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SUPPLEMENTAL METHODS

1 Three-dimensional finite element mesh of cardiomyocyte

Fig. S1 shows the structure of a 3D model of the myocyte (CTR model). To reduce the computational

cost, we modeled a segment containing only three myofibrils of one sarcomere length, together with

the adjacent cell membrane and organelle (Fig. S1, left panel). The rationale behind such modeling

is the longitudinal periodicity and axial symmetry of the myocyte. We assumed a cylindrical myocyte

containing 40 myofibrils, and three radially arranged myofibrils occupied the space between the cell

membrane and the center of the myocyte. At the final stage, further reductions were implemented to

include only one quarter of this model for analysis (halved in both length and width). The 3D structure

was modeled with a hexahedral solid finite element.

Figure S 1: Finite element mesh

1.1 Mesh construction

Construction of mesh that is sufficiently fine to reproduce every detail of the subcellular component is

impractical. Therefore, first, we constructed a mesh expressing the three major volume fractions, namely,

the myofibril, mitochondrion, and the remaining components. The cytosolic reaction-diffusion field was

defined in the whole mesh. Second, small subcellular components were located at the appropriate nodes
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to reproduce the anatomical structure. These subcellular components shared their fractional volumes

as double nodes. Fig. S1 shows the constructed mesh in which The JSR node is shown in light blue,

the NSR node is shown in blue, the membrane and t-tubule node are shown in yellow, mitochondria are

shown in green, myofibril is shown in red, and other structures are transparent. The second left panel

shows Ca2+ transport pathways from the NSR to JSR. In the right panels, the model is decomposed to

show the distribution of myofibril and mitochondria in the 3D structure of the whole model.

The functional volume of each node was defined by finite-element integration of the volume of func-

tional elements such as myofibrils, mitochondria, and the cytosol. Uptake and release by the subcellular

components are expressed as the flux between the functional volumes at the node.

Finally, to investigate the effect of the gap between the JSR Ca2+ release site and mitochondria,

mesh near the gap was finer. The model consisted of 1861 nodes and 581 elements. The total number

of degrees of freedom was 6164 for mechanical analysis and approximately 20,000 for reaction-diffusion

simulation.

2 Reaction-diffusion equations

2.1 Governing Equations

Numerical studies have investigated Ca2+ dynamics in 3D space with reaction-diffusion equations [1,

2, 3, 4]. The current study adopted these formulas for calculating the transport and exchange of

metabolites, ions, and signaling molecules (substrates). The multiple reaction-diffusion fields for six

substrates, namely Ca2+, creatine (Cr), creatine phosphate (CP), inorganic phosphate (Pi), adenosine

tri-phosphate (ATP) and adenosine di-phosphate (ADP) were defined in the cytosolic space as follows.

∂cαi
∂t

= ∇ · (Dα
i ∇cαi ) + fα

i (ci) (1)

Here, α indicates each of the six substrates, i indicates the location, Dα is a diagonal matrix containing

the diffusivity of the substrate α, cα is the concentration of the substrate α, and fα
i is the function

describing the reaction involving the substrate α at the loci i dependent on all the substrates concentra-

tions ci. We adopted the functional forms from the model by Cortassa et al. [5]. Details of functional

forms will be described in section 4. The diffusion coefficients used in this study are shown in Table S1.

We solved the reaction-diffusion equations of Ca2+ inside the mitochondrial matrix separately be-

cause a significant gradient is expected. The mitochondrial inner membrane potential was shared by all

the nodes in a mitochondrion. Considering the dense structure of cristae in cardiac mitochondria, we

reduced the diffusion coefficient to 1/100 of the cytosol.
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Substrate axial D transverse D reference

Ca2+ 0.300 0.1880 [2, 3, 4, 7]

Cr 0.149 0.0936 [6, 7]

CP 0.114 0.0713 [6, 7]

Pi 0.140 0.0877 [6, 7]

ADP 0.078 0.0490 [6, 7]

ATP 0.083 0.0520 [6, 7]

Table S 1: Diffusion coefficients

3 Mechanical simulation

The cardiomyocyte is composed of multiple subcellular components, each having distinct material

properties in terms of the stress-strain relationship and bulk modulus. Furthermore, the excitation-

contraction mechanism introduces time-varying anisotropic stiffness in the myofibril, which in turn

creates a heterogeneous force field in the cellular space. To treat such a complex object in a unified way,

we needed to apply a mixed finite element method based on the perturbed Lagrange-multiplier method.

The governing equations are:∫
V

(
2
∂W

∂C
+ λJC−1

)
: δEdV +

∫
St

t̃b · δudS = 0 (2)∫
V

δλ

{
(J − 1)− 2λ

κ

}
dV = 0 (3)

where W denotes strain energy function, C denotes right Cauchy-Green deformation tensor, J denotes

volume change (J = 1/2det(C))

E denotes Green-Lagrange strain tensor, S denotes second Piola-Kirchhoff stress tensor (with assump-

tion of hyper-elastisity, S = 2∂W
∂C ), u is displacement, λ is a Lagrange multiplier for volumetric con-

straint (corresponding to −1
2 of the pressure), V is analysis volume, κ is bulk modulus, t̃b is the stress

boundary condition, and St is the surface where the stress boundary condition is defined.

Eq. (2) is the equilibrium equation and eq. (3) is the compressibility control condition. We solved

eqns. (2) and (3), which are nonlinear equations of two variables (u,λ), by using finite element methods.

3.1 Constitutive equation for mitochondria and other components

Mitochondria and other intracellular components excluding myofibrils were regarded as isotropic soft

tissue. The following constitutive equation for Mooney-Rivlin material using reduced invariants was

applied.

