Taalata	Inhibition zone diameter (mm) ^{<i>a</i>, <i>b</i>}				Minimum inhibitory concentration (mg/L) ^{<i>a</i>, <i>c</i>}								
Isolate	IPM	AMK	GEN	SXT	IPM	MEM	AMK	GEN	ТОВ	CIP	SXT	CST	TGC
K51-65	8	6	6	6	>32	>32	>256	>1024	>1024	>32	>32	0,5	4
K51-66	9	6	6	6	>32	>32	>256	>1024	>1024	>32	>32	1	4
K51-67	10	21	9	6	>32	≥32	4	32	2	1	2	1	2
K51-68	6	6	6	6	>32	>32	>256	>1024	>1024	>32	>32	1	4
K51-69	6	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K51-70	6	6	6	6	>32	>32	>256	>1024	>1024	>32	>32	0,5	4
K51-71	6	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K51-72	13	6	6	6	>32	32	>256	>1024	>1024	>32	>32	1	4
K51-73	13	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K51-74	12	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K51-75	6	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K51-76	6	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K51-77	10	6	6	6	>32	>32	>256	>1024	>1024	>32	>32	0,5	4
K51-78	9	6	6	6	>32	32	>256	>1024	>1024	>32	>32	0,5	8
K51-79	11	6	6	6	>32	>32	>256	>1024	>1024	>32	>32	0,5	4
K51-80	10	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K51-81	9	6	6	6	32	32	>256	>1024	>1024	>32	>32	0,5	4
K70-64	9	6	6	6	>32	>32	>256	>1024	>1024	>32	>32	0,5	4
K70-65	9	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-66	12	29	17	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-67	11	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-68	10	28	16	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-69	13	28	24	6	≥32	16	1	2	0,25	>32	>32	0,5	4
K70-70	10	6	6	6	>32	>32	>256	>1024	>1024	>32	>32	0,5	4
K70-71	13	30	17	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-72	13	29	15	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-73	12	29	18	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-74	13	29	17	6	>32	>32	1	12	0,5	>32	>32	0,5	8
K70-75	15	30	18	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-76	14	30	15	6	16	16	1	12	0,5	>32	>32	0,5	4
K70-77	7	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-78	6	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-79	6	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-80	10	6	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND
K70-81	8	25	6	6	ND	ND	ND	ND	ND	ND	ND	ND	ND

TABLE S1. Phenotypic resistance characteristics of the isolates

^a IPM, imipenem; AMK, amikacin; GEN, gentamicin; SXT, trimethoprim/sulfamethoxazole; MEM,

meropenem; TOB, tobramycin; CIP, ciprofloxacin; CST, colistin; TGC, tigecycline; ND, not

determined.

^{*b*} Determined by agar disc diffusion.

^{*c*} Determined by Etest.

TABLE S2. Primers used for molecular detection and characterization of the class 1

