies per species and cell lysis
efficiency that can be different in environmental samples compared to pure cultures. Another 16S
rRNA-specific quantification approach is Fluorescent in situ hybridization (FISH). This is a technique
using a specific fluorescent oligonucleotide probe binding to rRNA in whole cells to detect, identify
and enumerate bacteria in complex ecosystems. FISH using an array of 16S rRNA oligonucleotide
probes can be combined with automated microscopy-based enumeration or flow cytometric
enumeration®’*”3. FISH is the currently the most accurate quantification method as it targets whole
cells rather than extracted DNA. However, cell permeability and ribosome accessibility are crucial for

FISH and the efficiency differs between species. Moreover, FISH quantification of bacteria in tissue is

difficult.

These classical 16S rRNA (gene)-based approaches have already been frequently applied to
characterize the human Gl tract microbiota and due to their relatively low throughput the approach
of choice depended largely on the research question to be addressed. The combination of these
approaches in the different studies resulted in a phylogenetic framework of the Gl tract microbiota.
The pioneering study by Suau and colleagues demonstrated the high diversity of the Gl tract
microbiota of which the fast majority has not been identified by culturing *. These findings have
been confirmed repeatedly, including a recent extensive study that looked at faecal and colonic
mucosa-associated communities 2. A striking observation with most of the studies of cloning and
sequencing approaches have underestimated the number of bifidobacteria and other bacteria
belonging to the phylum Actinobacteria, which is likely due to the mismatches of the most frequently

used “universal primers” to target them in combination with the high G+C content in the genomes of
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Actinobacteria. This became evident when FISH is used to quantify different groups of microbes, as
has been demonstrated by FISH using SSU rRNA-targeted oligonucleotide probes ** %, The first
sequence-specific fingerprinting of Gl tract communities demonstrated that the dominant microbes

175 which has been confirmed

are host-specific and relatively stable in time in healthy adults
frequently. In contrast, Gl tract community structure and that the microbiota composition is unstable
when individuals are suffering from intestinal disorders, such as inflammatory bowel diseases (IBD)
176-180.

Faecal samples have the benefit that they contain a dense microbiota and that they can be easily
collected without invasive procedures. However, a major disadvantage is that feces only represents
the end of the colon as has been demonstrated by comparative analysis with mucosal biopsies from
the intestine 2> 8 Moreover, microbiotas of the small intestine are different in composition
compared to those from the colon, which is most likely explained by the different conditions

183,186,187 This indicates that care must be

microbes encounter in the respective parts of the Gl tract
taken when conclusions about the microbiota in relation to health, disease and diet are solely based

on fecal sample analysis.

f. High throughput 16S rRNA characterization of the microbiota

Since the past years classical 16S rRNA gene based approaches have been complemented by novel
high throughput approaches. These novel approaches provide deeper insight into the microbiota
composition and enable characterization of multiple samples in a high throughput manner, allowing
more and better powered observations. These high throughput approaches include phylogenetic
microarraying and barcoded pyrosequencing. Phylogenetic microarray analysis is based on arrays
spotted with 16S rRNA targeting oligonucleotides that are developed on 16S rRNA gene sequences
that exist in DNA databases. The barcoded pyrosequencing approach is different because it does not
rely on current 16S rRNA gene sequences in databases, but is based on the novel sequencing tools,
454 pyrosequencing, and hence can be considered as de novo community profiling.

The principle of phylogenetic microarray analysis is similar to those of comparative genomics and
transcriptomics. The principle of phylogenetic microarraying is based on a DNA microarray, a glass or
membrane surface of a microscopic slide that is spotted with thousands of covalently linked 16S
rRNA-gene specific probes, which are subsequently hybridized with DNA or RNA for diversity analysis.
In this way thousands of 16S rRNAs or their respective genes can be specifically identified and
qguantified in a single experiment. After publication of the first phylogenetic microarray, specific for
nitrifying bacteria, these microarrays have been implemented in a variety of studies focusing the
microbial diversity different ecosystems, varying from specific microarrays focusing on sulphate

reducers as well as general microarrays covering thousands of microbes *¢*®. Besides general or
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group specific microarrays, ecosystem-specific microarrays have also been developed including those
focusing on the human Gl tract. The first microarray was developed to monitor 40 bacterial species in

191

the GI Tract ~". Afterwards, several phylogenetic microarrays have been developed and applied to

19219 These studies have

study the human GI tract microarray in a high throughput matter
demonstrated the power of phylogenetic microarraying since it combines the power of fingerprinting
and phylogenetic analysis with the quantitative power of FISH in a single analysis per sample.
Another major benefit of phylogenetic microarray analysis is that the array data can be stored in a
database and this allows multiple sample comparisons as has been demonstrated in a recent meta-
analytic study on phylogenetic profiles originating from 1,000 samples **°.

Another high throughput 16S rRNA gene approach that is increasing in popularity is 454 barcoded
pyrosequencing. 454 pyrosequencing in its current status enables the generation of 1 million reads
of approximately 400bp in a single analysis and hence provides far more sequence information than
what is obtained by classical Sanger sequencing. Another major benefit of 454 pyrosequencing and
other novel sequencing technologies is that sequence targets do not have to be cloned prior to
sequence analysis, as the separation of the different sequencing targets is included in these
technologies. By using primers that contain a specific barcode consisting of four or more nucleotides,
amplicons from multiple samples can be analysed concurrently in a single picotiterplate sequence

run can be binned according to their original sample afterwards **’

. This allows the analysis of
multiple samples in a single run. Pyrosequencing of 16S rRNA genes has already been applied
frequently to compare and contrast microbiotas inhabiting various body sites, including the human
GI tract 48, 197—199.

Despite all the advantages of pyrosequencing, it has been established that pyrosequencing
overestimates diversity as has been recently demonstrated 2. Although some strategies for
correcting for sequencing errors have been proposed, it is almost impossible to differentiate
between sequence difference and sequence errors, and thus estimating the diversity when
characterizing microbial ecosystems. However, recently solexa sequencing based microbiota profiling
has been developed %" 2, Solexa sequencing or Illumina sequencing is like 454 pyrosequencing a
high throughput sequencing technique for which mixed templates do not have to be separated by
cloning. Solexa sequencing has a drastically lower error rate and provides far more reads in a single
run compared to 454 pyrosequencing. Another advantage of solexa sequencing is that reads can be
generated in a paired end or mate pair mode. This allows sequencing of different variable regions of
the 16S rRNA gene independent on their location in the gene. However, read sizes are still relatively
short (100 bp) which limits its phylogenetic depth. Nevertheless, the enormous speed in
developments with respect to read length and quantity of read generation, it will be a very promising

approach for future profiling of the microbiota.
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Despite their totally different principle, both high throughput sequencing of 16S rRNA genes and
phylogenetic microarraying give similar microbiota profiles for faecal samples as was demonstrated
for the Human Intestinal Tract Chip (HITChip) 2°* ***. Nevertheless it has to be mentioned that the
dynamic range of the HITChip compares to approximately 200,000 pyrosequences per sample and
that both approaches provide more distinct profiles for the small intestinal microbiota®®® .
Nevertheless, it is evident that both, phylogenetic microarraying and high throughput sequencing of

16S rRNA genes are promising approaches which will help researchers to link specific members of the

microbiota to host characteristics in health and disease.
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Fig 5.1. The full circle rRNA approach.

g. Metagenomics

As indicated above 16S rRNA gene-based approaches provide valuable information about the
identity, number and diversity of microbial communities. However, further insights into the
functional properties of microbes cannot be extrapolated from 16S rRNA and its respective genes. To
get insight into the functional potential encoded in the community, metagenomics approaches are

needed *®

. Metagenomics is defined as the study of genomes recovered from environmental
samples which will provide information about the functional capabilities and the phylogenetic
distribution of an ecosystem. Thus, instead of looking at one genome with classical genomics
approaches, with metagenomics you study the genomes from all microorganisms in an ecosystem
simultaneously. Depending on the research question, metagenomic information can be gathered
from short insert clone libraries (1-10 Kb), large insert clone libraries (20-100 kb) or direct randomly
generated sequences using the novel high throughput sequencing approaches, such as 454
pyrosequencing and Solexa sequencing. Short insert libraries can be used for individual gene-function
screening such as identification of specific enzymatic activities 2°°, while large insert libraries favors

the discovery of multiple genes or operons, potentially linked to phylogenetic markers that

supplement specific functional pathways to the cloning host, which is in most cases Escherichia coli
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27 The benefit of direct random sequencing is that DNA can be directly assessed without any cloning

procedure as indicated previously. In general, metagenomics-based studies can be divided into two

205, 208

main strategies: sequence-based screening and function-based screening . Sequence-based

screening employs large scale sequence determination and mining to unravel gene functions in order

to describe and understand the microbial community %

, while function-based screening mainly
focuses on the identification of gene sequences of clones that were screened for a particular function
or activity in a heterologous expression host.

g.i. Sequence-based metagenomics

Sequence-based metagenomics, or random sequencing of DNA fragments from environmental
samples, can be performed in several ways. One way is to construct a metagomic library and screen
for sequences of interest via PCR or microarray strategies °. When 165 rRNA gene is used as a
screening target, such an approach will unravel some of the genetic potential of specific (uncultured)
microbes as genes flanking the 16S rRNA genes will be sequenced. However, this way of screening
can also be used to screen for the diversity of specific genes, such as those encoding butyryl-
CoA:acetate-CoA transferase in the fecal microbiota **.

Most sequence-based sequencing strategies are based on random shotgun sequencing or random
pyrosequencing or solexa sequencing. The latter ones have been primed by the explosive
developments in sequencing technologies as has been discussed earlier. Random sequencing
strategies generate vast amounts of sequence information which require advanced computational
approaches for assembly and gene-function assignment *® and a large variety of reference genome
sequences from Gl tract bacterial species *'°. The first shotgun sequencing of the human Gl tract
microbiota revealed the discovery of genes that complement our human genome with respect to Gl

tract functionality 2% 2

. The latter study also demonstrated that microbiotas of different individuals
are rather diverse in functional categories in infants, while those in adults are more similar 212
especially between family relatives *®. Recently, deep paired end solexa sequencing of the fecal
microbiota of more than 100 individuals enabled the definition of an intestinal microbiota core-
metagenome, and allowed the detection of gene sets specifically enriched within this microbial
consortium 2*°,

Besides random sequencing of DNA, more specified sequencing of ecosystem members has also been
performed. Transposon-aided capture (TRACA) of plasmids from the human Gl tract microbiota has
been demonstrated to get insight into the mobile metagenome of the human Gl tract microbiota **3
and recently the enormous diversity of our virome has also been revealed by metagenomic
sequencing of virus-like particles isolated from human faeces ***.

It is evident that sequence-based metagenomics of the human GI tract microbiota will expand

drastically the coming years. There are worldwide many initiatives in sequencing this microbiota all
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around the world, including the EU FP7 project MetaHIT (http://www.metahit.eu) and the Human
Microbiome Initiative from the USA (http://nihroadmap.nih.gov/hmp/). All these efforts will result in
a large catalogue of microbial genes that are associated with our Gl tract.

g.ii. Function-based metagenomics

Function-based metagenomics is based on construction of small or large-insert libraries in a cloning
host. In contrast to the random sequencing approach in sequence-based metagenomics, this
approach focuses on screening metagenomes for functional properties that are encoded on cloned
DNA fragments. In order to enable detection of functions, heterologous expression of genes located
in the insert as well as suitable screening assays are needed °®. This might be complicated for
functions that involve multi-gene pathways or that need to be transported across the membrane(s).
Despite these restrictions, function-based metagomics has been successfully applied to screen for
microbial functions in the human Gl tract. Screening the human Gl tract metagenome library for bile
salt hydrolase (BSH) activity has revealed that it is a conserved activity of the microbiota of individual

human hosts that can be found in Bacteria and Archaea **°

. In another study, two cloned inserts
encoding mucin degradation capacity were identified in a fosmid library derived from a human ileum
biopsy specimen of which one of the inserts encoded a putative novel pathway for mucin
degradation with highest similarity to genes from Entercoccus **°.

One of the major problems with functional screening is that large numbers of clones have to be
screened in order to identify one or a few positive clones and therefore, high throughput screening
technologies are crucial. Substrate-Induced Gene Expression (SIGEX), which employs a cloning vector
for operon-trapping and fusion to green fluorescent protein (GFP), is one way of high throughput

screening as it can be coupled to Fluorescence Activated Cell Sorting (FACS) of positive cells 2%, |

na
similar way, a high throughput "intracellular" screening called “metabolite-regulated expression”
METREX was developed, in which metagenomic DNA is cloned into a host cell containing a biosensor
for compounds that induce bacterial quorum sensing **. Neither of these screening systems has
been applied to the Gl tract ecosystem yet, but could be attractive to set-up a screening assay for
induction of microbial gene expression by host-derived substrates such as mucus or specific bacterial
metabolites such as short chain fatty acids.