W = c1(Ĩ1 − 3) + c3(Ĩ1 − 3)2 + c7(Ĩ1 − 3)2(Ĩ2 − 3)

where Ĩi is i
th reduced invariants of C. We used parameters in Table S2, which were fitted for bioma-

terials [13].
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Table S 2: Constants of Mooney-Rivlin material[13]unit( N/µm2)

c1 c3 c7

0.7×10−11 0.32×10−9 0.7×10−11

3.2 Constitutive equation for myofibrils

To characterize the time-varying material properties of myofibrils, we adopted a constitutive equation for

myocardium described by Watanabe et al.[13], which combines the passive property model by Humphrey

et al. [14] and the active property model by Lin and Yin. [15]. Parameters were modified according to

the experimental data of a single myofibril by Linke et al. [16]and Akiyama et al. [17] The strain-energy

function of myofibrils is expressed as a sum of a passive part (Wp) and an active part (Wa) as follows

and the parameters of the active part are the functions of activation level Fr:

α =
√
I4 (4)

W = Wp +Wa (5)

Wp = cp1(α− 1)2 + cp2(α− 1)3 + cp3(I1 − 3) + cp4(I1 − 3)(α− 1) + cp5(I1 − 3)2 (6)

Wa = ca0 + ca1(I1 − 3)(I4 − 1) + ca2(I1 − 3)2 + ca3(I4 − 1)2 + ca4(I1 − 3) (7)

where ca0 = ca00Fr, ca1 = ca10Fr, ca2 = ca20Fr, ca3 = ca30Fr, ca4 = ca40F
2
r , and Fr: normalized force

for the activation level Fr = force/forcemax, forcemax= 0.1 N mm−2.

Table S 3: Constants of myofibril model (N/µm2)

cp1 cp2 cp3 cp4 cp5

12.32×10−9 12.96×10−9 2.872×10−9 -7.76×10−9 6.64×10−9

ca0 ca1 ca2 ca3 ca4

3.08×10−9 3.24×10−9 0.359×10−9 -1.94×10−9 3.32×10−9

4 Reaction term of each subcellular component

Equations and parameter values are from Cortassa et al. [5], except for the values with remarks and

comments.
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4.1 General parameters

F 96.5 C/mmol Faraday constant.

T 310 K Absolute temperature.

R 8.314 J mol−1K−1 Universal gas constant.∑
membrane

area =
∑

t−tubule

area = 7.5× 10−9 cm2

∑
volcyto = 3.375 nL (100.00 %)∑
volmito = 1.174 nL ( 34.70 %)∑
volmyo = 1.819 nL ( 53.9 %)∑
volJSR = 1.114 pL ( 0.033%)∑
volNSR = 0.103 nL ( 3.05 %)

where
∑
∗∗∗

area means the sum of the area, which belong to ∗ ∗ ∗ , and
∑

vol∗∗∗ means the sum of the

volume, which belong to ∗ ∗ ∗.

4.2 Cytosolic reaction

Reaction terms of cytosol fcyto become:

fADP
cyto = −fATP

cyto = +VCK + VcytATPase (8)

fCr
cyto = −fCP

cyto = −VCK (9)

fPi
cyto = +VcytATPase (10)

VCK is creatine kinase reaction and VcytATPase is basal metabolism. These parameters are described

later in this section.

Cytosolic Ca2+buffer Cytosolic Ca2+ buffer affects Ca2+ dynamics. The reaction-diffusion equation

was modified to include this effect.

∂[Ca2+]cyto
∂t

=

(
1 +

Kcyto
CMDN[CMDN ]cytotot

(Kcyto
CMDN + [Ca2+]cyto)2

)−1

(DCa2+∇2[Ca2+]cyto + fCa2+) (11)

Creatine kinase reaction Creatine kinase reactions are present in the cytosol, which is colocalized

with mitochondria, the M-line, NSR, and membrane.

VCK = k∗∗∗CK

(
[ATP][Cr]− [ADP][CP]

Keq

)
(12)

where ∗ ∗ ∗ denotes either mitochondria, M-line, NSR, or membrane.
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Basal metabolism The basal cytosolic ATP consumption rate was assumed to be homogeneous

throughout the cytoplasm.

VcytATPase = 1.0 ×10−5 [mM/ms]

parameter value unit reference

Kcyto
CMDN 2.38 ×10−3 mM [5]

[CMDN]cytotot 5.0 ×10−2 mM [5]

Keq 0.0095 [22]*

kmito
CK 6.67 ×10−5 mmol L−1ms−1 [5]**

kMline
CK 7.0 ×10−3 mmol L−1ms−1 [5]**

kNSR
CK 7.0 ×10−3 mmol L−1ms−1 [5]**

kmembrane
CK 7.0 ×10−3 mmol L−1ms−1 [5]**

Table S 4: Constants for cytosolic reactions

* Keq was estimated from data by Johannes H.G.M. van Beek [22].

** CK is condensed more than 10 times into mitochondria or the cytosolic space near subcellular

components. This induces a high local concentration of metabolites and inhibits CK. To maintain

energy metabolite level and flux, the value of kCK was increased to 50 times.

4.3 Membrane and t-tubules

Ion channel distributions on peripheral and t-tubule membranes were included in the model, as reported

by Pasek et al. [23]. Distributions are defined as distributions of permeability of the channel per unit

membrane area, and are shown in Table S5. Because our model is primarily based on the Cortassa

model, total channel permeability was defined in a manner consistent with the Cortassa model. At the

Ca2+ release site, channel distribution is different from other regions of the t-tubule membrane, and

only the LCC is clustered without other ion channels.

The membrane potential is uniform throughout the model as shown in the following eq. 16, because

an experimental study suggested that the whole cell membrane is electrically well coupled [24].