Primer ^a	Sequence 5'-3'	Target site	Reference
5'CS (F)	GCCTGTTCGGTTCGTAAGCT	5°CS	Toleman et al., 2007
aac(6`)-Ib-F (F)	TTGCGATGCTCTATGAGTGGCTA	aacA4	Karah et al., 2011
aac(6)-Ib-R (R)	CTCGAATGCCTGGCGTGTTT	aacA4	Karah et al., 2011
catB8-R (R)	GCACCGTCTCCAATTTTGAT	catB8	Karah et al., 2011
catB8-F2 (F)	AGATGGAGTGGTGGAACTGG	catB8	Karah <i>et al.</i> , 2011
aadA1-F (F)	CGCCGAAGTATCGACTCAAC	aadA1	Karah <i>et al.</i> , 2011
aadA1-FR (R)	GATGACGCCAACTACCTCTG	aadA1	Karah <i>et al.</i> , 2011
aadA1-F2 (F)	TATCCAGCTAAGCGCGAACT	aadA1	Karah <i>et al.</i> , 2011
aadA1-R (R)	GACTACCTTGGTGATCTCGC	aadA1	Karah <i>et al.</i> , 2011
3'CS (R)	CGGATGTTGCGATTACTTCG	3°CS	Toleman et al., 2007
comM-1 (F)	CAACCCTGTCTTTGCATTTG	comM	This study
Tn6022a-1 (R)	GGGTCGATTCAAACCAAATG	tniC	This study
Tn6022a-2 (F)	CCATCGTTTTGCTGCTGATA	tniC	This study
Tn6022a-3 (R)	AGCAATCTGCCAAGCTTCAT	tniA	This study
Tn6022a-4 (F)	CGAGGTTGGACAACTGAAAAA	tniA	This study
Tn6022a-5 (F)	GCAGCGTGGGACTTATGATT	tniA	This study
Tn6022a-6 (R)	CCATTTAACGATTGGGGATG	tniA	This study
Tn6022a-7 (F)	CTCCAGCAAAAGCCAATGTT	tniB	This study
Tn6022a-8 (R)	TGCCTCACGAGTACCAACAC	tniB	This study
Tn6022a-9 (F)	AGATGCCGAAAGATTCGATG	tniD	This study
Tn6022a-10 (R)	GCCACATGTCGTACAGATCG	tniD	This study
Tn6022a-11 (F)	CATGGATGCAACCAGTCTGT	tniE	This study
Tn6022a-12 (R)	TCGCATAAATCAGCACAACC	tniE	This study
Tn6022a-13 (F)	AATACGTTCAGCGAGGTTGG	tniE	This study
Tn6022a-14 (R)	TTGCCCATTAAGCACAACAG	tniE	This study
Tn6022a-15 (F)	TCTTTTTGTTCTTGAGCTTGCTT	orf3	This study
Tn6022a-16 (R)	AGGCGATTGCCTTAATGTGA	orf3/uspA	This study
Tn6022a-17 (F)	CCCAAGAGAGCTGATTTTGC	uspA	This study
Tn6022a-18 (R)	CAAAAGCAAAAGCACCACAA	uspA	This study
Tn6022a-19 (F)	TCGACTTCTGTTCCTTCACG	sup	This study
Tn6022a-20 (F)	CCTTGCCCTTTACATTCTCG	sup	This study
Tn6022a-21 (R)	CGGATACGCTTCCAATTTTC	sup	This study
Tn6022a-22 (F)	GGATCAACGCCTGCAATAAT	sup	This study
Tn6022a-23 (R)	GAAAATGCCAAGGGAATAAAAA	orf4	This study
Tn6022a-24 (F)	AAAAGCTTTGTGGGATGTGG	orf4	This study
Tn6022a-25 (R)	AAAATCAGAAAGCCATATGAAGAT	orf4	This study
Z1-1 (F)	AAGGTGCTTACCGAATGCAA	orf1-Z1	This study
Z1-2 (R)	ACGAGAAAGCGAAGAAGTGG	orf1-Z1	This study
Z1-3 (F)	CGTGGCATACCATCATCAAG	orf2-Z1	This study
Z1-4 (R)	GCGGATGAAGTGATGGAGTT	orf3-Z1	This study
Z1-5 (F)	TTATTTAACGCCGGAGCATC	orf3-Z1	This study
Z1-6 (R)	GCTGCGGTAGCTGGTAATTC	orf3-Z1	This study
Z1-7 (F)	TTCAGCCCATTTCTGAGCTT	orf3-Z1	This study
Z1-8 (R)	CTGGTGGTAATGGAGCTGGT	orf3-Z1	This study
Z1-9 (F)	TTTGAACGACCATCAAGCAC	int-Z1	This study
Z1-10 (R)	TACTATGGCCCAGCATTTCC	int-Z1	This study
Z1-11 (F)	TTGTTCAAGCTAACGGCGTA	orf6-Z1	This study
Z1-12 (R)	GGCCAAAAGGATGTGGAGTA	orf6-Z1/orf7-Z1	This study
Tn6022b (R)	ACCTGTTCCTGCTGTCGTCT	tniAb	This study
Z2-1 (F)	GCGAAATCATCTGCCAAACT	sul2	This study
Z2-2 (R)	CTTTGCCACGAATACCGTCT	glmM	This study
Z2-3 (F)	TGCCCTCTTGGGTTATCAAG	rcr2/tetA	This study
ISAba1-out (R)	GCGCTTGACAGACCCTAGAC	ISAba1	This study

integron and AbaR resistance islands.