A novel way to unravel microbial functions in the Gl tract is by cell-line based host-response
phenotype screening **. In this approach fosmid clones were screened for their capacity to induce or
inhibit epithelial-cell proliferation. Specific genes in the fosmid clones were identified by transposon-
mutagenesis and included ABC systems, a glutamate synthase subunit, a RecD homologue, and a V-
type ATPase subunit. In a similar way, several fosmid clones were detected that has an impact on the
NF-kB signaling pathway **°. This revealed the identification of genes encoding an ABC transport

system and lipoprotein with highest similarity to Bacteroides. These examples indicate the power of
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these screening approaches to couple microbial genes to specific functions in the Gl tract. Since
metagenomics uses DNA as a target, it only provides a catalogue of the genetic potential within an
ecosystem. It has to be realized that the presence of a gene or function does not indicate that it will
be expressed in situ. It is even possible that the genetic information originates from dead cells. To
gain insight into the activity of microbes, markers of activity, such as messenger RNA (mRNA),

proteins or metabolites need to serve as targets.

h. Metatranscriptomics
Metatranscriptomics covers the overall or gene-subset-specific transcriptome analysis of microbes

within an ecosystem 2

. With metatranscriptomics the overall gene-expression within a community
is determined which reflects its overall activity. Since bacterial RNA is rather instable, proper storage
of samples, and a direct and efficient RNA isolation protocol are crucial to detect genes that are
expressed in an ecosystem, such as the Gl tract, accurately 222 Moreover, enrichment of mRNA,
which reflects the actual transcript activity, is required since more than 95% of total bacterial RNA
consists of rRNA. This can be done by selective capturing of rRNA or selective exonuclease reaction to
digest specifically rRNA 2% 2%,

Classical transcriptomics is basically done with DNA microarrays or gene-specific Reverse
transcription gPCR (RT-gPCR) which are both well established. However, designing microrrays or
gene-specific gPCR assays for metatranscriptomics of diverse communities is very challenging,
because these require prior knowledge of the genes that are present in the community.

One way to reduce this complexity is designing microarrays that target a specific subgroup of the
community and determine its gene expression in situ. Such an approach has been recently applied by
determining the gene-expression pattern of bifidobacteria in the infant gut by using a mixed species

array of bifidobacteria 2**

. This study demonstrated that genes involved in metabolism of host-
specific substrates, such as mucin or milk oligosaccharides are expressed by the infant bifidobacterial
population in the Gl tract.

Instead of microarrays, other approaches, which do not require prior sequence knowledge, have also
shown to be successful for metatransciptomics of Gl tract communities. cDNA-Amplified Fragment
Length polymorphism (cDNA-AFLP) combined with sequencing of excised amplicons from the gel has
demonstrated to be a powerful fingerprinting approach for microbial gene in the human Gl tract **.
This study indicated that expression profiles differ between subjects and that carbohydrate
metabolism is among the dominantly expressed function by the Gl tract microbiota. Another
powerful metatranscriptomics strategy that does not require prior sequence knowledge is
sequencing of mRNA-derived cDNA since it has been demonstrated that it is able to elucidate

225, 226

transcriptome responses of single organisms under different growth conditions and with
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quantitative accuracy that is comparable to microarrays and RT-qPCR *¥’

. Metatranscriptome analysis
of the fecal microbiota in twin pairs via direct cDNA sequencing showed that Clusters of Orthologous
Groups categories for translation, energy metabolism, chaperones and hypothetical genes with

228

unknown functions were among the highly expressed genes “°. In addition, Gosalbes and colleagues

demonstrated in feces expression of microbial genes involved in carbohydrate metabolism, energy

production and cellular components®**

. Such metatranscriptomics studies are expected to be used
extensively in the near future since technological improvements of sequencing are developing fast. It
should be noted however that bacterial mRNAs have very short half-lives. This means that gene
expression monitored by this approach in faecal samples is likely to reflect the environment of the
faecal sample more than that of the gut itself. A recent study has demonstrated that RNA can also be
directly sequenced without the conversion of RNA into cDNA and by eliminating this step, direct RNA
sequencing will result in more accurate and high-throughput transcript analyses using only

femtomoles of RNA **°

. Although direct RNA sequencing has to date only been demonstrated for
single organisms, such as Saccharomyces cerevisiae, it is evident that this technology opens avenues

for metatransciptomics analysis of complex ecosystems, such as the Gl tract.

i. Metaproteomics

Metaproteomics encompasses the study of the proteome produced by the community in an
ecosystem and is a very powerful strategy for understanding overall microbial-ecosystem functioning
21 Similar to metatranscriptomics, metaproteomics provides insights into the microbiota overall
activity as reflected by its protein profiles. Classical proteome consists of two-dimensional (2D) gel
electrophoresis, often combined matrix assisted laser desorption ionization-time of flight mass
spectometry (MALDI-TOF MS) and the first gut metaproteomics study of the infant microbiota
revealed its metaproteome dynamics and the identification of a bifidobacterial transaldolase 2.
However, a major impetus in metaproteomics of the human Gl tract microbiota came from a novel
high-throughput, non-targeted mass spectrometry (MS) based on the shotgun metaproteomic
approach for detection and identification of all proteins without gel-based separation **. A high
abundance of proteins involved in translation, energy production and carbohydrate metabolism were
among the dominantly produced proteins by the Gl tract microbiota. Recently, it has been
demonstrated that metaproteomics data analysis can even be enhanced by using an approach based
on a synthetic metagenome that combines the power of sequence diversity contained in
metagenomic diversity and the high reliability of predicted proteins®**. Although metaproteomics is

still in its infancy, the technological developments are increasing fast and hence, it is expected that

its application in studying the human Gl tract microbiota will increase in the near future.
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j- Metabonomics/metabolomics

Metabolite profiling can be divided into metabolomics and metabonomics. With metabolomics small
metabolite molecules in complex biological samples, are characterized and quantified, while with
metabonomics the global and dynamic metabolic response to environmental factors or genetic
manipulations of ecosystems or other multicellular biological systems are measured®*. In contrast to
the other meta-omics approaches, metabonomics and metabolomics focus on the produced
metabolites and therefore, cannot be linked to any genetic information. Hence, they do not provide
details about the microbes that are responsible for the produced metabolites. Although the field of
metabolite profiling in ecology is recent, it has already been applied to associate variation in human
metabolic phenotypes to several factors, such as host genotype, age, sex, lifestyle, nutrition, health
status and commensal microbial ***. Metabolic profiling of faecal samples from IBD patients and

27 A recent

healthy controls indicated marked metabolic differences between these groups
correlation analysis of the gut microbiota composition and the variation in metabolic phenotypes
measured in human faecal and urinary samples of seven Chinese individuals suggested profound
host-microbiota symbiotic associations that have an important influence on the global metabolism,
regardless of the genetic background across a range of pathways or environmental conditions of the
host’. In addition, another recent study demonstrated that the gut microbiota plays a crucial role in
the production of metabolites in plasma are predictors of cardiovascular disease risk, while major
shifts have been detected in faecal metabolites in obese subjects on high protein, low carbohydrate
weight loss diets 2% 2, |t is evident that these metabonomics studies, combined with other meta-

omics’ approaches will improve our understanding of host-microbe interactions and how that affects

our global metabolism as a superorganism of human and microbial cells.
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Table 5.1. Overview of approaches to study the microbiome.

Can microbes

Question Approach be identified Main benefit Main Limitation

Data generated

directly?

isolates Cultivation Phenot}/plg Yes Ac.curatlef species Not representative
characterization identification
. Phylogenetic |
16 rRNA gene Cloning and Sanger o Yes Complete 16S rRNA Cloning bias
Sequencing identification gene sequence data
High throughput FITEETEE High throughput data |
16S rRNA gene . R Yes . Short reads
sequencing identification generation
o - Fast comparison i it
microbes are | 165 RNA gene Fingerpinting Community profile No between hviogen
preéletr:;g’;he communities phylogeny
' Dependent on
16S rRNA FISH Cell numbers Yes G 16S rRNA
enumeration databases
Dependent on
163 rRNA gene GPCR BRI e Yes Wide dynamic range 163 rRNA
abundances databases
) ) . Dependent on
16S rRNA gene P St Pl Yes RN 165 rRNA
microarray identification phylogenetic profiling databases
. Function mainly
What community DNA Sequence-bqsed Gene sequences Not always et throughp ut data based on
e metagenomics generation O
microbial predictions
genes are . . ] ] Suitable cloning
resent in the o Functional properties Functional properties
P Cltacty | communityDNA  FUntonbased i gnenge on DNA Not always inked toDNA  "OStsystem and
9 fragment sequences nee?ie d y
. Direct information Community RNA
mRNA Metatranscriptomics Cor:?;J:SltSyic?r?ne Not always about microbial extraction
P activity challenging
Community protein Direct information No uniform
proteins Metaproteomics 0 duc):ltign Not always about microbial protocol for all cell
P activity fractions
What are Gl L
tract metabonomics Metabonomics/ Community No Microbiota activity mri\::?olg]:smg:r;ts
microbes metabolomics metabolite profiles representation function
doing? T
Lactulose . Hydrogen and . ay simpy
Measuring Gl tract Unclear, simple test measure small
Hydrogen Breath . methane breath No . S .
gas production but not validated for intestinal transit
Test content ; . ;
diagnosing SIBO time to cecum
: Poor sensitivity;
Glucose Hydrogen Measuring Glltract Hydrogen breath No Same as above Misses distal
Breath Test gas production content SIRO
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6. DIFFERENCES IN THE MICROBIOME IN FUNCTIONAL BOWEL DISORDERS

Key points

e Very little is known about small bowel commensals.

e Using a conventional cut-off of >10° cfu/ml in duodenal aspirate the incidence of small
intestinal bacterial overgrowth is <5% in IBS, no different from healthy controls

e The lactulose breath test is not validated for diagnosing SIBO and many of the abnormalities
may reflect rapid oro-caecal transit.

e A number of confounding factors, including acid inhibition by concomitant proton pump
inhibitors, may also account for abnormal lactulose breath tests and/or differences in
numbers of bacteria in the small intestine.

e Colonic commensals form complex interrelated communities.

e Heterogeneity of IBS and variation in methods used to study the fecal microbiota has
resulted in conflicting reports of differences from healthy controls

e There are no data on changes in postinfectious IBS but studies of acute gastroenteritis show
a “dysbiosis” with loss of diversity, depletion of anaerobes often associated with overgrowth
of enterobacteria.

e The microbiome may contribute to IBS symptoms by altering gut neuromotor-sensory

function, barrier function, and/or the brain-gut axis.

a. Small Intestine Microbiome in Healthy controls and IBS patients

The hypothesis that overgrowth of bacteria in the small intestine is an important pathogenic
mechanism underlying IBS'*® has generated considerable interest. While breath testing has been the
main diagnostic technique employed to substantiate this hypothesis, the lack of validated criteria for

192 yndermines the ability to draw accurate conclusions (see Chapter 5). The

diagnosing SIBO
following discussion highlights what is known about the small intestine microbiome using classical
culture techniques as well as the recent application of molecular techniques and how these
techniques have influenced the debate concerning SIBO in IBS. The relative advantages and

limitations of these techniques have been outlined in detail above (see Chapter 5).

a.i. Small intestinal microbiome in healthy controls

Culture. Despite the interest in the small intestine microbiota there is relatively little known, largely

223

because of the limited access to this region of the Gl tract Most of what we know has been
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——————————————————————————————————
obtained using culture techniques on effluent and mucosal samples obtained using endoscopic and
radiologic tube/capsule placement in healthy volunteers, samples obtained from trauma patients
and at autopsy, and those from ileostomies (Table 6.1). Despite the well-recognized limitations of

culture techniques'®® %

, important differences compared to the colon have been described. There
are considerably fewer bacteria in the small bowel compared to the colon with a gradient of viable
counts and diversity of organisms from the duodenum to the ileum. Estimates based on cultures are

in the following ranges - duodenum and jejunum 10°* cfu/ml, 10°° cfu/ml in the proximal ileum, 10>

10-12 240-242

8 ¢fu/ml in the terminal ileum, and 10 cfu/ml in the caecum These bacteria are typically
gram positive aerobes proximally, gram negative and positive anaerobes and facultative anaerobes in

the terminal ileum.