Reaction terms at the membrane or t-tubule node fmbr become:

fCa2+

mbr = −ICatot

area

2volcytoF
(13)

fADP
mbr = +(IpCa + INaK)

area

volcytoF
(14)

fATP
mbr = −(IpCa + INaK)

area

volcytoF
(15)

where area denotes the functional membrane area, volcyto denotes functional cytosolic volume, and F is

the Faraday constant. I◦ denotes membrane current, and this is described later in this section.

The following variables were lumped in the model: sarcoplasmic membrane voltage (V), cytosolic

6



Na+ and K+ concentrations ([Na] and [K])

d[V]

dt
= − 1

Cm

∑
cell Itotalarea∑

cell area
(16)

d[Na]

dt
= −

∑
cell INatotarea∑
cell volcytoF

(17)

d[K]

dt
= −

∑
cell IKtotarea∑
cell volcytoF

(18)

where

Itotal = INatot + IKtot
+ ICatot (19)

INatot = INa + INa,b + ICa(Na) + Ins(Na) + 3× INaK + 3× INaCa (20)

IKtot = IK + IK1 + IKp + ICaK + Ins(K) − 2× INaK (21)

ICatot = ICa + ICa,b + Ip(Ca) − 2× INaCa (22)

INa : Fast Na current (µA/µF)

IK : Time-dependent delayed rectifier K current (µA/µF)

IK1 : Time-independent K current (µA/µF)

IKp : Plateau K current (µA/µF)

INaK : Na K pump current (µA/µF)

INaCa : NaCa exchanger current (µA/µF)

Ip(Ca) : Sarcolemmal Ca pump current (µA/µF)

Ins,K : Non-specific Ca-activated K current (µA/µF)

ICa,b : Ca background current (µA/µF)

INa,b : Na background current (µA/µF)

ICa : Ca current through LCCs (µA/µF)

ICa,K : K current through LCCs (µA/µF)

Fast Na current

INa = ḠNa ·m3 · h · j · (V − ENa) (23)

ENa =
RT

F
· ln
(
[Na+]o
[Na+]

)
(24)

dm

dt
= αm(1−m)− βmm (25)

dh

dt
= αh(1− h)− βhh (26)

dj

dt
= αj(1− j)− βjj (27)

αm = 0.32
(V + 47.13)

1− e−0.1(V+47.13)
(28)

βm = 0.08e−V/11 (29)
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For V ≥ −40mV

αh = αj = 0.0, (30)

βh = (0.13(1 + e−(V+10.66)/11.1))−1 (31)

βj = 0.3 · e(−2.535·10−7V )

1 + e−0.1(V+32)
(32)

For V < −40mV

αh = 0.135 · e(80+V )/−6.8 (33)

βh = 3.56e0.079V + 3.1× 105e0.35V (34)

αj = [−1.2714× 105e0.2444V − 3.474× 10−5e−0.04391V ]× (V + 37.78)

1 + e0.311(V+79.23)
(35)

βj = 0.1212
e−0.01052V

1 + e−0.1378(V+40.14)
(36)

ENa : Reversal potential of Na (mV)

ḠNa : Maximum conductance of the Na channel (mS/µF)

m : Na channel activation gate

h : Na channel inactivation gate

j : Na channel inactivation gate

Time-dependent delayed rectifier K current

IK = ḠK ·X1 ·X2 · (V − EK) (37)

EK =
RT

F
ln

(
[K+]o + PNa,K[Na

+]o
[K+] + PNa,K[Na+]

)
(38)

ḠK = 0.282

√
[K+]o
5.4

(39)

X1 = (1 + e(V−40)/40)−1 (40)

dX

dt
= αχ(1−X)− βχX (41)

αχ = 7.19× 10−5 V + 30

1− e−0.148(V+30)
(42)

βχ = 1.31× 10−4 V + 30

−1 + e−0.0687(V+30)
(43)

ḠK : Channel conductance of time-dependent delayed rectifier K current (mS/µF)

X : Slowly activating K time-dependant activation

X1 : Slowly activating K time-dependant activation

EKs : Reversal potential of time-dependent rectifier K current (mV)

PNa,K : Na/K permeability ratio
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Time-independant K current

IK1 = ḠK1 ·K1∞ · (V − EK1) (44)

EK1 =
RT

F
· ln
(
[K+]o
[K+]

)
(45)

ḠK1 = 0.75 ·
√

[K+]o
5.4

(46)

K1∞ =
αK1

αK1 + βK1

(47)

αK1 = 1.02
(
1 + e0.2385(V−EK1

−59.215)
)−1

(48)

βK1
=

0.4912e0.08032(V−EK1−5.476) + e0.06175(V−EK1−594.31)

1 + e−0.5143(V−EK1+4.753)
(49)

EK1 : Reversal potential of time-independent K current (mV)

ḠK1 : Channel conductance of time-independent K current (mS/µF)

K1∞ : K inactivation

Plateau K+ current

IKp = ḠKp ·Kp(V − EKp) (50)

EKp = EK1 (51)

Kp =
(
1 + e(7.488−V )/5.98

)−1

(52)

ḠKp : Channel conductance of plateau K current (mS/µF)

EKp : Reversal potential of plateau K current (mV)

Kp : K plateau factor

Na+-Ca2+ exchanger current

INaCa = kNaCa
eη

V F
RT [Na+]3 · [Ca2+]o − e(η−1)V F

RT [Na+]3o · [Ca2+]cyto
(K3

m,Na + [Na+]3o)(Km,Ca + [Ca2+]o)(1 + ksate(η−1)V F
RT )

(53)