ISAba1B (F)CATGTAAACCAATGCTCACCISAba1Poirel & Nordmann, 20ISAba1A (R)GTGCTTTGCGCTCATCATGCISAba1Poirel & Nordmann, 20Tn2006-1 (F)TTGGCTCAACTTTATGATCCTGyeeAThis studyTn2006-2 (R)ATGGGCTTCGTCATTCATTGATPaseThis studyOXA-23-like-R (F)ATTTCTGACCGCATTTCCATbla _{OXA-23-like} Woodford et al., 2006OXA-23-like-F (R)GATCGGATTGGAGAAACCAGAbla _{OXA-23-like} Woodford et al., 2006Z2-4 (F)TAATCCAAATCCAGCCATCCtetAThis studyZ2-5 (R)TTTTCATTAGCGGGTCTTGGtetAThis studyZ2-6 (F)CTCCTGTGATCCCTGAAAGCtetAThis studyZ2-7 (R)GGCGAGTTTACGGGTTGTTAtetRThis studyZ2-8 (F)TGCAGAGCCAGCCTTCTTATtetRThis studyZ2-9 (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This studyZ2-10 (F)CTGTTTTCGACATCCCGTTCrcr2This studyZ2-11 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study				
ISAba1A (R)GTGCTTTGCGCTCATCATGCISAba1Poirel & Nordmann, 20Tn2006-1 (F)TTGGCTCAACTTTATGATCCTG $yeeA$ This studyTn2006-2 (R)ATGGGCTTCGTCATTCATTGATPaseThis studyOXA-23-like-R (F)ATTTCTGACCGCATTTCCAT $bla_{OXA-23-like}$ Woodford et al., 2006OXA-23-like-F (R)GATCGGATTGGAGAACCAGA $bla_{OXA-23-like}$ Woodford et al., 2006Z2-4 (F)TAATCCAAATCCAGCCATCCtetAThis studyZ2-5 (R)TTTTCATTAGCGGGTCTTGGtetAThis studyZ2-6 (F)CTCCTGTGATCCTGAAAGCtetAThis studyZ2-7 (R)GGCGAGTTTACGGGTTGTTAtetRThis studyZ2-8 (F)TGCAGAGCCAGCCTTCTTATtetRThis studyZ2-9 (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This studyZ2-10 (F)CTGTTTTCGACATCCCGTTC $rcr2$ This studyZ2-11 (R)CACTWCCACATGCTGTKKC $rcr2$ This studyZ2-13 (F)CATTGCTCATCATTTGATCAGGCT $strA$ This studyZ2-14 (R)TATCTGCGATTGGACCCTCTG $strA$ This studyZ2-15 (F)AATTGCCGTTATCACCAAGC $strA$ This study	ISAba1B (F)	CATGTAAACCAATGCTCACC	ISAba1	Poirel & Nordmann, 2006
Tn2006-1 (F)TTGGCTCAACTTTATGATCCTGyeeAThis studyTn2006-2 (R)ATGGGCTTCGTCATTCATTGATPaseThis studyOXA-23-like-R (F)ATTTCTGACCGCATTTCCAT $bla_{0XA-23-like}$ Woodford et al., 2006OXA-23-like-F (R)GATCGGATTGGAGAACCAGA $bla_{0XA-23-like}$ Woodford et al., 2006Z2-4 (F)TAATCCAAATCCAGCCATCCtetAThis studyZ2-5 (R)TTTTCATTAGCGGGTCTTGGtetAThis studyZ2-6 (F)CTCCTGTGATCCCTGAAAGCtetAThis studyZ2-7 (R)GGCGAGTTTACGGGTTGTTAtetRThis studyZ2-8 (F)TGCAGAGCCAGCCTTCTTATtetRThis studyZ2-9 (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This studyZ2-10 (F)CTGTTTTCGACATCCCGTTCrcr2This studyZ2-11 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-13 (F)CATTGCTCATCATTGATCAGCGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	ISAba1A (R)	GTGCTTTGCGCTCATCATGC	ISAba1	Poirel & Nordmann, 2006