Culture-independent analysis. The application of molecular techniques to the study of human small
intestine microbiome is in its relative infancy but emerging studies highlight the potential complexity
of these microbial communities and suggest that previous consideration of this microbiota may be
overly simplistic®®. Studies using 16S rRNA gene libraries and terminal restriction fragment length
polymorphism (T-RFLP) identified jejunal and ileal microbiota consisting of streptococci, lactobacilli,
‘Gammaproteobacteria”, the Enterococcus group and the Bacteroides group. Most species were

3

facultative anaerobes or aerobes . In ileostomy effluent, streptococci, Veillonella, and different

clostridia groups predominate'®’. However, these and other studies also highlighted marked
individual differences in the composition of the microbiota *****, large fluctuations over time even

during a single day suggesting relative instability, possible age related differences, and several

phylotypes not previously identified*®® 187243,

a.ii. Small intestinal microbiome in IBS
Culture. In addition to the general limitations of this technique, two specific issues related to IBS
have presented challenges for diagnosing SIBO in this disorder. Firstly, while many experts suggest

that SIBO should be defined as >10° cfu/ml of colonic bacteria, this definition has not been uniformly

106, 244
d

accepte . Proponents of the SIBO-IBS hypothesis, suggest that these criteria are derived from

studies of major diseases predisposing to SIBO e.g. stagnant loop in Bilroth Il gastrectomy with
associated steatorrhea and may not be relevant to IBS'® 2. Secondly, if the SIBO-IBS hypothesis

depends upon migration of colonic bacteria into the ileum and distal jejunum as initially proposed,

5

sampling the more proximal bowel would not detect these changes **>. There is only one large

115

prospective study of well characterized IBS patients™™ and a few retrospective or small studies of

244, 246-249

patients with probable or possible IBS (where results from small bowel cultures were

obtained (Table 1). Together, these studies show the duodenum and proximal jejunum of most IBS
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patients contains relatively small numbers of bacteria and no obvious differences in content
compared to controls. The largest study did show a significantly greater proportion of patients had >
5 X 10° cfu/ml compared to healthy controls (42% vs. 12%) in a post-hoc analysis but no difference
between groups using a 2 5 X 10° cfu/ml cut-off. A recent preliminary report found similar findings
using the lower cut-off, but identified the IBS patients using Rome Il criteria retrospectively from a
group of patients admitted with upper gastrointestinal bleeding®®. Further studies are needed to
determine the significance of these finding, particularly as increased numbers have been
documented in other diseases '° and in healthy controls. There are currently no studies of patients
which have cultured samples from the distal jejunum and ileum nor systematically applied molecular
techniques in any region of the small intestine to determine whether important qualitative changes

in the microbiota exist.

Culture-independent analysis. To date there are very few studies which have applied these
techniques to the study of the microbiome in IBS patients but these studies should be important in
resolving the debate concerning the role of SIBO in IBS. One study examined jejunal aspirates in
small numbers of IBS patients (n=10) and healthy controls using qPCR combined with culture

1% The molecular analysis did not reveal any differences in total

techniques and breath testing
bacterial counts or the composition of the microbiota including the numbers of colonic-type bacteria

(see however limitations of gPCR above).

37



Rome Foundation Report - Intestinal Microbiota in Functional Bowel Disorders

Table 6.1. Summary of Studies Culturing Small Bowel Microbiome

115, 244, 246-253

Study | Number of patients ~Sample type | Microbiology results " Comments
Drasar et al. 13 diarrhoea, all jejunal capsule no difference from controls; | possible IBS but not
Gut 1969247 investigations no increased numbers defined as IBS
negative pathogens or non-
pathogens
Lewis et al. 23 with functional duodenal endoscopic | mean control count 3.2 x no specific IBS, defined

Dig Dis Sci 199724

bowel disorders

aspirate

102 cfu/ml, no aneraobes,
no sterile samples

as Functional Bowel
Disorders

Corazza et al.

31 chronic

proximal jejunal

10 had SIBO (= 108 cfu/ml

IBS not defined, and

Gastroenterology diarrhoea, no aspirate or colonic bacteria), 2 IBS, 8 | total IBS not clear
1990246 predisposing cause others multiple other

diagnoses
Bardhan et al. Scand 10 controls endoscopic aspirates no positive cultures in positive cultures in 11

J Gastroenterol

4 irritable colon; 22

from proximal jejunum

irritable colons

cases, many post-

1992251 others surgical
Rumessen et al 60 patients proximal jejunal 15 with no predisposing groups poorly defined,
Scand J suspected of SIBO | aspirate cause had no evidence 8 IBS identified and all
Gastroenterol SIBO; of 23 with SIBO, 4 negative for SIBO; 22
1985253 had no predisposing cause | cases considered
inconclusive
Posserud et al. 162 IBS proximal jejunal 4%= 105 cfu, same as no correlation with
Gut 200715 42 controls aspirate controls. Sub-analysis using | motor pattern in IBS
=5x10%,43% IBS vs 12% | group
controls
Sullivan et al. 71BS proximal jejunal biopsy | No differences, flora similar | Colonic pathogen in 2
Anaerobe 200324 20 controls from to normal oropharyngeal healthy subjects
using Watson capsule | flora
Kerckhoffs et al. 8BS proximal jejunal no differences number no differences also
J Clin Gastroenterol 9 controls aspirate diagnosed with SIBO using | using molecular-based
200824 multiple definitions counts
Choung et al. 148 IBS Duodenal endoscopic | 2% IBS > 105 cfu/ml retrospective study
AlimentPharmacolTher | 542 “other aspirate 10% in ‘other’ indications 18% IBS >0 <105
2011252 indications to test cfu/ml
for SIBO”
Pyleris et al 85 IBS Duodenal endoscopic | 37% IBS > 103 cfu/ml All'investigated
Gastroenterology 150 non-IBS aspirate 15.11% non-IBS because of UGI bleed

(Abstract) 2011250

b. SIBO and IBS: Confounding Factors

b.i. Confounding Factors between SIBO and IBS

The lack of consistency in the data linking SIBO to IBS*® raises the possibility of confounding by known

factors such as proton pump inhibitors (PPls), impaired clearance of fasting secretions by disordered

motility or other unknown factors.

b.ii. Could IBS be Linked to SIBO through PPIs?

The use of proton pump inhibitors (PPIs) which is commoner in IBS than controls could be a major

confounder®*

eliminating gastric aci

256-261
d

excluded the use of PPI therapy.

since PPl therapy may promote both gastric bacterial overgrowth®® and SIBO by

. However most studies linking SIBO to IBS have not adjusted for or
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The commonest side effects of PPIs include abdominal pain, bloating, flatulence, constipation, and

diarrhea—symptoms that overlap with IBS**®°

. Recently, a large study from Italy on 200 IBS patients
reported nearly twice the incidence of SIBO as assessed using the glucose breath test among patients
using PPls compared to IBS patients (50% vs. 24.5%), although the frequency in both groups was
higher than in healthy controls (6%)**°. Moreover, Compare et al. performed a prospective study in
patients with reflux disease receiving PPI therapy, and found that 43% developed de novo bloating
after 8 weeks of therapy®*®. After 6 months of PPl treatment, nearly 1 in 5 PPI users had developed
new IBS symptoms. Data also indicate that, among patients with a positive glucose hydrogen breath
test who received rifaximin for eradication, return of a positive breath test is independently

predicted by use of concurrent PPl therapy”®

. Thus, not only might PPI therapy lead to SIBO in some
patients with IBS, but the recurrence of SIBO following antibiotic therapy might be accelerated in the
setting of PPl therapy. In contrast to these various studies in which SIBO was diagnosed using the
glucose breath test, Law and Pimentel reported that PPl therapy did not significantly alter hydrogen
production on lactulose breath tests in IBS patients'’. This may well be because while PPIs alter
small bowel bacteria they do not alter colonic bacteria which is what lactulose breath is largely
assessing’™®. A recent survey of duodenal aspirate and culture in 675 patients in a tertiary care setting

did find about 2% of IBS had SIBO. They also found a positive relationship between PPIs exposure and

indeterminate bacterial growth but not with >10 ° orgs/m|*.

b.iii. Could IBS be Linked to SIBO through Underlying Dysmotility?

The above studies suggest that around 2-4% of IBS have SIBO. It is likely that IBS symptoms are
related, in part, to abnormal intestinal motility which can cause SIBO. Perhaps the most powerful
example is scleroderma, where hypomotility and stagnation lead to SIBO, with attendant defecatory
symptoms and bloating?®, some of which can be improved by antibiotic therapy®®*. Recent data
suggests that IBS-D is associated with fast small bowel transit and that this accounts for the early rise

in breath hydrogen after lactulose as it enters the colon''***

. The observation that antibiotics help
some IBS patients®®® is not necessarily evidence that SIBO causes IBS, since it is more likely that the
antibiotics alter colonic fermentation and that this accounts for the improvement in bloating and
flatulence. As shown in Figure 6.1, when the lactulose hydrogen breath test (LHBT) was combined
with technician scintigraphy to evaluate oro-caecal transit time, it was apparent that 63% of IBS
patients had an abnormal LHBT at 180 minutes, and 35% were abnormal at 180 minutes™*,
However, in almost every case of a positive LHBT (88%), the technician arrived in the cecum before
the LHBT became abnormal, indicating that the early rise in breath hydrogen was due to rapid transit

to the cecum with ensuing fermentation by colonic bacteria, not SIBO. This study is important,

because it demonstrates that the test used to develop the SIBO hypothesis was probably not
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measuring SIBO in the first place, but was simply reflecting fast oro-caecal transit in many IBS
patients. There are other compelling data to support this hypothesis. Posserud and colleagues
performed jejunal aspirates in 126 patients with Rome IIl IBS, and measured LHBT results in a subset

13 The investigators tracked the relationship between these biomarkers and IBS

of 80 patients
symptoms. They found that only 3% of IBS subjects met the traditional >10°> CFU/mL criterion for
SIBO, and only 9% met the less stringent >10° criterion. Similarly, only 6% demonstrated a “double
peak” on lactulose hydrogen breath testing, but 43% had a detectable peak before 90 minutes. For
purposes of this discussion, the most important finding was that patients with a 90-minute rise were
more likely to have severe diarrhoea and loose stools compared to those without a 90-minute rise.
In contrast, the other definitions of SIBO did not correlate IBS symptoms at all, as also found by

Grover and colleagues in a separate study'®.

N\

Expired
H, gas ppm

Test meal
10 g Lactulose

+
20 MBq 99mTc-sulfur
colloid ’

Gamma
camera

e.- collimator

== Cecal radioactivity
Breath hydrogen (ppm)

Threshold
forabnormal | _________ 4 & . __ _ _______
H, breath test

0 90 180
Minutes

Fig 6.1. The LHBT measures small intestinal transit rather than SIBO in IBS patients. Upper schematic
shows ingestion of test meal with subsequent serial measurement of both H, gas, resulting from
fermentation of the lactulose by intestinal bacteria, and Tc99 scanning in the cecum. This latter
measurement detects when the test meal has reached the cecum. The stylized drawing below shows
a representative result from an IBS patient with serial measurements over time. The Tc99 had
already reached the cecum in large quantities before the H, PPM level has reached the threshold for
an abnormal test (see Yu et al. 2011 for details). This demonstrates that the increased H, production

results from fermentation by colonic bacteria, not by abnormal bacteria small intestine (i.e. SIBO).
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b.iv. Other Potential Confounders
There are a range of other confounders that might undermine the causal link between alterations in
small bowel microbiota and IBS. These include variations in antibiotic use, probiotic, prebiotic, or

other dietary ingestions (e.g. fermentable oligo-, di- and mono-saccharides, and polyols [FODMAP]*®”

%%%) in IBS patients vs. controls. There are several studies indicating that antibiotic consumption is

% and that their use is a risk factor for developing IBS*’°. Furthermore

commoner in IBS than controls
their use can be followed by persistent abnormalities in the faecal microbiota even after 60 days*’.
Other factors could involve the effects of low grade inflammation in the small intestine or even

altered immune function®* %",

c. Large Bowel Microbiome in Healthy Controls and IBS patients

The human Gl tract microbiota is very complex in composition, can be influenced many factors
(Figure 6.2), is individual specific and consists of numerous uncultured microbes, as discussed in
Chapter 4. Ten bacterial phyla have been detected in fecal samples from which the Firmicutes,
Bacteroidetes and Actinobacteria dominate?® . Despite the individual variation, a recent paper
suggested that the human Gl tract microbiota can be divided in three robust clusters called
enterotypes that are indicated to be driven by groups of species that together contribute to their
respective preferred community composition?’*. Remarkably, these enterotypes do not appear to be
dependent on features, such as nation, gender, age or body mass index, although these findings are
based on relatively small numbers of subjects.

The Gl tract microbiota may have an important role in the onset and maintenance of IBS, particularly
postinfectious IBS. Several studies have already described the microbiota composition in IBS patients
(Table 6.2) and although differences from controls have been described these are inconsistent and
sometimes contradictory with respect to identification of species associated with IBS.

One of the problems with a meta-analysis of the different IBS studies is the fact that a limited
number of subjects is used. In addition, samples are in general single snapshots from the individuals
and since IBS symptoms are characteristically erratic, analysis of a single sample may be misleading
when it is not linked to symptoms at the time when it is taken.

Another major concern that hampers a detailed analysis is the different methods that have been
used to identify the microbiota as they include selective cultivation, specific targeted gPCR and FISH,
DGGE, G+C - and microarray profiling. In addition, most studies focused on composition analysis of
the microbiota whereas what may be more important is the microbiota function and metabolic and
immunomodulatory activity.

Besides microbiota, detailed description of the patients, such as IBS typing beyond the Rome Il

criteria, IBS symptom scores and diet recordings are often not complete and comparable between
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different studies. In addition, the number of studies itself is very limited considering that more than
half of the studies originate from a single country in which the same cohorts have been used in
multiple studies. Temporal fluctuations in microbiota compositions have been observed in 1BS*”> and
IBD™®, which contrasts to the rather stable community composition in the Gl tract of healthy adults .