Na+-K+ pump current

INaK = ĪNaK · fNaK · fATP
NaK · 1

1 + (Km,Nai/[Na+])1.5
· [K+]o
[K+]o +Km,Ko

(54)

fNaK =

1 + 0.1245e−0.1V R
RT + 0.0365e−

V F
RT

e
[Na+]o
67.3 − 1

7

−1

(55)

fATP
NaK =

(
1 +

KATP
1,NaK

[ATP]cyto

(
1 +

[ADP]cyto
KADP

i,NaK

))−1

(56)
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ĪNaK : Maximum current through the NaK pump (µA/µF)

Km,Nai : Na Half saturation concentration for the NaK pump (mM)

Km,Ko : K Half saturation concentration for the NaK pump (mM)

fNaK : Voltage-dependence parameter of INaK

fATP
NaK : ATP and ADP dependence of INaK

Nonspecific Ca2+-activated current

Ins(Ca) = Ins(K) + Ins(Na) (57)

Ins(K) = Īns(K) ·
1

1 + (Km,ns(Ca)/[Ca2+]cyto)3
(58)

Ins(Na) = Īns(Na) ·
1

1 + (Km,ns(Ca)/[Ca2+]cyto)3
(59)

Īns(K) = Pns(K)
V F 2

RT

0.75([K+]eV F/RT − [K+]o)

eV F/RT − 1
(60)

Īns(Na) = Pns(Na)
V F 2

RT

0.75([Na+]eV F/RT − [Na+]o)

eV F/RT − 1
(61)

Pns(Ca) : Permeability of a channel to Na and K (cm/s)

Km,ns(Ca) : Half-saturation concentration of NSCa channel (mM)

Īns(K) : Maximum K current through NSCa channel (µA/µF)

Īns(Na) : Maximum Na current through NSCa channel (µA/µF)

PNa : Permeability of the membrane to Na (cm/s)

Sarcolemmal Ca2+ pump current

IpCa = Imax
pCa f

ATP
pCa

[Ca2+]cyto

KpCa
m + [Ca2+]cyto

(62)

fATP
pCa =

(
1 +

KATP
m1pCa

[ATP]cyto

(
1 +

[ADP]cyto
KADP

i,pCa

))−1

+

(
1 +

KATP
m1pCa

[ATP]cyto

)−1

(63)

Imax
pCa : Max.Ca current through the sarcolemmal Ca pump (µA/µF)

KpCa
m : Half-saturation concentration of the sarcolemmal Ca pump

fATP
pCa : ATP ADP dependence of the sarcolemmal Ca pump

Ca2+ background current

ICa,b = ḠCa,b · (V − ECa,N) (64)

ECa,N =
RT

2F
ln

(
[Ca2+]o

[Ca2+]cyto

)
(65)
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ḠCa,b : Maximum conductance of Ca background (mS/µF)

ECa,N : Nernst potential for Ca2+ (mV)

Na background current

INa,b = ḠNa,b · (V − ENa,N) (66)

ENa,N = ENa =
RT

F
ln

(
[Na+]o
[Na+]

)
(67)

ḠNa,b : Maximum conductance of Na background (mS/µF)

ENa,N : Nernst potential for Na (mV)

L-type Ca2+ channel current LCCs locate in the sub-space and surface sarcolemma, therefore

regional Ca2+ transients have variation.We need to use different models depending on the particular

regions in the myocyte because the currently proposed models are created and tuned phenomenologically

to either of the regional transients.

L-type Ca2+ channel current at the Ca2+ release site L-type Ca2+ channel currents at the Ca2+

release site node are adopted from Cortassa et al. [5] and expressed as follows:

ICamax = 4P̄CaRU
Ca

V F 2

RT

0.001e2V F/RT − 0.341[Ca2+]o
e2V F/RT − 1

(68)

ICa = 6ICamaxy ·O (69)

IK = P ′
Ky · (O +OCa)

V F 2

RT

[K+]e2V F/RT − [K+]o
eV F/RT − 1

(70)

P ′
K =

P̄CaRU
K

1 +
ICamax

ICahalf

. (71)

The LCC state is expressed with the following 13 modes, and the open probability is expressed as

y · (O +OCa) as described above.

dC0

dt
= βC1 + ωCCa0 − (4α+ γ)C0 (72)

dC1

dt
= 4αC0 + 2βC2 +

ω

b
CCa1 − (β + 3α+ γa)C1 (73)

dC2

dt
= 3αC1 + 3βC3 +

ω

b2
CCa2 − (2β + 2α+ γa2)C2 (74)

dC3

dt
= 2αC2 + 4βC4 +

ω

b3
CCa3 − (3β + α+ γa3)C3 (75)

dC4

dt
= αC3 + gO +

ω

b4
CCa4 − (4β + f + γa4)C4 (76)

dO

dt
= fC4 − gO (77)
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dCCa0

dt
= β′CCa1 + γC0 − (4α′ + ω)CCa0 (78)

dCCa1

dt
= 4α′CCa0 + 2β′CCa2 + γaC1 − (β′ + 3α′ +

ω

b
)CCa1 (79)

dCCa2

dt
= 3α′CCa1 + 3β′CCa3 + γa2C2 − (2β′ + 2α′ +

ω

b2
)CCa2 (80)

dCCa3

dt
= 2α′CCa2 + 4β′CCa4 + γa3C3 − (3β′ + α′ +

ω

b3
)CCa3 (81)

dCCa4

dt
= α′CCa3 + g′OCa + γa4C4 − (4β′ + f +

ω

b4
)CCa4 (82)

dOCa

dt
= f ′CCa4 − g′OCa (83)

dy

dt
=

y∞ − y

τy
(84)

where,

α = 0.4e(V+12)/10 (85)

β = 0.05e(V+12)/13 (86)

α′ = aα (87)

β′ =
β

b
(88)

γ = 0.1875[Ca2+]SS (89)

y∞ =
1

1 + e((V+55)/7.5)
+

0.5

1 + e((−V+21)/6)
(90)

τy = 20 +
600

1 + e((V + 30)/9.5)
. (91)

L-type Ca2+ channel current except at the Ca2+ release site We used model by Luo and Rudy

(1995)[26] for the small fraction of LCC outside the release site.