Tn2006-2 (R)ATGGGCTTCGTCATTCATTGATPaseThis study $OXA-23$ -like-R (F)ATTTCTGACCGCATTTCCAT $bla_{OXA-23-like}$ Woodford et al., 2006 $OXA-23$ -like-F (R)GATCGGATTGGAGAACCAGA $bla_{OXA-23-like}$ Woodford et al., 2006 $Z2-4$ (F)TAATCCAAATCCAGCCATCCtetAThis study $Z2-5$ (R)TTTTCATTAGCGGGTCTTGGtetAThis study $Z2-6$ (F)CTCCTGTGATCCCTGAAAGCtetAThis study $Z2-7$ (R)GGCGAGTTTACGGGTTGTTAtetRThis study $Z2-8$ (F)TGCAGAGCCAGCCTTCTTATtetRThis study $Z2-9$ (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This study $Z2-10$ (F)CTGTTTTCGACATCCCGTTCrcr2This study $Z2-11$ (R)CACTWCCACATGCTGTKKCrcr2This study $Z2-13$ (F)CATTGCTCATCATTTGATCGGCTstrBThis study $Z2-14$ (R)TATCTGCGATTGGACCCTCTGstrAThis study $Z2-15$ (F)AATTGCCGTTATCACAAGCstrAThis study	Tn2006-1 (F)	TTGGCTCAACTTTATGATCCTG	yeeA	This study
OXA-23-like-R (F)ATTTCTGACCGCATTTCCAT $bla_{OXA-23-like}$ Woodford et al., 2006OXA-23-like-F (R)GATCGGATTGGAGAACCAGA $bla_{OXA-23-like}$ Woodford et al., 2006Z2-4 (F)TAATCCAAATCCAGCCATCCtetAThis studyZ2-5 (R)TTTTCATTAGCGGGTCTTGGtetAThis studyZ2-6 (F)CTCCTGTGATCCCTGAAAGCtetAThis studyZ2-7 (R)GGCGAGTTTACGGGTTGTTAtetRThis studyZ2-8 (F)TGCAGAGCCAGCCTTCTTATtetRThis studyZ2-9 (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This studyZ2-10 (F)CTGTTTTCGACATCCCGTTCrcr2This studyZ2-12 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	Tn2006-2 (R)	ATGGGCTTCGTCATTCATTG	ATPase	This study
OXA-23-like-F (R)GATCGGATTGGAGAACCAGAbla _{OXA-23-like} Woodford et al., 2006Z2-4 (F)TAATCCAAATCCAGCCATCCtetAThis studyZ2-5 (R)TTTTCATTAGCGGGTCTTGGtetAThis studyZ2-6 (F)CTCCTGTGATCCCTGAAAGCtetAThis studyZ2-7 (R)GGCGAGTTTACGGGTTGTTAtetRThis studyZ2-8 (F)TGCAGAGCCAGCCTTCTTATtetRThis studyZ2-9 (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This studyZ2-10 (F)CTGTTTTCGACATCCCGTTCrcr2This studyZ2-11 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	OXA-23-like-R (F)	ATTTCTGACCGCATTTCCAT	bla _{OXA-23-like}	Woodford et al., 2006
Z2-4 (F)TAATCCAAATCCAGCCATCCtetAThis studyZ2-5 (R)TTTTCATTAGCGGGTCTTGGtetAThis studyZ2-6 (F)CTCCTGTGATCCCTGAAAGCtetAThis studyZ2-7 (R)GGCGAGTTTACGGGTTGTTAtetRThis studyZ2-8 (F)TGCAGAGCCAGCCTTCTTATtetRThis studyZ2-9 (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This studyZ2-10 (F)CTGTTTTCGACATCCCGTTCrcr2This studyZ2-11 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	OXA-23-like-F (R)	GATCGGATTGGAGAACCAGA	bla _{OXA-23-like}	Woodford et al., 2006
Z2-5 (R)TTTTCATTAGCGGGTCTTGGtetAThis studyZ2-6 (F)CTCCTGTGATCCCTGAAAGCtetAThis studyZ2-7 (R)GGCGAGTTTACGGGTTGTTAtetRThis studyZ2-8 (F)TGCAGAGCCAGCCTTCTTATtetRThis studyZ2-9 (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This studyZ2-10 (F)CTGTTTTCGACATCCCGTTCrcr2This studyZ2-11 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-12 (R)CCCTGGGAACACATCAATCTrcr2/strBThis studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrAThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	Z2-4 (F)	TAATCCAAATCCAGCCATCC	tetA	This study