However, different enterotypes of the gut microbiota exists®’*

and it would be worth determining
whether IBS features might be linked to enterotype-specific microbes. A recent paper by Rajilic-
Stojanovic et al described that enterotype 3 is significantly more represented in IBS patients
compared to healthy subjects *”° REF IBS is a very heterogeneous disorder, which means that the
correlation with the microbiota might also be heterogeneous, and another recent study found one
subgroup of IBS patients to have a microbiota composition similar to healthy individuals, whereas
another IBS subgroup demonstrated clear differences in their microbiota composition compared to

277

healthy controls and also an association with the clinical profile Moreover, it has been

demonstrated that the microbiota composition represented in the feces does not necessarily

represent other locations in the Gl tract and this adds to the complexity of the ecosystem?® 184 18223,

265, 278

It should be noted that elevated BMI is associated with accelerated colonic transit in IBS and

this may account for the differences in microbiota noted in IBS patients with BMI >25 kg/m?*’°.

Based on the current studies and the difficulty in comparing them, future studies are needed that are
longitudinal, with multiple measurements at regular time intervals. These measurements should at
least include detailed description of IBS patients and their symptoms, have sufficient power with

respect to numbers of IBS patients and matched controls, and include culture-independent high

throughput phylogenetic and functional characterization of the microbiota.
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Fig.6.2. Multiple factors influence the composition of the intestinal microbiota.

Table 6.2. Summary of Culture and Molecular Studies of Colonic Microbiome?? 178 179,275:277,275-294

Subject Sample Method Main finding Country of
study

Balsari et al IBS (n=20) Faeces Culture IBS: ¥ Coliform bacteria Italy
Microbiologica Ctrls (n=20) 4 Lactobacillus spp.
1982280 4 Bifidobacterium spp.
Sietal IBS (n=25) Faeces Culture IBS: {Bifidobacterium China
WJG 2004291 Ctrls (n=25) 1 Enterobacteriaceae

4 C. perfringens
Malinen et al IBS (n=27) Faeces gqPCR IBS: { B.catenulatum Finland
AJG 2005275 Ctrls (n=22) 4 Cl. coccoides group

IBS-D: { Lactobacillus spp.
IBS-C: T Veillonella spp.
1 Lactobacillus spp.

Métto et al FEMS IBS (n=26) Faeces Culture IBS: T Coliform bacteria Finland
Immunol Med Ctrls (n=25) PCR-DGGE 1 aerob/anaerob ratio
Microbiol 2005179 4 temporal stability
Maukonen et al IBS (n=24) Faeces PCR-DGGE, IBS: J temporal stability Finland
J Med Microbiol Ctrls (n=16) Affinity capture IBS-C: ¥ Cl. coccoides group
2006178
Kassinen et al IBS (n=24) Faeces GC-profiling + IBS: { Collinsella Finland
Gastroenterology Ctrls (n=23) sequencing of 16S rRNA aerofaciens
2007283 genes { Cl. cocleatum
gPCR { Coprococcus

eutactus

Subgroup-diff (D,C,M)
Rajili¢é-Stojanovié IBS (n=20) Faeces Microarray IBS: { Bacteroides spp Finland
PhD thesis28 Ctrls (n=20) 1 Bacillaceae
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Kerckhoffs et al IBS (n=41) Faeces FISH IBS: { Bifidobacterium spp. Netherlands
WJG 2009284 Ctrls (n=26) | Duodenal gPCR { B. catenulatum
mucosa
Krogius-Kurikka etal | IBS-D Faeces GC-profiling + IBS-D: T Proteobacteria Finland
BMC Gastro 200925 | (n=10) sequencing of 16S rRNA T Firmicutes
Ctrls (n=23) genes { Actinobacteria
{ Bacteroidetes
Lyraetal IBS (n=20) Faeces qPCR IBS-D: T R. torques 94% Finland
WJG 2009288 Ctrls (n=15) { Cl.thermosuccinogenes 85%
IBS-C: T R. bromii-like
IBS-A: {R. torques 93%
1 Cl. thermosuccinogenes
85%
Tanaetal IBS (n=26) Faeces Culture IBS: T Veillonella spp. Japan
NGM 2010293 Ctrls (n=26) qPCR 1 Lactobacillus spp.
Codling IBS (n=41) Faeces PCR-DGGE IBS: T temporal stability Ireland
Dig Dis Sci 2010282 Ctrls (n=33) | Colonic no sign diff
mucosa fecal/mucosal
Carroll IBS-D Faeces Culture IBS-D: ¥ aerobic bacteria USA
Gut Pathogens (n=10) Colonic qPCR Lactobacillus spp.
2010281 Ctrls (n=10) | biopsies
Noor IBS (n=11) Faeces PCR-DGGE + IBS: { bacterial species UK
BMC Gastro 201027 | Ctrls (n=22) sequencing of 165 rRNA { biodiversity
UC (n=13) genes * biological variability
of predominant
bacteria
Malinen IBS (n=44) Faeces qPCR R. torques 94% - symptom Finland
WJG 201027 severity
Other phylotypes neg assoc.
Ponnusamy et al IBS (n=11) Faeces DGGE + gPCR of 16S 1 diversity in Bacteroidetes & | Korea
JMed Microb 2011288 | Ctrls (n=8) rRNA genes Lactobacilli
1 alanine & pyroglutamic acid
& phenolic compounds
Rinttila et al 2011 Gut | IBS (n=96) Faeces gqPCR IBS: S. aureus (17%) Finland
Pathogens? Ctrls (n=23)
Saulnier et al IBS Faeces 16S metagenomic IBS: T Gammaproteobacteria | United States
Gastroenterology (n=22) sequencing and DNA Classified IBS subtypes using
2011291 Ctrls microarray sets of discriminant bacterial
(n=22) species
(Children)
Rajilic-Stojanovic et IBS Faeces Phylogenetic 16S rRNA | IBS: Proteobacteria and Finland
al Gastroenterology (n=62) microarray and gPCR specific Firmicutes T
2011276 Ctrls Other Firmicutes,
(n=42) Bacteroidetes, and
bifidobacteria |
Carroll et al AJP IBS-D Faeces T-RFLP fingerprinting of | I1BS-D: Diminished microbial USA
201133 (n=16) Colonic 16S rRNA - PCR biodiversity in fecal samples
Ctrls (n=21) | mucosa
Parkes et al NMO IBS-D Colonic FISH IBS: Expansion of mucosa- UK
201224 (n=27) mucosa Confocal microscopy associated microbiota; mainly
IBS-C bacteroides and clostridia;
(n=26) association with IBS
Ctrls (n=26) subgroups and symptoms
Jeffery et al Gut IBS (n=37) Faeces Pyrosequencing 16S Clustering of IBS patients — Sweden
2012277 Ctrls (n=20) rRNA normal-like vs. abnormal

microbiota composition
(increased ratio of Firmicutes
to Bacteroidetes) ; association
with symptom profile
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d. Post infectious IBS and the effect of infections on the gut microbiome

d.i Postinfectious IBS

A healthy commensal microbiota resists pathogen colonisation by occupying the different niches in
the Gl tract and producing a range of antibacterial products including both antibiotics, as well as
metabolites such as short chain fatty acids. Animal studies clearly show that depleting the microbiota
by giving antibiotics can break this colonisation resistance®®>. If the normal resistance is overcome,
the resulting infective gastroenteritis produces a profound depletion of the commensal

296

microbiota®”, though for how long this disruption lasts and how completely recovery occurs, is

unclear. The incidence of infective gastroenteritis in the UK is 19/100 person years>”’, around 1/3™
of episodes are viral (Norovirus / Rotavirus being commonest), the commonest bacterial infection,

Campylobacter and Salmonella accounting for 10% and 3% respectively. Recovery from viral

8

infection is usually rapid with minimal tissue destruction®® while bacterial enteritis breaks the

epithelial barrier exposing TLRs and other bacterial recognition molecules to both pathogen and

commensal bacterial products. This causes acute inflammation and ulceration which may last weeks

and often leaves a prolonged legacy of increased T lymphocytes and enteroendocrine cells*®*.

Animal studies using Salmonella typhimurium and Citrobacter rodentium infection show that
inflammation, induced by either infection or chemical colitis deplete Bacteroidetes and allow
overgrowth of enterobacteria®®. Indeed inducing inflammation may be regarded as a strategy
evolved by pathogens to manipulate the host immune system to inhibit other microbiota and so
create an environment favourable for their own proliferation.

Onset of new IBS symptoms after a bout of infective gastroenteritis is relatively common

301

reported by 6% - 17% of IBS patients>®, while a recent internet survey reported 18%>", with around

40% beginning while travelling. The clinical features of PI-IBS are predominantly those of 1BS—D*** 3%,

A recent meta-analysis pooling 18 studies indicated a relative increased risk of developing IBS 1 year
after bacterial gastroenteritis (mostly Shigella, Campylobacter and Salmonella) Relative Risk (RR)= 6.5
Cl (2.6-15.4), an effect still apparent at 36 months, RR=3.9(3.0-5.0)>*. Viral gastroenteritis, the

commonest cause of acute gastroenteritis®®’ shows a reduced incidence of PI-IBS compared to

305, 306

bacterial infections . The strongest risk factors are bacterial toxicity®”’, prolonged duration of

304

diarrhoea®®, rectal bleeding®® and fever’®. Acute enteritis is associated with a prolonged increase in

mucosal cytotoxic T lymphocytes and increase in enteroendocrine cells**” along with accelerated gut

309

transit and visceral hypersensitivity at 3 months™~. Also a gastrointestinal infection caused by the

non-invasive protozoan Giardia lamblia has recently been found to be a risk factor for the

development of IBS *°.
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d.ii Effects of Gl infections on the microbiome

It is likely that in addition to these effects on gut physiology there will also be changes in the
gut microbiota though detailed microbiological studies of the immediate post infectious period are
limited. An early study of children with acute gastroenteritis demonstrated alkalinisation of stool pH
associated with a fall in amount and variety of bacterial metabolites (short chain fatty acids) and a
fall in numbers of Bacteroides, Bifidobacterium, Lactobacillus and Eubacterium®®. Conventional
enumeration of fecal bacteria showed a 10 fold fall in anaerobes (Bacteroidaceae and Eubacterium),
little change in aerobes but 10° cfu/gm of pathogens. Another study using conventional culture
methods showed a reversal of the normal anaerobe/ aerobe dominance during acute infection®'?,

More recent human studies using modern culture-independent methods have tended to

confirm these findings®® 3'*. PCR-DGGE profiling of 165 rRNA genes showed a reduced diversity,
often associated with a dominant band suggesting overgrowth of one subtype which may not always
be the original pathogen. A recent clinical trial of an oral rehydration solution containing a prebiotic,
amylase resistant starch, in acute diarrhoea in India children aged 3 months to 5 years, used PCR
primers directed at selected bacteria including Eubacterium spp. and Faecalibacterium prausnitzii,
key bacteria involved in starch fermentation. These studies showed a decline in some anaerobes
(Bacteroides spp.,Eubacterium spp. and F. prausnitzii) while other genera including Bifidobacterium
spp. were unchanged®®.

This depletion of anaerobes could be due to acceleration of transit which could lead to a loss
of the anaerobic niche. Since these are the key bacteria involved in colonic salvage of unabsorbed

carbohydrate®®”

this may also contribute to the diarrhoea phenotype by preventing fermentation to
SCFAs. These are known to stimulate colonic salt and water absorption, both directly and by inducing
increased expression of transporters>'3'8. Previous earlier studies in IBS-D suggest impaired SCFA
concentrations and production rates in ex vivo incubation which may also reflect reduced
anaerobes®®.