ICa = 4P̄Cad · f · fCa
V F 2

RT

0.001e2V F/RT − 0.341[Ca2+]o
e2V F/RT − 1

(92)

where

d∞ =
1

1 + e−(10+V )/6.24
(93)

τd = d∞
1− e−(10+V )/6.24

0.035(10 + V )
(94)

αd =
d∞
τd

(95)

βd =
1− αd

τd
(96)

f∞ =
1

1 + e(V+32)/8
+

0.6

1 + e(50−V )/20
(97)

τf =
1

0.0197e−[0.0337(V+10)]2 + 0.02
(98)
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αf =
f∞
τf

(99)

βf =
1− αf

τf
(100)

fCa =
1

(1 + [Ca2+]cyto/Km,Ca
(101)

Table S 5: Channel fractions on the surface membrane and t-tubule membrane

Ion current parameter total surface t-tubule unit fraction(t)

INa ḠNa 12.8 14.7 11.0 mS/µF 0.57

IKp ḠKp 8.28 ×10−3 - - mS/µF 0.50

IK1 ḠK1 0.75 0.3 1.2 mS/µF 0.80

INaK ĪNaK 3.147 - - µA/µF 0.50

Ins(Na) Pns(Na) 1.75 ×10−7 - - cm/s 0.50

ICab GCab 3.217 ×10−3 - - mS/µF 0.50

INab GNab 5.45 ×10−4 - - mS/µF 0.50

IpCa Imax
pCa 0.575 0.828 0.207 µA/µF 0.20

ICa P̄Ca 0.916 10−3 16.725 10−3 0.0836 10−3 cm/s 0.91

INa P̄K 1.11 ×10−11 - - cm/s 0.50

Table S 6: Surface membrane and t-tubule membrane common parameters

parameter value unit reference

Cmbr 1.0 µF/cm2 [5]

[Na+]o 140.0 mM [5]

[K+]o 5.4 mM [5]

[Ca2+]o 2.0 mM [5]

PNaK 0.01833 [5]

kNaCa 3000 µA/µF [5],[26]*

kmNa 87.5 mM [5]

kmCa 1.38 mM [5]

ksat 0.1 [5]

η 0.35 [5]

KmNai 10.0 mM [5]

KmKo 1.5 mM [5]

Pns(K) 0.00 cm/s [5]

GCab 3.217 ×10−3 mS/µF [5]

GNab 5.45 ×10−4 mS/µF [5]

Imax
pCa 0.575 µA/µF [5]
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parameter value unit reference

KpCa
m 5.0 ×10−4 mM [5]

ICahalf -0.4583 µA/µF [5]

ω 0.01 ms−1 [5]

a 2.0 [5]

b 2.0 [5]

f 0.3 ms−1 [5]

g 2.0 ms−1 [5]

f ′ 0.0 ms−1 [5]

g′ 0.0 ms−1 [5]

Km,Ca 0.0006 mM [26]

* Na+-Ca2+ exchanger maximum velocity was reduced because the high concentration at the sub-

sarcolemmal space enhanced Na+-Ca2+ flux.

4.4 SR

The reaction term at the JSR node fJSR is:

fJSR(Ca) = Jxfer (102)

The JSR Ca2+ release site and LCC face each other across the subspace. The JSR, LCC and SS

share the same node in our model. Inside the SS and JSR, Ca2+ concentrations are defined and change

as follows:

d[Ca2+]SS
dt

= Jrel
volJSR
volSS

− Jxfer
volcyto
volSS

+ ILCC
area

2volSSF
(103)

d[Ca2+]JSR
dt

=

(
1 +

KSS
CMDN[CMDN]SStot

(KSS
CMDN + [Ca2+]SS)2

)−1

(Jtr − Jrel) (104)

The reaction terms at the NSR node fNSR become:

fCa2+

NSR = −Jup
volNSR

volcyto
(105)

fADP
NSR = +0.5Jup

volNSR

volcyto
(106)

fATP
NSR = −0.5Jup

volNSR

volcyto
(107)

Ca2+ concentrations inside the NSR are also defined and change as follows:

d[Ca2+]NSR

dt
= Jup − Jtr

volJSR
volNSR

(108)

Since Jxfer is defined as the change in rate of JSR Ca2+ concentration, A correction was made by

multiplying by the volume ratio between the SS and the cytosol. On the other hand, Jup of the NSR

was defined based on cytosolic Ca2+ concentration, and no correction was made.
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SERCA pump The pumping function of SERCA is dependent on energy metabolite concentration.