Z2-6 (F)CTCCTGTGATCCCTGAAAGCtetAThis studyZ2-7 (R)GGCGAGTTTACGGGTTGTTAtetRThis studyZ2-8 (F)TGCAGAGCCAGCCTTCTTATtetRThis studyZ2-9 (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This studyZ2-10 (F)CTGTTTTCGACATCCCGTTCrcr2This studyZ2-11 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-12 (R)CCCTGGGAACACATCAATCTrcr2/strBThis studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	Z2-5 (R)	TTTTCATTAGCGGGTCTTGG	tetA	This study
Z2-7 (R)GGCGAGTTTACGGGTTGTTAtetRThis studyZ2-8 (F)TGCAGAGCCAGCCTTCTTATtetRThis studyZ2-9 (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This studyZ2-10 (F)CTGTTTTCGACATCCCGTTCrcr2This studyZ2-11 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-12 (R)CCCTGGGAACACATCAATCTrcr2/strBThis studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	Z2-6 (F)	CTCCTGTGATCCCTGAAAGC	tetA	This study
Z2-8 (F)TGCAGAGCCAGCCTTCTTATtetRThis studyZ2-9 (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This studyZ2-10 (F)CTGTTTTCGACATCCCGTTCrcr2This studyZ2-11 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-12 (R)CCCTGGGAACACATCAATCTrcr2/strBThis studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	Z2-7 (R)	GGCGAGTTTACGGGTTGTTA	tetR	This study
Z2-9 (R)ATCAAAATGCTGCGTTCACAtetR/rcr2This studyZ2-10 (F)CTGTTTTCGACATCCCGTTCrcr2This studyZ2-11 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-12 (R)CCCTGGGAACACATCAATCTrcr2/strBThis studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	Z2-8 (F)	TGCAGAGCCAGCCTTCTTAT	tetR	This study
Z2-10 (F)CTGTTTTCGACATCCCGTTCrcr2This studyZ2-11 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-12 (R)CCCTGGGAACACATCAATCTrcr2/strBThis studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	Z2-9 (R)	ATCAAAATGCTGCGTTCACA	tetR/rcr2	This study
Z2-11 (R)CACTWCCACATGCTGTKKCrcr2This studyZ2-12 (R)CCCTGGGAACACATCAATCTrcr2/strBThis studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	Z2-10 (F)	CTGTTTTCGACATCCCGTTC	rcr2	This study
Z2-12 (R)CCCTGGGAACACATCAATCTrcr2/strBThis studyZ2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	Z2-11 (R)	CACTWCCACATGCTGTKKC	rcr2	This study
Z2-13 (F)CATTGCTCATCATTTGATCGGCTstrBThis studyZ2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	Z2-12 (R)	CCCTGGGAACACATCAATCT	rcr2/strB	This study
Z2-14 (R)TATCTGCGATTGGACCCTCTGstrAThis studyZ2-15 (F)AATTGCCGTTATCACCAAGCstrAThis study	Z2-13 (F)	CATTGCTCATCATTTGATCGGCT	strB	This study
Z2-15 (F) AATTGCCGTTATCACCAAGC <i>strA</i> This study	Z2-14 (R)	TATCTGCGATTGGACCCTCTG	strA	This study
	Z2-15 (F)	AATTGCCGTTATCACCAAGC	strA	This study
orf4b (R) TGGACGCTACGTTGTGAAAG orf4b This study	orf4b (R)	TGGACGCTACGTTGTGAAAG	orf4b	This study
comM-2 (R) GCCAGCAAGCTCAGCATAA comM This study	comM-2 (R)	GCCAGCAAGCTCAGCATAA	comM	This study