Another cause of depletion of anaerobes is broad spectrum antibiotics which by inhibiting
certain bacteria reduce colonization resistance to a range of pathogens including Clostridium difficile

269, 270 There are no RCTs but

and Klebsiella occitoca and are known risk factors for IBS
epidemiological studies show an association between antibiotic use and an increased the risk of PI-
IBS. A study of children showed that 3 months after Salmonella infection vomiting, abdominal pain
and diarrhoea were reported by 9.5% of those treated with antibiotics but only 2.9% of those
received no antibiotics>”°. Another study showed that antibiotic treatment for Travellers diarrhoea

321

was associated with a relative risk of 4.1(1.1-15.3)°%, though in neither case can one exclude the

possibility of confounding by indication. Thus obtaining antibiotic treatment could be a marker of
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health anxiety or severity of initial illness which would increase the risk of developing PI-IBS rather

than the antibiotic treatment per se.

e. Pathophysiological mechanisms

e.i. Gut neuromotor-sensory dysfunction

The selective modulation of gut motility and other aspects of gut physiology by components of the
intestinal microbiome (reviewed in Chapter 4) raise therapeutic possibilities to restore altered bowel
habits and visceral sensitivity using probiotic bacteria (Fig 6.3.) Studies in animal models of IBS® have
demonstrated that the probiotic bacterium Lactobacillus paracasei NCC2461, its secreted products,
or metabolites, modulate contractility of intestinal smooth muscle. The probiotics L. rhamnosus
RO011 and L. helveticus R0O052 improved gastric emptying in a model of post-infectious gastric
dysmotility®®. Conditioned media from E. coli Nissle 1917 was shown to modulate contractility of
muscle strips isolated from humans (Bar 09). In animal models, co-administration of conditioned
media from L. paracasei NCC2461 with antibiotics reduced visceral hypersensitivity associated with
the antibiotic treatment and normalized sensory neurotransmitter expression in the myenteric and
submucosal plexuses® . L. acidophilus NCFM and L. paracasei NCC2461 have also shown capacity to

99100 Thys, certain

modulate visceral and pain perception in other models of visceral hypersensitivity
probiotic bacteria, or their products, can directly affect gut motor function in both animals and
humans. It is likely that the pathways affected by these specific probiotics differ according to the
strains and model used, and their effectiveness in attenuating visceral pain in humans remains to be

determined.
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Fig 6.3. Integrated conceptual framework of the pathophysiology of functional disorders.

e.ii Intestinal barrier dysfunction

In addition to being a selective physical barrier, extrinsic factors in the intestinal mucosa such as

2 323

mucin production®*? and secretory immunogloubulin A (sIgA)*?® protect the host from potential

noxious stimuli present in the gut lumen. Intestinal epithelial cells and Paneth cells also secrete a

32 0n one

broad range of antimicrobial peptides including defensins, cathelicidins and calprotectins
hand, the secretion of these agents provides defense against infections®*, but they may also
contribute to shape microbial colonization of the gut. Gnotobiotic studies have revealed that
intestinal bacteria are required for expression of C-type lectins and of functional a-defensins®* 3?¢,
This highlights that bidirectional pathways exist between the host epithelium and its microbiota
(Chapter 4). In a study that included patients with IBD, IBS and healthy controls and investigated
mucosal and faecal bacteria using FISH, adherent bacterial biofilms were detected in a majority of
IBD patients compared to IBS and healthy controls®. Mucosal biofilms were also observed in healthy
volunteers and IBS patients, but bacterial concentrations in both groups were lower than those in
patients with overt inflammation and IBD. No clear bacterial infiltration of the mucosa was observed
in any of the patients, except for areas with mucosal breaks'. In another study in patients with

idiopathic diarrhoea, faecal analysis showed increased mucus strands and reduction in

concentrations of Eu. rectale, Bacteroides, and F. prausnitzii groups >*’. Fecal levels of Human beta-
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defensin-2 (HBD-2) were increased in IBS compared with healthy controls and were similar to those
in the patients with ulcerative colitis’>. Moreover, increased beta-defensin 2 peptide expression was
detected by immunohistochemistry technique in colonic epithelial enterocytes of IBS patients’>.
Overall the results suggest that bacterial-host interactions may be initiated by components of the
microbiota that can cross the mucus and adhere to epithelial cells, inducing activation of the mucosal

innate defense system even in the absence of mucosal destruction.

e.iii Alterations in Gut-Brain Axis

Psychological co-morbidity is common in gut functional disorders®?®. Animal studies have shown that
psychological stress induced by maternal separation induces a shift in the bacterial composition in
the gut and this is accompanied by a systemic cytokine response and increased intestinal

permeability*”®. Recent studies reported behavioural changes in mice in which the microbiota had

331 332-334

been perturbed by dietary alterations**° or antibiotic treatment®*'. Animal models of acute and
chronic gut infection®*> have also shown induction of anxiety-like behaviour. Interestingly, in a model
of anxiety-like behaviour induced by chronic parasitic infection, altered behaviour was reversed by
administration of the probiotic B. longum NCC3001. The probiotic normalized BDNF in the
hippocampus but did not influence the immune response or kynurenine levels**. In a model of non-
infectious colitis, the same probiotic decreased excitability of enteric neurons, suggesting that in this
model it may signal to the CNS by activating vagal pathways at the level of the enteric nervous

3% Similarly, administration of L.rhamnosus (JB-1) in healthy mice promoted exploratory

system
behaviour and altered central GABA mRNA in a vagal-dependent fashion®*’. The results support the
concept that components of the intestinal microbiota can affect the brain biochemistry and
behaviour in adult mice and raise the hypothesis that modulation of the microbiota is a potential
therapeutic approach in psychiatric co-morbidity in IBS. To date, no direct evidence of brain to
microbiome interplay has been reported in humans.

There is, however, indirect evidence that the gut microbiome can affect CNS function in humans.
Oral antibiotics and laxatives, that affect the microbiota, have long been used in clinical practice to

338

treat hepatic encephalopathy™®. The mechanism underlying this dramatic improvement in brain

function in patients is unclear, but animal studies have shown that bacteria can produce a ligand for

33 0n the other hand, patients with depression have altered profiles of

the benzodiazepine receptor
breath hydrogen excretion after ingestion of fructose, and one uncontrolled trial showed that bowel
symptoms and depression scores improved after an elimination diet but whether this is secondary to
improved bowel symptoms or a direct effect is unclear>*. Moreover, fructose malabsorption, which
modifies gut physiology and the composition of the microbiome®?, has been associated with

decreased plasma tryptophan levels**.
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7. THE RELATIONSHIP BETWEEN IBS AND OTHER CHRONIC GASTROINTETSINAL DISORDERS.

Key points:

e Although diverticulitis, IBD or coeliac disease can co-exist with IBS, an “IBS” diagnosis in the
presence of an organic disease may be challenging.

e Symptomatic uncomplicated diverticular disease, celiac disease, and IBD can mimic IBS
symptoms, which should encourage active case finding in people with IBS. Once the
diagnosis of an organic disease is made, “IBS” is generally ruled out, even though coexistence
of IBS and organic diseases seems to be relatively common.

e Chronic Gl disorders share common pathogenic factors, and the insight gained from coeliac
disease and IBD pathogenesis will help us unravel novel mechanisms involved in symptom
generation in IBS. For instance, gluten, the storage protein in wheat that causes celiac
disease in genetically susceptible people, has recently been shown to cause gut dysfunction

in mice and IBS symptoms in the absence of coeliac disease.

a. Introduction.

The most common chronic disorders of the gastrointestinal (Gl) tract, such as IBS, IBD and coeliac
disease share common pathophysiological factors: genetic susceptibility that predisposes to
abnormal or dysregulated host responses to a number of environmental triggers (Fig 7.1). For most
disorders, such as IBS and IBD, it has been difficult to link precisely how these factors interact to
increase disease susceptibility. In the case of coeliac disease we have gained tremendous
understanding on how the triggering agent (gluten in wheat) interacts with genetic factors (HLA-
DQ2/8) to induce a T-cell mediated immune response that causes villous atrophy.

Co-existence of more than one chronic Gl disorder or development of a second illness after diagnosis
of a first one can occur. Moreover, in some cases IBD and celiac disease may initially mimic IBS
symptoms and it may be challenging to distinguish clinically between these disorders. Not
surprisingly, proposed underlying mechanisms such as abnormal immune, barrier or neuro-motor

responses to microbial or dietary antigens are shared between these disorders. (Fig 7.1)
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Fig 7.1. Common factors in the pathogenesis of chronic gut disorders. Chronic disorders of the Gl
tract, including inflammatory bowel disease (IBD), celiac disease (CD) and irritable bowel syndrome
(1BS), share three main pathogenetic pathways: genetic predisposition, abnormal host responses and
exposure to environmental triggers. In CD, the environmental trigger, gliadin, the toxic protein
fraction in gluten, has been identified, as well as the mechanisms of interaction between immune (T-
cell) and genetic factors (HLA DQ2/8). Progress has been made in the understanding of IBD
pathogenesis. The best characterized genetic mutation associated with IBD (NOD2) may predispose
to abnormal host immune responses to the intestinal microbiota. No characteristic genetic mutation
has been associated with IBS, but a variety of genes that regulate innate immune function (TNFSF15,
IL-6), bacterial recognition (TLR-9) and barrier function (CDH-1) have been detected. These genetic
defects may predispose the host to react inappropriately to a variety of environmental triggers such

as the intestinal microbiota or specific food antigens such as gluten.

b. IBS and co-morbidities: Symptom mimicking, overlap or both?

b.i. IBS, Coeliac Disease and Gluten Sensitivity

There is discussion as to whether (a) IBS symptoms and full-blown coeliac disease coexist as two
separate entities, (b) coeliac disease mimics IBS symptoms ruling out “IBS” as a functional entity
when coeliac disease is diagnosed or (c) milder forms of gluten intolerance that may belong to the

spectrum of coeliac disease (“potential celiac disease”) or not (innate or allergic immune responses
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to gluten that will never develop into full blown celiac disease), can cause IBS symptoms (Fig 7.2).
Coeliac disease is a chronic inflammatory disorder of the small intestine in genetically susceptible
individuals, and the only one in which the exact trigger, gluten, has been identified. Its prevalence has

increased substantially in recent years, and this includes both European and North American

343, 344

populations . The increase in prevalence may not only be explained by improved diagnostic

accuracy, and, consequently, environmental factors, some of which may involve alterations in the

344, 345
d

intestinal microbiota, have been propose . Clinically, coeliac disease can present at any age,

346, 347

with a variety of gastrointestinal (Gl) and non-Gl manifestations . Some patients have symptoms

of IBS that respond well to a gluten-free diet but they do not have tissue translgutaminase auto-

antibodies or histological markers (mucosal atrophy) of celiac disease. This entity termed “non-

348-351

coeliac gluten intolerance” or "gluten sensitive IBS” is believed to be very common . A recent

paper by Biesiekierski et al provides evidence that gluten can induce functional symptoms in subjects
without coeliac disease®2. However, the mechanisms through which gluten induces gut dysfunction
in the absence of coeliac disease remain unclear. Using humanized animal models, based on mice

that express the human HLA-DQS8 transgene and are deficient of endogenous mouse MHC class Il

353

molecules™® (HLA-DQ8 and NOD-DQ8 mice), a direct link between gluten-induced activation of

354
d

innate immunity and neuro-muscular dysfunction, was established™”, and these changes were

exacerbated in the presence of dysbiosis**®

. The mechanistic link between gluten as a contributor of
gut dysfunction in humans remains to be investigated, but could involve several pathogenetic
mechanisms that have been proposed for the unselected IBS population. These may include altered
microbiota composition®*®, induction of low grade inflammation that leads to neuromuscular

dysfunction and symptom generation, without the development of frank autoimmunity*>*.
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Fig 7.2. The association between IBS and coeliac disease. IBS symptoms and full-blown CD can
coexist. However, milder forms of gluten sensitivity that may or may not belong to the celiac
spectrum, can cause IBS-like symptoms. Thus, coexistence of both diseases is possible, but because
active CD can cause IBS-like symptoms, this, in itself, rules out “IBS,” as the definition of the
syndrome requires the absence of organic pathology. Similarly as low-grade inflammation and
infectious gastroenteritis, this model proposes mild gluten sensitivity as yet another possible cause of

IBS symptomes.

b.ii. IBS and Inflammatory Bowel Disease

Recently several lines of evidence support some commonalities in the pathogenesis of IBS and IBD.
The role of the intestinal microbiota in IBD has long been recognized. It is generally accepted that IBD
results from a dysregulated immune response to intestinal microbiota, in genetically susceptible
hosts. Consequently, several studies have investigated bacterial communities in IBD. The intestinal
microbiota is altered in patients with IBD compared to healthy controls. Faecal samples from CD
patients display greater temporal instability ** and decreased number of commensal bacteria with
reduction in the Firmicutes phylum, particularly Clostridium leptum group®®. A significant decrease of
bifidobacteria and lactobacilli has also been reported®” **®. On the contrary, patients with active CD

had larger Escherichia coli faecal populations than did patients with quiescent disease or normal
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358 9

controls®*®, with specific increase in enteroadherent E. coli **°. Studies investigating mucosa-

associated microbiota showed larger numbers of bacteria in biopsies from CD patients compared to
controls®” 393 byt their biodiversity was reduced with less prevalent members of Firmicutes®® *%.
In particular, decreases in members of Firmicutes with anti-inflammatory capacity, such as
Faecalibacterium prausnitzii **® were observed. There are controversial reports on the Bacteroidetes

360, 364, 365

in CD patients, with most studies reporting increase while others show decrease in their

counts'®. Moreover, bacterial populations seem to differ in abundance depending on the different

clinical different phenotypes of CD*’

. Studies in UC patients also showed smaller diversity of faecal
microbiota and decrease in total lactobacilli compared to controls'”” **® 3% UC patients were also
reported to have higher concentrations of bacteria, particularly anaerobes, but lower bifidobacteria
counts in colonic biopsies than in healthy controls®® 36336 3% Other studies have detected an
increase in the mucolytic bacteria Ruminococcus gnavus and Ruminococcus torques in
macroscopically and histologically normal intestinal epithelium of both CD and UC. In contrast, the
mucin utilizer Akkermansia mucinphila is frequently found to be decreased in numbers in patients

suffering from inflammatory disorders, such as IBD and appendicitis compared to healthy controls >’

371

It has been suggested that IBS-like symptoms are common in IBD patients in long-standing

remission®’% 3”3

. There is also clinical overlap between IBS and IBD, with IBS-like symptoms frequently
reported in patients before the diagnosis of IBD*"*. It is possible that IBS and IBD coexist with a higher
than expected frequency, or may exist on a continuum, with IBS and IBD at different ends of the
inflammatory spectrum. In fact, a study investigating IBS symptoms in IBD patients who were
thought to be in clinical remission, demonstrated high levels of calprotectin levels, suggesting that in
most cases, IBS symptoms are the result of undetected ongoing inflammation®”. Underlying
mechanistic links are lacking but the intestinal microbiota may be an important factor in both
diseases®’®.

b.iii. IBS-like symptoms following Diverticulitis

While for many patients diverticulosis is an asymptomatic condition, around 1 in 5 have
complications including acute diverticulitis, perforation, abscess/ fistula formation and stricturing®’”
378 Complications are thought to originate from microabscess formation resulting from ingress of
faecal bacteria into the lamina propria via breaches in the epithelial lining of the diverticulum,
possibly due to mechanical factors like impaction of faecal pellets. Risk factors for developing

%80 and low fibre/ fruit and vegetable intake®!. The

diverticulitis include lack of exercise®”®, obesity
dietary risk factors, as well as obesity, would certainly alter the faecal microbiota as well as the

consistency of stool, though which is more important in pathogenesis is unknown. Most attention so
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far has been on evidence that fibre softens stool with no studies describing the changes in faecal
microbiota in diverticular disease.