Jup = KSR

V max
f fb − V max

r rb

1 + fb + rb
fATP
SERCA (109)

fb =

(
[Ca2+]cyto

Kfb

)Nfb

(110)

rb =

(
[Ca2+]NSR

Krb

)Nrb

(111)

fATP
SERCA =

(
KATP

m,up

[ATP]cyto

(
1 +

[ADP]cyto
Ki,up

)
+

[
1 +

[ADP]cyto
K ′

i,up

])−1

(112)

ν3 : Maximum velocity of Ca2+ pumping by SERCA

Ca2+ release from the JSR to the SS

Jrel = ν1 · (RyRopen)([Ca2+]JSR − [Ca2+]SS) (113)

RyRopen = vmaxe
−0.07(t−t0)

(
1− e−0.07(t−t0)

)
(114)

ν1 : Maximum Ca2+ flux RyRopen : RyR open probability t0 : The time when Ca2+ exceeds the

threshold

Transport from the NSR to the JSR

Jtr =
[Ca2+]NSR − [Ca2+]JSR

τtr
, (115)

τtr : Time constant of Ca2+ transfer from the NSR to the JSR

Diffusion from the SS to the cytosolic space

Jxfer =
[Ca2+]SS − [Ca2+]cyto

τxfer
, (116)

τxfer : Time constant of Ca2+ from the SS to the cytosol

Table S 7: SR model constants

parameter value unit ref.

V max
f 5.5172 ×10−3 mmol L(NSR)−1 ms−1 [5]*

V max
r 5.8681 ×10−3 mmol L(NSR)−1 ms−1 [5]*

Kfb 2.4 ×10−4 mM [5]

Krb 1.64269 mM [5]

Nfb 1.787 [27]

Nrb 1.0 [5]

KATP
m,up 0.01 mM [5]
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parameter value unit ref.

Ki,up 0.14 mM [5]

K ′
i,up 5.1 mM [5]

ν1 3.6 ms−1 [5]

τxfer 0.1 ms [5]**

τtr 0.574713 ms [5]

KCSQN 0.8 mM [5]

[CSQN]tot 15.0 mM [5]

KSS
CMDN 2.38 ×10−3 mM [5]

[CMDN]SStot 5.0 ×10−2 mM [5]

* V max
f and V max

r are converted from mmol [L(cyto)−1 ms−1] to [mmol L(NSR)−1 ms−1].

** In the original model by Cortassa et al., [5] τxfer denotes a time constant for Ca2+ diffusion from

the SS to the bulk cytosolic space. In our model, however, τxfer is the time constant for the diffusion

from the SS to the adjacent cytosolic node. This definition inherently meant that the τxfer value was

dependent on the mesh size. Accordingly, we set the τxfer value at 0.1 so that the average cytosolic Ca2+

transient reproduced physiological levels.

4.5 Mitochondria

Reaction terms at the mitochondrial node fmito are described as follows:

fCa2+

mito = −(Vuni − VNaCa)
volmito

volcyto
(117)

fADP
mito = −VANT

volmito

volcyto
(118)

fATP
mito = +VANT

volmito

volcyto
(119)

At each node in mitochondria, ten variables are additionaly defined:

[ADP]m: Mitochondrial ADP concentration.

[NADH]: Mitochondrial NADH concentration.

[ISOC]: Mitochondrial isocitrate concentration.

[aKG] : Mitochondrial α-ketoglutarate concentration.

[SCoA]: Mitochondrial succinyl CoA concentration.

[Suc] : Mitochondrial succinate concentration.

[FUM] : Mitochondrial fumarate concentration.

[MAL] : Mitochondrial malate concentration.

[OAA] : Mitochondrial oxalacetate concentration.

[Ca]m: Mitochondrial free Ca2+ concentration.

∆Ψm : Inner mitochondrial membrane potential (This variable takes the common value at all nodes in

a single mitochondria.)
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Reaction term eqns.(117,118,119) were determined in terms of the cytosolic substrate concentration

and the above 11 variables.

Time derivatives of the 11 variables are described as follows:

d[ADP]mito

dt
= VANT − VATPase − VSL (120)

d[NADH]

dt
= −VO2 + VIDH + VKGDH + VMDH (121)

d[ISOC]

dt
= VACO − VIDH (122)

d[aKG]

dt
= VIDH − VKGDH + VAAT (123)

d[SCoA]

dt
= VKGDH − VSL (124)

d[Suc]

dt
= VSL − VSDH (125)

d[FUM]

dt
= VSDH − VFH (126)

d[MAL]

dt
= VFH − VMDH (127)

d[OAA]

dt
= VMDH − VCS − VAAT (128)

d[Ca2+]mito

dt
= βmitCa(Vuni − VNaCa) (129)

d∆Ψmito

dt
=

1

Cmito

∑
mitochondrion

(VHe + VHeF − VHu − VANT + VHleak − VNaCa − 2Vuni)

(130)

V◦ denotes the reaction velocities [mmolL−1ms−1] of ◦ proteins, which are listed in the following sections.

βmitCa is the fraction of free Ca2+, analogous to cytosolic Ca2+ buffer as follows:

βmitCa =

(
1 +

KBuf [Buf]tot
(KBuf + [Ca2+]mito)2

)−1

(131)

where [Buf]tot is the concentration of Ca2+ buffer in mitochondria and KBuf is the Ca
2+ half saturation

constant for Ca2+ buffer. [Buf]tot, KBuf , and even the buffer itself are unknown. Because the fraction

of free Ca2+ is estimated to be approximately 1% [30], we set the values so that βmitCa becomes 0.01

when [Ca2+]mito is 0.1 µmol/L.