^{*a*} F, forward; R, reverse; Z1, zone 1; Z2, zone 2.

References for Table S2

- Karah N, Haldorsen B, Hermansen NO, Tveten Y, Ragnhildstveit E, Skutlaberg DH, Tofteland S, Sundsfjord A, Samuelsen O. 2011. Emergence of OXA-carbapenemase- and 16S rRNA methylase-producing international clones of *Acinetobacter baumannii* in Norway. J. Med. Microbiol. 60:515-521.
- Poirel L, Nordmann P. 2006. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene *bla*_{OXA-58} in *Acinetobacter baumannii*. Antimicrob. Agents Chemother. 50:1442-1448.
- Toleman MA, Vinodh H, Sekar U, Kamat V, Walsh TR. 2007. *bla*_{VIM-2} harboring integrons isolated in India, Russia, and the United States arise from an ancestral class 1 integron predating the formation of the 3' conserved sequence. Antimicrob. Agents Chemother. 51:2636-2638.
- Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SGB, Livermore D.M. 2006. Multiplex PCR for genes encoding prevalent OXA carbapenemases in *Acinetobacter* spp. Int. J. Antimicrob. Agents. 27:351-353.

TABLE S3. PCR	assays us	sed for	sequencing	and	detection	of	aacA4-catB8-aadA1
----------------------	-----------	---------	------------	-----	-----------	----	-------------------

and AbaR25.

\$\$1-65		
n K51-74		

^{*a*} S, standard; L, long.

Isolate	S1	S2, S3, S4	S 5	S6	S7, S8, S9	S10, S11, S12, S13	S14, S15, S16	S17, S18, S19	S20
K51-65	+	+	-	+	+	+	+	+	+
K51-66	+	+	-	+	+	+	+	+	+
K51-67	-	ND	-	+	-	-	+	-	+
K51-68	-	ND	-	+	+	+	+	+	+
K51-69	+	+	-	+	+	+	+	+	+
K51-70	+	+	-	+	+	+	+	+	+
K51-71	+	+	-	+	+	+	+	+	+
K51-72	+	+	-	+	+	+	+	+	+
K51-73	+	+	-	+	+	+	+	+	+
K51-74	+	+	-	+	+	-	+	+	+
K51-75	+	+	-	+	+	+	+	+	+
K51-76	+	+	-	+	+	+	+	+	+
K51-77	-	ND	-	+	+	+	+	+	+
K51-78	+	+	-	+	+	+	+	+	+
K51-79	+	+	-	+	+	+	+	+	+
K51-80	+	+	-	+	+	+	+	+	+
K51-81	-	ND	-	+	+	+	+	+	+
K70-64	+	+	-	+	+	+	+	+	+
K70-65	+	+	-	+	+	+	+	+	+
K70-66	-	ND	-	+	+	+	+	+	+
K70-67	+	+	-	+	+	+	+	+	+
K70-68	-	ND	-	+	+	+	+	+	+
K70-69	-	ND	-	+	+	+	+	+	+
K70-70	+	+	-	+	+	+	+	+	+
K70-71	-	ND	-	+	+	+	+	+	+
K70-72	-	ND	-	+	+	+	+	+	+
K70-73	-	ND	-	+	+	+	+	+	+
K70-74	-	ND	-	+	+	+	+	+	+
K70-75	-	ND	-	+	+	+	+	+	+
K70-76	-	ND	-	+	+	+	+	+	+
K70-77	+	+	-	+	+	+	+	+	+
K70-78	-	ND	-	+	+	+	+	+	+
K70-79	+	+	-	+	+	+	+	+	+
K70-80	+	+	-	+	+	+	+	+	+
K70-81	-	ND	-	+	+	+	+	+	+

TABLE S4. Results of PCR-based detection of aacA4-catB8-aadA1 and AbaR25 among the isolates^{*a*}

^a +, presence of the corresponding gene or genetic structure as listed in Table S3; -, interruption or

absence of the corresponding gene or genetic structure as listed in Table S3; ND, not determined.