A high proportion of those hospitalised with acute diverticulitis continue to have persistent
symptoms®*2. The precise mechanism is unclear since many do not have any of the above

383

complications yet have recurrent short lived pain which in some features mimics IBS There is

evidence that inflammation induces prolonged changes in neurochemical coding in experimental

38 and diverticular disease®” with upregulation of tachykinins which in animals can be linked to

colitis
visceral hypersensitivity. An alternative explanation involving changes in the microbiota has been
suggested based on some flawed uncontrolled studies claiming benefit from antibiotics and/or

mesalazine but better studies are needed before any definitive conclusion can be drawn®”".
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8. TREATMENT IMPLICATIONS — ANTIBIOTICS, PROBIOTICS, PREBIOTICS AND SYMBIOTICS

Key points

e A short course of a non-absorbable antibiotic such as rifaximin has been shown to improve
the symptoms of IBS, particularly bloating and flatulence. Improvement persists after the
cessation of treatment but the exact duration of this effect remains uncertain.

e The majority of trials of probiotics in IBS show some degree of efficacy although it has to be
acknowledged that some of the early studies were of very poor quality. It should also be
noted that different symptoms respond to different probiotics and some appear to be much
more effective than others.

e Prebiotics and synbiotics should theoretically have potential in treating functional

gastrointestinal disorders but there is as yet no reliable data to support this view.

As a consequence of the emerging evidence that has already been presented, one potential
treatment approach is to alter the microbiota towards normal, where possible. This goal might be
achieved either by administering an antibiotic or some form of “beneficial” bacteria, usually referred
to as a probiotic. In addition, prebiotics and synbiotics are attracting attention as treatments for

patients with functional Gl disorders.

a. Antibiotics and functional bowel disorders

269, 270

Despite evidence that previous antibiotic use may be related to the development of IBS , as well

as the fact that antibiotic treatment does not reduce digestive symptoms after a bacterial

gastroenteritis 320

, some nonetheless support use of antibiotics in IBS. The antibiotic approach is
based on the contention that a high proportion of patients might exhibit small intestinal bacterial
overgrowth, as measured by lactulose hydrogen breath testing **’. In an attempt to avoid absorption
and side effects, neomycin was the original choice and the clinical response was favourable.
Neomycin led to a 35% improvement in a composite Gl symptom score compared to 11% with
placebo; the effect was most pronounced in those who normalized their lactulose hydrogen breath
test, according to the definition used by the investigators’®” '°. There have also been a number of
mainly small and uncontrolled studies using metronidazole to treat functional gut symptoms, with

386-389

variable success . However, more recently interest has focused on a non-absorbable derivative

of rifampicin, called rifaximin 390
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Rifaximin, which is approved in several counties for treatment of travellers’ diarrhoea caused by non-
invasive strains of Escherichia coli, and to reduce the risk of recurrent hepatic encephalopathy, has an

390

excellent safety profile and minimal drug interactions . To date, there are 3 fully-published, double

266,391,392 The single-centre

blind, placebo controlled trials of rifaximin in functional bowel disorders
study by Shahara and co-workers included a mixed group of patients with abdominal bloating and
flatulence as their predominant symptom, and it is not entirely clear how carefully this group of
individuals was screened for other conditions that could lead to these symptoms. Of the patients
included, 70/124 (56%) fulfilled the Rome Il criteria for IBS **2. Rifaximin was found to be clearly
superior to placebo in reducing bloating and flatulence (symptom relief in 41% vs. 23%), even in the
IBS subgroup, and the symptom improvement was correlated with a reduction in H, breath
excretion. The other placebo-controlled trials where undertaken exclusively in IBS and included

391

patients fulfilling the Rome 1*°* or Rome Il criteria *° for the condition. The most recent of these only

included patients with IBS without constipation 2, whereas all IBS subgroups were included in the

391, 393

previous study, which was mainly performed at one site . The data suggests an improvement in

symptoms, especially bloating and flatus over the 10 weeks following cessation of treatment®® %', |

n
the most recent large study reported in 2011, the therapeutic gain for the primary (i.e. adequate
relief of global IBS symptoms) and key secondary endpoint (i.e. adequate relief of bloating) relative
to placebo was 9-11%, which is at the lower spectrum of what is usually considered to be clinically
relevant ***. However, there was diminished efficacy over the ten-week observation period **®, and at
this stage the efficacy and safety of re-treatment is unclear, even though a recent single-centre chart
review suggested that re-treatment with rifaximin in IBS was successful (as defined using subjective
assessment of retrospective chart review) up to five times without any decrease in duration or effect
3%, these limited data suggest that clinicians will not experience diminishing returns with recurrent
cycles of therapy, but require confirmation in larger, prospective, multi-centre studies. There has also
been a controlled trial comparing the effect of rifaximin to that of activated charcoal in patients with
functional bowel disorders 3%, as well as a number of other uncontrolled studies and retrospective

388, 397400 The doses of rifaximin

chart reviews, reporting mainly positive results with the treatment
used in these studies vary between 600 and 2400mg/day for 7-14 days. There are important
concerns regarding the widespread use of antibiotics for large groups of patients with functional
bowel disorders, not only because of the potential for antibiotic resistance to develop, but also
because of the question whether such treatments could lead to C. difficile infection. However,
resistance does not appear to be a major problem so far *°*, and rifaximin actually appears to have

402, 403

activity against C. difficile , although there are reports of the organism developing resistance to

this antibiotic %% %%,
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To conclude, at this stage there are promising results suggesting that a subgroup of patients with
functional bowel disorders may respond favourably to a short course of gut-specific antibiotics.
Among the symptoms of which patients with functional bowel disorders, bloating and flatulence
appear to be especially responsive to non-absorbable antibiotics. However, in order to safely direct
these treatment options to the appropriate patients, we need to know more about predictors of
treatment responsiveness, the risk of development of antibiotic resistance, the efficacy and safety of

re-treatment schedules and the optimal dosing regimen >°* 3%,

b.Probiotics and functional bowel disorders
Probiotics are live microorganisms, which when administered in adequate amounts confer a health

benefit on the host °

. The most common examples are strains belonging to Lactobacillus spp. and
Bifidobacterium spp., although strains belonging to other species such as non-pathogenic E. coli or
Streptococcus spp. have been used, as well as yeasts. Probiotics can be offered as preparations
containing just one organism or a mixture, and they can be delivered in different formulations. In
order to qualify as a probiotic there must be good scientific evidence that the preparation produces
beneficial effects in humans, as laboratory or animal studies are not sufficient proof of efficacy in
man. Moreover, it is important to realise that the health benefits demonstrated for a specific
microbial strain cannot be extended to other strains of the same species, and the evidence
accumulated for one population group cannot necessarily be extrapolated to other populations of
different age or physiological state *°°.

Probiotic bacteria can have a wide range of activities (Table 8.1), and from animal studies there is
evidence supporting a direct effect on at least some of the putative pathophysiological mechanisms

95, 409

implicated in IBS, such as visceral hypersensitivity *® % %7 4% G| dysmotility , and altered

intestinal permeability **” **°. There are also a small number of human studies, exploring the

potential mechanisms underlying a positive clinical effect, such as effects on gut motility ***%3,

415, 416

intestinal permeability ***, composition as well as the stability of intestinal microbiota and

immune modulation **’.

However these activities can differ considerably between one organism and
another even if, for example, they both belong to the same species. Thus, just because one organism
has a beneficial effect in a condition it does not mean that a similar organism will have similar
activity. Obviously, for use in the field of gastrointestinal disease a particular bacterium needs to be
acid- and enzyme resistant and should survive transit through the gastrointestinal tract maintaining
its beneficial activity until the desired anatomical location is reached. For instance, if activity in the

small bowel is desirable, then the propensity for good adherence to the mucosa seems to be an

advantage and should be maintained. Furthermore, it is also critically important that products
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contain a sufficient quantity of microorganisms needed to provide benefit to the host, which for
some products is questionable **#*%,

In the light of our understanding of the pathophysiology of IBS, many of the activities attributable to
probiotics listed in Table 8.1, suggest potential in the treatment in IBS; this has resulted in thirty fully-
published placebo-controlled clinical trials to date, which are listed in Table 8.2 411-414, 416, 417, 421-445
although it should be noted that in one study two different probiotics were compared with

"7 Unfortunately the design of these trials has varied considerably and some of the older

placebo
studies do not fully meet the standards that would be demanded today. Furthermore, few of these
studies attempted to define the mechanism of action of probiotics or assessed whether any
symptomatic change was accompanied by an effect on the microbiota of the gut itself. However, it is
possible to draw some conclusions. Of the thirty-one studies reported, twenty-three revealed some
degree of symptom improvement, although the individual symptoms varied from study to study, and
the therapeutic gain over placebo was generally modest, at best. In line with this reasoning, the
general conclusion drawn from systematic reviews is that probiotics appear to be efficacious in IBS,
but the magnitude of the benefit remains uncertain and it also remains unclear which strains and
species are most effective. Furthermore, there are important limitations in the existing studies,
including methodological shortcoming and concerns regarding validity of the endpoints employed in

these studies**®*%°

. Moreover, there is heterogeneity in the available data and possible evidence of
funnel plot asymmetry, suggesting there may be publication bias, with an over-representation of
small positive studies in the published literature, and the higher quality studies reported a more
modest treatment effect compared with lower quality trials**®. Thus probiotic bacteria do appear to
have a tangible effect in IBS, although it would seem that the choice of organism may depend on
which symptom is being targeted. For instance, some products mainly affect bloating and flatulence

412,413,437 \yhereas others improve bowel frequency **, and some have a positive effect on a global

Sym ptom score 416,417,424, 428, 432, 443, 444

When evaluating the individual trials, including large number of subjects and relevant endpoints, the
results seems to be somewhat better for a number of Bifidobacterium spp., including B. infantis
35624 417:443.446 ‘B jqctis DN 173010 *** **° and B. bifidum MIMBb75 42 than for some of the other
probiotics. In addition, there are studies of high quality undertaken on sufficient numbers that have

416,424,432 O the other

demonstrated a convincingly positive effect for some of the probiotic mixtures
hand, it has to be acknowledged that some large, high quality trials with negative results have also
been reported*® % *% %2 To date there have only been four published trials of the effects of
probiotic products in children, but all of these have demonstrated a positive result *** #2426 427 \ost
published studies included all subgroups of IBS patients, but some investigations targeted specific

subgroups of IBS patients, such as B. lactis DN 173010 for constipation predominant IBS *'* *?°, the
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412

probiotic mixture VSL#3 for patients with diarrhoea predominant IBS **? or IBS with bloating ***, and

Bacillus coagulans GBI-30, 6086 for diarrhoea predominant IBS *?2.
However there are many questions surrounding this therapeutic approach that still need answering:

e Are single organisms better than mixtures or vice versa?

e Are there any problems associated with taking multiple probiotic preparations?

e What are the best delivery systems in terms of liquids or capsules?

e How can viability and bioavailability be ensured?

e How should optimal doses be determined?

e How long do these preparations have to be given for?

e How often does colonisation of the host occur?

e Given that probiotics are not going to be as potent as pharmacological agents, at what
patient group should they best be targeted?

e Are there any potential drawbacks to this treatment approach — it should be noted that one
study reported an apparent deterioration of symptoms with active treatment compared to
placebo ***.

e Should different probiotics be given to specific subgroups of IBS patients?

e  Which symptoms of IBS should be the main target for therapy with probiotics?

e How should doctors and patients currently be guided regarding advice about their
administration?