The following are dependent variables:

[NAD] = CPN − [NADH] (132)

[ATP]mito = Cm − [ADP]mito (133)

[CIT] = CKint − [ISOC]− [aKG]− [SCoA]− [Suc]− [FUM]− [MAL]− [OAA]

(134)
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4.5.1 TCA cycle model

Cytrate synthase

VCS = kCS
catE

CS
T

(
1 +

KAcCoA
M

[AcCoA]
+

KOAA
M

[OAA]
+

KAcCoA
M

[AcCoA]

KOAA
M

[OAA]

)−1

(135)

Aconitase

VACO = kACO
f

(
[CIT]− [ISOC]

KACO
E

)
(136)

Isocitrate dehydrogenase

VIDH =
kIDH
cat EIDH

T(
1 + [H+]

kh,1
+

kh,2

[H+] + f IDH
i

(
KNAD

M,IDH

[NAD]

)
+ f IDH

a

(
KISOC

M

[ISOC]

)ni

+ f IDH
a f IDH

i

(
KISOC

M

[ISOC]

)ni
(

KNAD
M,IDH

[NAD]

))
f IDH
a =

[(
1 +

[ADP]mito

Ka
ADP

)(
1 +

[Ca2+]mito

Ka
Ca

)]−1

(137)

f IDH
i =

(
1 +

[NADH]

Ki,NADH

)
(138)

Alpha-ketoglutarate dehydrogenase

VKGDH =
kKGDH
cat EKGDH

T

1 + fKGDH
a

(
KαKG

M

[αKG]

)nαKG

+ fKGDH
a

KNAD
M,KG

[NAD]

(139)

fKGDH
a =

[(
1 +

[Mg2+]

KMg2+

D

)(
1 +

[Ca2+]

KCa2+
D

)]−1

(140)

Succinyl lyase

VSL = kSLf

(
[SCoA][ADP]mito −

[Suc][ATP]mito[CoA]

KSL
E

)
(141)

Succinate dehydrogenase

VSDH =
kSDH
cat ESDH

T

1 +
(

KSuc
M

[Suc]

)(
1 + [OAA]

KOAA
i,SDH

)(
1 + [FUM]

KFUM
i

) (142)

Fumarate hydratase

VFH = kFHf

(
[FUM]− [MAL]

KFH
E

)
(143)
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Malate dehydrogenase

VMDH =
kMDH
cat EMDH

T fh,afh,i

1 +
(

KMAL
M

[MAL]

)(
1 + [OAA]

KOAA
i

)
+
(

KNAD
M,MDH

[NAD]

)
+
(

KMAL
M

[MAL]

)(
1 + [OAA]

KOAA
i

)(
KNAD

M,MDH

[NAD]

)
(144)

fh,a =

(
1 +

[H+]

kh,1
+

[H+]2

kh,1kh,2

)−1

+ koffset (145)

fh,i =

(
1 +

kh,3
[H+]

+
kh,3kh,4
[H+]2

)−2

(146)

Aspartate amino trasferase

VAAT = kAAT
f [OAA][GLU]

kASPK
AAT
E

kASPKAAT
E + [αKG]kAAT

f

(147)

4.5.2 Oxidative phophorylation

Proton motive force

∆µH = −2.303
RT

F
∆pH +∆Ψm (148)

Oxygen consumption

VO2 = 0.5ρres

(
ra + rc1e

6F∆ΨB
RT

)
e

AresF
RT − rae

g6F∆µH
RT + rc2e

AresF
RT e

g6F∆µH
RT

(1 + r1e
AresF
RT )e

6F∆ΨB
RT + (r2 + r3e

AresF
RT )e

g6F∆µH
RT

(149)

Proton pumping of complexes I-IV

VHe = 6ρres
rae

AresF
RT − (ra + rb)e

g6F∆µH
RT

(1 + r1e
AresF
RT )e

6F∆ΨB
RT + (r2 + r3e

AresF
RT )e

g6F∆µH
RT

(150)

Ares =
RT

F
ln

(
Kres

√
[NADH]

[NAD+]

)
(151)

VHe(F) = 4ρres(F))
rae

Ares(F)F

RT − (ra + rb)e
g6F∆µH

RT

(1 + r1e
Ares(F)F

RT )e
6F∆ΨB

RT + (r2 + r3e
Ares(F)F

RT )e
g6F∆µH

RT

(152)

Ares(F) =
RT

F
ln

(
Kres(F)

√
[FADH2]

[FAD]

)
(153)
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ATP synthesis and proton flux

VATPase = −ρF1
(102pa + pc1e

3F∆ΨB
RT )e

AF1F

RT − pae
3F∆µH

RT + pc2e
AF1
RT e

3F∆µH
RT

(1 + p1e
AF1F

RT )e
3F∆ΨB

RT + (p2 + p3e
AF1F

RT )e
3F∆µH

RT

(154)

VHu = −3ρF1
100pa

(
1 + e

FAF1
RT

)
− (pa + pb)e

3F∆µH
RT

(1 + p1e
AF1F

RT )e
3F∆ΨB

RT + (p2 + p3e
AF1F

RT )e
3F∆µH

RT

(155)

AF1 =
RT

F
ln

(
KF1

[ATP]mito

[ADP]mito[Pi]

)
(156)

Adenine nucleotide translocator

VANT = V max
ANT

(
1− 0.05×[ATP]cyto×0.45×0.8×[ADP]mito

0.45×[ADP]cyto×0.05[ATP]mito

)
(
1 +

0.05×[ATP]cyto
0.45×[ADP]cyto

e

(
−hANTF∆Ψm

RT

))(
1 + 0.45×0.8×[ADP]mito

0.05×[ATP]mito

) (157)

Proton leak

VHleak = gH∆µH (158)

4.5.3 Ca2+ handling

Ca2+ : mitochondrial Ca2+ uniporter

We adopted the model of mitochondrial Ca uniporter kinetics proposed by Dash et al. [31], which is

a hybrid model combining the Michaelis-Menten equation for carrier-mediated facilitated transport of

Ca2+ influx and the Goldman-Hodgkin-Katz equation for electrodiffusion.

Vuni = V max
uni

(
∆Φ/nuni

sinh(∆Φ/nuni)

)nuni [Ca2+]2cytoe
∆Φ − [Ca2+]2mitoe

−∆Φ

K2
uni + [Ca2+]2cyto + [Ca2+]2mito

(159)

∆Φ =
2F∆Ψ

RT
(160)

Mitochondrial Na-Ca exchanger

VNaCa = V max
NaCa

e
bNaCaF (∆Ψm−∆Ψo)

RT
[Ca2+]mito

[Ca2+]cyto(
1 + KNa

[Na+]

)n
NaCa

(
1 + KCa

[Ca2+]cyto

) (161)

Table S 8: Mitochondrial model parameters

parameter value unit ref.

[AcCoA] 1.0 mM [5]

[GLU] 10.0 mM [5]

kCS
cat 0.1 ms−1 [5] *1

ECS
T 0.4 mM [5]
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parameter value unit ref.

KAcCoA
M 1.26×10−2 mM [5]

KOAA
M 6.4×10−4 mM [5]

CKint 1.0 mM [5]

kACO
f 1.25×10−2 ms−1 [5]

KACO
E 2.22 - [5]

kIDH
cat 0.05 ms−1 [5] *1

EIDH
T 0.109 mM [5]

ni 2 - [5]

Ka
Ca 0.0005 mM [5]

Ki
NADH 0.19 mM [5]

Ka
ADP 0.062 mM [5]

[H+] 2.5×10−5 mM [5]

kh,1 8.1×10−5 mM [5]

kh,2 5.98×10−5 mM [5]

KISOC
M 1.52 mM [5]

KNAD
M,IDH 0.923 mM [5]

kKGDH
cat 0.1 ms−1 [5] *1

EKGDH
T 0.5 mM [5]

KaKG
M 1.94 mM [5]

KNAD
M,KG 38.7 mM [5]

KMg
D 0.0308 mM [5]

KCa
D 1.27×10−3 mM [5]

naKG 1.2 - [5]

[Mg2+] 0.4 mM [5]

kSLf 7.5×10−3 mM−1 ms−1 [5] *1

KSL
E 3.115 - [5]

[CoA] 0.02 mM [5]

kSDH
cat 7.5×10−3 ms−1 [5] *1

ESDH
T 0.5 mM [5]

KSuc
M 3.0×10−2 mM [5]

KFUM
i 1.3 mM [5]

KOAA
i,sdh 0.15 mM [5]

kFHf 5.0×10−3 ms−1 [5] *1

KFH
E 1.0 - [5]
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parameter value unit ref.

kh1 1.13×10−5 mM [5]

kh2 26.7 mM [5]

kh3 6.68×10−9 mM [5]

kh4 5.62×10−6 mM [5]

koffset 3.99×10−2 - [5]

kMDH
cat 0.1665 ms−1 [5] *1

EMDH
T 0.154 mM [5]

KMAL
M 1.493 mM [5]

KOAA
i 3.1×10−3 mM [5]

KNAD
M,MDH 0.2244 mM [5]

kAAT
f 9.66×10−4 ms−1 [5] *1

KAAT
E 6.6 - [5]

kASP 1.5×10−6 ms−1 [5]

ra 6.394×10−13 ms−1 [5]

rb 1.762×10−16 ms−1 [5]

rc1 2.656×10−22 ms−1 [5]

rc2 8.632×10−30 ms−1 [5]

r1 2.077×10−18 - [5]

r2 1.728×10−9 - [5]

r3 1.059×10−26 - [5]

ρres 0.1 mM [5] *2

Kres 1.35×1018 - [5]

ρresF 3.75×10−4 mM [5]

∆ΨB 50.0 mV [5]

G 0.85 - [5]

KresF 5.765×1013 mM [5]

[FADH2] 1.24 mM [5]

[FAD] 0.01 mM [5]

pa 1.656×10−8 ms−1 [5]

pb 3.373×10−10 ms−1 [5]

pc1 9.651×10−17 ms−1 [5]

pc2 4.585×10−17 ms−1 [5]

p1 1.346×10−8 - [5]

p2 7.739×10−7 - [5]

22



parameter value unit ref.

p3 6.65×10−15 - [5]

ρF1 0.5 mM [5] *2

KF1 1.71×106 - [5]

CA 1.5 mM [5]

V max
ANT 1.0 mM ms−1 [5] *2

hANT 0.5 - [5]

gH 1.0×10−8 mM ms−1 mV−1 [5]

∆pH -0.6 pH units [5]

CPN 10.0 mM [5]

Cmito 1.812×10−3 mM mV−1 [5]

V max
uni 0.5-2.0 ×10−5 mM ms−1 [32, 33]*3

nuni 2.7 - [31]

Kuni 10.0×10−3 mM [31], [33]

na 2.8 - [5]

V max
NaCa 2.0-8.0 ×10−5 mM ms−1 [32, 34, 35]*3

bNaCa 0.5 - [5]

KNa 9.4 mM [5]

KCa 3.75×10−4 mM [5]

nNaCa 3.0 - [5]

KmitCa 0.002 mM [5]

[Buf] 1.0 mM [5]

*1) As have been done in the work by Cortassa et al. [5], the kinetic constants of all the TCA cy-

cle enzyme steps were multiplied by a factor of 2-3 to maintain the physiological level of metabolites

against local accumulation of ions and substrates caused by the diffusional barrier.

*2) The constants for oxidative phosphorylation, ρres and ρF1, and for the adenine nucleotide transloca-

tor V max
ANT were also adjusted to maintain physiological levels of metabolites against local accumulation

of ions and substrates caused by the diffusional barrier..

*3) Mitochondrial Ca2+ handling constants (V max
uni and V max

NaCa) were set so that the averaged value of

the spatially heterogenous Ca2+ fluxes of the 3D model matched the experimentally obtained fluxes.
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