To conclude, probiotics in general seem to have a positive, albeit modest, effect in both children and
adults with functional bowel disorders, especially IBS. However, head-to-head comparisons between
different probiotic products would be useful and future trials need to be large scale, high-quality and

use valid endpoints. It would also be useful if such trials could include an exploration of the possible

mechanisms behind symptom improvement.

c. Pre- and synbiotics in functional bowel disorders
Prebiotics were defined in 1995 as “...nondigestible food ingredients that beneficially affect the host
by selectively stimulating the growth and/or activity of one or a limited number of bacterial species

already resident in the colon, and thus attempt to improve host health...” **’

. Recently, this definition
was revisited, and modified to “a selectively fermented ingredient that allows specific changes, both
in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host

hu 450

well-being and healt . A variety of oligosaccharides serve this function and when a prebiotic is

combined with a probiotic it is called a symbiotic.
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So far as prebiotics are concerned, there has only been one double blind placebo-controlled trial in

IBS and this involved the use of a trans-galactooligosaccharide mixture, B-GOS ***.

Compared to
placebo, both doses of this prebiotic (3.5g/day and 7g/day) resulted in symptom reduction, as well as
specifically stimulating the growth of Bifidobacterium spp.. This is an encouraging observation, but
more research is required on dosing and the relative merits of different compounds. With regard to
synbiotics, there are many studies of these preparations but their design has not been sufficiently

452-456

robust to draw firm conclusions . However, combining a prebiotic and a probiotic could, at least

from a theoretical standpoint, increase the ‘potency’ of such a product.

d. Conclusion

From the results of these studies aimed at modifying the microbiota it is possible to draw two
tentative conclusions: Firstly that this approach has therapeutic potential and secondly that if
attempting to change the microbiota can improve symptoms, then this supports the view that there
might be a microbial imbalance in the first place. However, future trials more explicitly address the
guestion of how symptomatic improvement is achieved. Is it mirrored by a change in the microbiota

of the gut or is some other mechanism involved?
Table 8.1. Some effects of probiotics
e Stimulation of anti-inflammatory and immune responses
e Enhancement of epithelial barrier and reduction of bacterial translocation
e Inhibition of growth of pathogens such as Salmonella spp.
e Inhibition of adhesion of viruses such as rotavirus
e Elaboration of active proteins and metabolites with toxin binding, immune modulatory and active

bactericidal activity
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Table 8.2. Placebo-controlled clinical trials of single or mixed probiotic preparations in irritable bowel

syndrome

Studies in adult patients

411-414, 416, 417, 421-445

Organism
S.faecium
L.acidophilus
L.plantarum 299V
L.plantarum 299V
L.plantarum 299V
L.plantarum MF1298
L.rhamnosus GG

L.reuterii ATCC 55730

L.salivarius UCC4331
B.infantis 35624
B.infantis 35624
B.lactis DN-173-010
B.lactis DN-173-010
B.bifidum MIMBb75
Bacillus coagulans
GBI-30, 6086

E.coli Nissle 1917
VSL#3® (x8)*
VSL#3® (x8)*
medilac DS® (x2)*
Mixture (x4)
Mixture (x4)*

LAB4 (x4)*

Mixture (x4)
Mixture (x2)*
ProSymbioFlor® (x2)*
Cultura® (x3)*
Cultura® (x3)*
Mixture (x4)*

Outcome

4 global score

{ global score

{ flatulence

{ pain, “all IBS symptoms”
negative

deterioration of symptoms
negative

negative

negative

{4 pain and composite score
{ pain and composite score
4 digestive discomfort

4 maximum distension & pain
{ global score

J bowel movements

1 treatment satisfaction
{ bloating

{ flatulence

4 pain

{ global score
{ global score
4 global score
negative

{ pain

4 global score
negative
negative

{ pain

Reference

Gade et al 1989425
Halpern et al 1996430
Nobaek et al 200043
Niedzielin et al 2001435
Sen et al 2002439
Ligaarden et al 2010434
O’Sullivan et al 2000438
Niv et al 20054%
O’Mahony et al 2005417
O’Mahony et al 2005417
Whorwell et al 2006443
Guyonnet et al 200742
Agrawal et al 200841
Gugliemetti et al 2011428
Dolin 2009422

Kruis et al 2011445

Kim et al 2003412

Kim et al 2005413

Kim et al 2006433
Kajander et al 2005432
Kajander et al 2008416
Williams et al 2009444
Drouault-Holowacz et al 2008423
Sinn et al 2008441

Enck et al 2008424

Simrén et al 2010440
Sondergaard et al 2011435
Hong et al 2009431

Studies in pediatric patients

Organism
L.rhamnosus GG

L.rhamnosus GG

n
50
104

Outcome
4 abdominal distension

{ pain

Reference
Bausserman et al 200542

Gawronska et al 2007419
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L.rhamnosus GG 141
VSL#3® (x8)* 59

4 pain Francavilla et al 2010414

{ global score Guandalini et al 2010427

S. = Streptococcus; L. = Lactobacillus; B. = Bifidobacterium
* = Number of organisms in a mixture
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9. CLINICAL GUIDANCE REGRADING MODULATION OF INTESTINAL MICROBIOTA IN IBS.

Key points

Summary of Clinical Guidance Regarding Modulation of Intestinal Microbiome in IBS (Fig.9.2)

. There is currently no clinically useful way of identifying whether the microbiota is
disturbed in a particular patient with IBS. As a consequence, any approach that aims to
alter the gut microbiota has, at present, to be undertaken on an empirical basis .

. Attempts to modify the microbiota should start with the safest and most economical
options.
. Dietary evaluation and exclusion of possible sources of unabsorbable carbohydrate

including FODMAPs and excessive fibre should be performed first.

. Prebiotics which stimulate the growth of certain bacteria have possible benefit in
constipation (e.g. lactulose)

. Probiotics have a reasonable evidence base and should be tried, for a period of at least
one month, at adequate doses before a judgment is made about response to treatment.
Since they do not generally colonise the gut, if effective they will probably have to be
administered long term.

. Not all probiotic preparations are necessarily of a standard that would be demanded for
pharmaceuticals and therefore it is essential to ensure that the source of a particular
preparation is completely reliable.

. Probiotics are unlikely to exhibit the potency of pharmacological agents and
consequently are likely to be effective in the less severe cases of IBS.

. The utility of testing for SIBO in the setting of IBS remains an area of uncertainty but the
lactulose breath test is unreliable and should be abandoned.

. If there is good reason to suspect SIBO then the glucose breath test or jejunal aspirate
should be performed.

. Consideration should be given to discontinuing PPIs in those with SIBO.

. There is emerging evidence that non-absorbable antibiotics may have the potential to

reduce symptoms in some patients with IBS.

. The non-absorbable antibiotic with the most evidence is rifaxamin with a number
needed to treat of 11. However, questions remain about duration of treatment, how
long the beneficial effects last, the development of resistance and the long term safety
for the population as a whole. Thus antibiotic therapy should be considered only for
those failing other treatments.

a. Overview of Clinical Considerations
Although the science regarding the role of microbiota in FGIDs is fascinating it remains in its infancy;
there is much left to learn. Despite our ignorance, clinicians faced with a patient still have to make

decisions. This section aims to help clinicians decide on whether to suggest modulators of intestinal
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microbiota to benefit patients with FGIDs, particularly IBS to which most of the limited evidence
applies.

b. Diet
As described in Chapter 4, diet profoundly alters the microbiota since unabsorbed dietary
components provide the nutrients which drive microbial growth. Bloating and diarrhoea have been

387

shown to respond to reducing fibre intake™’ or reducing intake of fructose, fructans and other poorly

» 457

absorbable but fermentable dietary items, the basis of the “FODMAP diet . The great advantage
of such treatments is their undoubted safety and prolonged effect**®. Detailed description of how
these diets alter gut microbiota are lacking but the change in metabolism of lactulose observed with

459

a low residue diet™ is a marker that these diets do alter colonic fermentation, which can be

*8 though they are

considered a marker of altered microbiome. Systematic exclusion diets may help
laborious; it may be more practical to enact targeted exclusion of likely suspects like regularly
consumed dairy, wheat, fruit and vegetables. There are few proper randomized, placebo controlled
trials because of the difficulty in controlling for the placebo effect. One RCT showed bran aggravated

% and hence it would be logical that excluding it would help. Many patients exclude

symptoms*®
lactose, which in lactose malabsorbers will act as a prebiotic and undoubtedly alter the microbiota.
c. Prebiotics

Lactulose was once widely used as a laxative. It is a potent prebiotic which causes a substantial
increase in beta-galactosidase activity and corresponding increased efficiency in metabolising
lactulose during chronic dosing®™. More recently studies assessing directly the changes in fecal
bacteria have confirmed that lactulose induces a significant increase in faecal Bifidobacterium spp.
counts and b-galactosidase activity®®. A novel prebiotic trans-galactooligosaccharide designed to be
preferentially metabolised by bifidobacteria has been shown to increase their number in IBS and

! However inulin

although the study very small, there was a reduction in bloating and flatulence
also increases Bifidobacteria but increases flatulence® as most other studies of prebiotics have
shown. This is likely to be a major limitation of prebiotic therapy in IBS.
d. Probiotics

While a meta-analysis has suggested these do have benefit in IBS, the variability in study design and
probiotic used suggests that this group of very differing treatments is not well suited to a meta-
analytical approach. The studies are often small and poorly designed and since they used unvalidated
endpoints are hard to compare with other established treatments. Furthermore there are many
different probiotics which vary in their effectiveness and mode of action. Many studies include less

than 50 subjects and are obviously underpowered to assess symptoms, which typically need 100-200

subjects per treatment. A recent systematic review reported that studies with poorer quality scores
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tended to show larger effects and published data indicates a publication bias, with non-reporting of
negative effects in small trials**.

Table 9.1. shows studies with >50 subjects per treatment. Only one small study in mixed IBS reported
unfavourable effects with exacerbation of diarrhoea and worsening symptoms even in those with

3 The evidence suggests that other small studies with negative effects have never been

constipation
published. Few studies have assessed the impact on faecal bacteria and hence shown a direct link
between changes in bacteria and symptoms. One study showed a multispecies probiotic containing
Lactobacillus spp., Bifidobacterium spp., and Proprionobacterium spp. showed a fall in a phylotype
with 94% similarity to Ruminococcus torques and increase in certain Clostridium spp.*®'. More
studies which demonstrate the effect of probiotics on faecal microbes are needed to see if these
changes can be reliably linked to symptom improvement. This would help in determining the true
mechanism of action. Several studies have shown a beneficial effect of probiotics on abnormal gut

414, 462, 463

permeability . However although others have linked abnormal permeability to severity of

8 the study in children found no relationship between the effect on permeability and the effect

pain
on symptoms***. However gut permeability may be a worthwhile objective biomarker of probiotic
effect in future studies.

Thus the evidence base is weak and this should be acknowledged when discussing with a patient
whether to try probiotics. Safety in the setting of IBS seems good but at least one study found
symptoms got worse so the patients should be warned about this and told to discontinue if this
happens. At present the strongest evidence is for Bifidobacterium infantis 35624 at a dose of 1 X 10°
cfu/day™. The evidence suggests that this should be taken for at least 4 weeks since the benefit did

appear greater towards the end of the 4 week trial. Much work needs to be done to define who

benefits, what is the best variety of probiotic and what are the best endpoints to determine efficacy.
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Table 9.1. Larger randomized controlled trials of probiotics in IBS.

Probiotic
dose

L. rhamnosus GG &

RCTs probiotics in IBS with >50 subjects per treatment

Reference

Kajander et

Subjects

103 subjects

Duration of
treatment

24 weeks

Outcome
Significant
differences

Improvement in

Comment

No difference

LC705, al 2005432 37% IBS-D composite score | in change in
B breve Bb99 & quality of life
Proprionobacterium (QoL)
Freudenreichii
ssp.Shermanii
0.9x10"° cfu/day
L. rhamnosus GG & Kajander et 86 unselected 20 weeks Composite IBS
LC705, al 2008416 treatment score decreased
B breve Bb99 & + 3 weeks
Proprionobacterium follow-up
Freudenreichii
ssp.Shermanii
0.48x10" cfu/day
Bifidobacterium Whorwell et | 362 unselected 4 weeks Decrease in Formulation
infantis al 2006443 58% IBS-D treatment | composite problem with
1x10°, 10° & 10" + 2 weeks symptom score 10" cfu/day
cfu/day follow-up + pain dose
discomfort with
10® cfu/day dose
only
Fermented milk Guyonnetet | 274 6 weeks Significant Subgroup with
containing al 2007420 IBS-C difference in <3 BM/wk
Bifidobacterium “responder” responded
animalis rate at 3 but not | better with
1.25x10", cfu/day 6 weeks EBM/wk & &
Streptococcus responder rate
thermophilus & L.
bulgaircus 1.2x10°,
cfu/day compared to
heat killed yoghurt
Bifidobacterium Drouault- 116 IBS 4 weeks No difference in | Increased stool
Longum, Lactobacillus Holowacz et | Rome ll symptoms of IBS | frequency in
acidophilus, al 200842 IBS-C
Lactobacillus lactis,
Streptococcus
thermo[f)hilus
13x10" in total
Escherichia coli lysate Enck et al 298 IBS 8 weeks Abdominal pain | Responder =
2009424 score fell absence of
Responder rate abdominal pain
18% active vs. on 1 or more
5% placebo weeks
Yoghurt (Lactobacillus Simrenetal | 74 1BS 8 weeks No difference in | Benefit
paracaseii ssp. 2010440 Rome Il responder rate appeared
paracasei, Lactobacillus transient,
acidophilus & maximum in
Bifidobacterium lactis) weeks 1-3
All 5x10” cfu daily
Lactobacillus Francavilla 141 children 8 weeks “Significant Active reduced
rhamnosus et al 2010%% | with abdominal reduction in % with
GG 3x10° twice daily pain pain” 72% active | abnormal
vs. 53% placebo | permeability by
40% vs. 21% on
placebo
Bifidobacterium Guglielmetti | 122 8 weeks Composite score | Responder=
bifidum MIMBb75 etal 201148 | mild/moderate (0-6) fell 0.8 on -~
IBS unselected active versus 0.2 .
(59% mixed) on placebo point on 0-6
global scale for
50% of weeks
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57% active
versus 21%
placebo

Escherichia coli Nissle Kruis et al 120 IBS Rome Il | 12 weeks Higher

1917 201145 treatment
satisfaction
weeks 11 & 12

e. Treatments altering Motility
An alternative approach to manipulating the microbiota would be to alter intestinal transit which can
itself alter intestinal microbiota, as previously discussed in Section 4. It is well-established that

motility is abnormal in many IBS patients and therapies that address motility improve IBS symptoms.

465 466

Thus alosetron slows transit in IBS™>, while linaclotide™”, Iubiprostone467, and tegaserod468 all
accelerate transit in IBS-C, and all have high quality randomized controlled trials supporting their
efficacy in IBS. However only one study using loperamide has examined the impact on the
microbiome®. Future research should evaluate whether these effective treatments alter the gut

microbiota and whether these changes correlate with symptom improvement.

f. Discontinuing Proton Pump Inhibitor (PPI) Therapy
Over 40% of reflux patients starting PPI therapy develop bloating after 8 weeks of therapy, and that 1
in 5 meet Rome Ill criteria for IBS after 6 months of PPI use (without meeting criteria at baseline)®®.
Furthermore, data also reveal that return of an abnormal glucose breath test in IBS following

%62 Thus clinicians

rifaximin therapy is independently predicted by use of concurrent PPl therapy
should, where possible, consider discontinuing PPl therapy in IBS patients and perhaps replacing with

less potent acid suppression such as H, blockers or antacids.

g. Antibiotics Therapies in IBS
Given the rapid development of antibiotic resistance whenever antibiotics are widely used the use of
antibiotics in a condition as ubiquitous as IBS seems problematic, particularly as the condition is
chronic and the treatment seems likely to be given repeatedly since the benefit appears to be
wearing off by 12 weeks”®. However if intestinal microbiota are an important cause of IBS (or FGID)
symptoms, then it would seem reasonable to employ gut-directed antibiotics in a carefully selected
group of IBS patients. Various antibiotics have been employed in IBS but the early trials were poorly
designed and underpowered. The best evidence comes from two large RCTs of the poorly absorbed,

266

broad spectrum antibiotic, rifaximin 550 mg, thrice daily for 2 weeks More patients in the

rifaximin group achieved adequate relief of IBS symptoms during the 4 week period after treatment
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compared to those receiving placebo (40.7% versus 31.7%, P<0.001); treated patients also had a
higher response rate for bloating (40.2% versus 30.3%, P<0.001). Of note, the investigators did not
test patients for small intestinal bacterial overgrowth (SIBO) in advance of treatment. The rationale
for empiric treatment was not described by the authors and indeed the evidence discussed above
(Chapter 6) suggests that the antibiotic effect was most likely mediated via effects on colonic
bacteria rather than those in the small bowel. Although rifaximin was superior to placebo, the
number-needed-to-treat (NNT) was 11 which is on par or worse than most other potential
treatments. Table 9.2. shows the NNT from recent trials in which the methodology is comparable
suggesting that at 11 the NNT for rifaximin is at the high end of treatments shown to be better than
placebo, while fig. 9.1. shows the trade-off between effectiveness versus invasiveness/safety of

treatments that modulate intestinal microbiota 26% #6474,

Table 9.2. Number Needed to Treat (NNT) for Irritable Bowel Syndrome (IBS).

IBS Treatment NNT vs. Placebo’ References
“Placebo without deception™ 4 474
Alosetron 8 469
Linaclotide™ 8 473
Rifaximin 11 266
Lubiprostone 12 470472
Tegaserod 14 47

***”Placebo without deception” involves giving a placebo and actively informing the patient that it is
an inactive agent. Patients were informed that they received “placebo pills made of an inert
substance, like sugar pills, that have been shown in clinical studies to produce significant
improvement in IBS symptoms through mind-body self-healing processes.” Compared to no

treatment, this approach was highly effective in a well-documented randomized controlled trial*’*.
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Less Effective > More Effective

More Invasive
and/or Less Safe

Gut-directed
Antibiotics

Prebiotics

Systematic
Exclusion Diets

FODMAP Diet

Less Invasive Stopping PPls
and/or Safer

Fig 9.1. Effectiveness vs. invasiveness/safety of treatments that modulate intestinal microbiota in

irritable bowel syndrome (IBS)

h. Potential Risks of Gut-Directed Antibiotic Use in Clinical Practice

Although rifaximin appears to be well tolerated and safe, given its relatively low potency it is
important to consider its downside. Rifaximin use can promote rifampin-resistant strains of
staphylococci which remained resistant for at least 9 weeks implying that there is no fitness cost to
the resistance mutation that emerges*®. This is potentially problematic, because rifampin is a vital
treatment for management of staphyloccal foreign body infections such as prosthetic valve
endocarditis or prosthetic joint infections. Although IBS patients are themselves unlikely to develop
staphylococci foreign body infections, they could potentially harbour and transmit resistant strains,
though further research is needed to reproduce these initial findings and establish the clinical

importance of the results.
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Fig 9.2. Different ways to modulate gut microbiota.
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10. CONCLUSIONS & RECOMMENDATIONS FOR FUTURE RESEARCH AND DEVELOPMENT

In this review we critically discussed the latest developments in the understanding of the role of
intestinal ecosystem and the efficacy of microbiota directed therapies in functional bowel
disorders. Several observations suggest that gut bacteria are important in the pathophysiology of
functional bowel disorders in some patients. These include: 1) evidence of both qualitative and
guantitative changes in intestinal microbiota in IBS; 2) the well-established role enteric infection
in the development of IBS symptoms in predisposed individuals and 3) data supporting the
evidence that microbiota modulation with probiotics and non-absorbable antibiotics may provide
some beneficial effects in subgroups of patients. Nonetheless, as we acknowledge the
importance of these recent developments, we also realize that the field is in its infancy and a

number of both basic and clinical key issues remain to be addressed in the future.

Since the diversity of gut bacteria is under-represented by characterized cultured isolates, the
introduction of modern molecular techniques has offered the opportunity to obtain novel
information on the phylogenetic and functional properties of microbial ecosystems in health and

7% However, this enormous technological potential has been so far only applied to

disease states
the field of functional bowel disorders in a limited way. Thus, a deeper phylogenetic
characterization of microbiota through high throughput sequencing or phylogenetic
microarraying is crucial in future studies. We need to know more about mucosal ecological
niches in patients with functional bowel disorders since the vast majority of studies are currently
based on faecal samples, which may not representative of the microbiota throughout the
intestine. Microbes embedded in the mucous layer likely form a different microbial ecosystem
retaining important properties in the regulation expression of host genes (eg, TLR) and epithelial,

33,18 The controversial SIBO

endocrine and immune physiological functions of the intestine
hypothesis in patients with IBS could also take advantage of modern molecular techniques. In
fact, currently the SIBO hypothesis is largely based on findings obtained with the lactulose breath
test which has poor sensitivity and limited ability to discriminate the detection of ileal as

13 The study by Posserud et al. provided no evidence of clear-cut

opposed to caecal bacteria
jejunal bacterial overgrowth in patients with IBS compared with controls. However, interestingly
enough this study showed sub-threshold increases in cultivable microbes'*> which are worth

further characterization with high throughput culture-independent technologies.
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Despite the need of a deeper characterization of qualitative and quantitative microbiota changes
in functional bowel disorders, a phylogenetic approach alone may turn out to be insufficient to
elucidate if microbiota changes are cause or consequence of altered bowel physiology. Time has
come to move on and direct research to the characterization of functional properties of
microbiota in functional bowel disorders. This type of research can take advantage now of a wide
range of novel tools including metagenomic, metatranscriptomics, metaproteomics,
metabonomic techniques®’*. These studies should be also extended to the identification of the
impact of regulatory signals produced by intestinal bacteria to the epithelium, immune system
and enteric nerves. In turn, these mechanistic as opposed to descriptive studies could provide
novel insights on the role of intestinal bacteria in the pathophysiology of functional bowel
disorders. One field of particular interest is related to gut immunity. Microbiota is a driving force
for the mucosal immune system and several recent studies have pointed out the presence of low
grade immune activation in patients with IBS *2. It has been hypothesized that low grade
inflammation in IBS may occur as a consequence of exaggerated exposure of the immune system
to luminal bacterial antigens through a leaky epithelial barrier*”> . Data showing increased
expression of TLR recognising pathogen associated molecular patterns in patients with IBS as
compared with healthy controls, is in line with this concept and suggest the existence of altered
host-microbiota and the innate immune system interactions. Mucosal release of antimicrobial
substances such as defensins produced by Paneth cells represent another extremely exciting

field of study deserving further attention®’.

Since host-bacterial interactions is a dynamic process, particularly in diseases states, there is also
a need for longitudinal or interventional studies assessing the role of microbiota and diet, the
relationship of changes in microbiotia to remission and symptom flare-ups, and stress, infection
or therapeutic modulation (e.g. probiotics, prebiotics, antibiotics). The demonstration of a

7 and the existence of a systemic immune response to

bidirectional brain-gut-microbial axis*’
microbial luminal antigens (anti-flagellin antibodies)*’® points out that microbial homeostasis
may be perturbed beyond the gastrointestinal tract and opens the field to novel avenues which

could not be even imaginable only few years ago.

The wide heterogeneity of functional bowel disorders and the inter-individual variability of
microbiota profiles suggest that larger sample size studies will be of key importance in the future.
In addition, a recent study demonstrated that the microbiota in humans can be divided into
enterotypes 2’* and hence, typing patients based on their enterotype could be as important as

typing them for other phenotypic and genotypic characteristics in relation to health and disease.
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Moreover, microbiota signatures can be developed to contribute to IBS diagnostics and
segmentation. When cause-effects have been established then they offer the potential to
develop therapeutic avenues. Attention should also be directed to accurate characterization of
patient’s symptom and, whenever possible, studies should be stratified by factors known to
affect intestinal microbiota. As detailed in Chapter 4, this should include primarily the effect of
age and diet. In particular, diet has powerful influences on gut microbiota and dietary
manipulation is often employed by both patients and clinicians in the attempt to improve
symptoms. Researchers should also consider the potential confounding effect of previous or
concomitant use of drugs with potential interference on intestinal microbiota including

antibiotics, probiotics, laxatives, prokinetcs, proton pump inhibitors and mesalazine.

Currently, there are promising results suggesting that a subgroup of patients with functional
bowel disorders may respond favourably to a short course of gut-specific antibiotics. Among the
symptoms, bloating and flatulence appear to be especially responsive to non-absorbable
antibiotics. However, in order to safely direct these treatment options to the appropriate
patients, we need to know more about, predictors of treatment responsiveness, the risk of
development of antibiotic resistance, the efficacy and safety of re-treatment schedules and the

393,394

optimal dosing regimen . Further studies should also investigate the mechanism and site of

action of non-absorbable antibiotics since amelioration of gas-related symptoms in patients

32 probiotics in general seem to have a

occurred also in patients with no evidence of SIBO
positive, albeit modest, effect in both children and adults with functional bowel disorders,
especially IBS. However, head-to-head comparisons between different probiotic products would
be useful and future trials need to be large scale, high-quality and use valid endpoints. It would
also be useful if such trials could include an exploration of the possible mechanisms behind

symptom improvement.

To conclude, a better definition of the role of intestinal microbiota in the pathogenesis,
pathophysiology of functional bowel diseases represents a challenge for the future. Although
promising, therapeutic implications will need to be better defined in well conducted large trials.
A strict cooperation of experienced clinical researchers with microbial ecologists should be

considered an important factor for the success of these future studies.
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