## 1 Supplemental Material

| 2  |                                                                                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | Characterization of a newly discovered symbiont in the whitefly Bemisia tabaci                                                                 |
| 4  | (Hemiptera: Aleyrodidae)                                                                                                                       |
| 5  |                                                                                                                                                |
| 6  | Running title: Novel Orientia like symbiont in Bemisia tabaci                                                                                  |
| 7  |                                                                                                                                                |
| 8  | Xiao-Li Bing <sup>1</sup> , Jiao Yang <sup>1</sup> , Einat Zchori-Fein <sup>2</sup> , Xiao-Wei Wang <sup>1</sup> , Shu-Sheng Liu <sup>1#</sup> |
| 9  |                                                                                                                                                |
| 10 | <sup>1</sup> Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect                                            |
| 11 | Sciences, Zhejiang University, Hangzhou 310058, China; and <sup>2</sup> Department of Entomology,                                              |
| 12 | Newe-Ya'ar Research Center, Agricultural Research Organization, Ramat-Yishay 30095,                                                            |
| 13 | Israel.                                                                                                                                        |
| 14 |                                                                                                                                                |
| 15 | <sup>#</sup> Correspondence: Shu-Sheng Liu, Email: shshliu@zju.edu.cn.                                                                         |
| 16 |                                                                                                                                                |
| 17 | Section: Invertebrate microbiology                                                                                                             |
| 18 |                                                                                                                                                |
| 19 |                                                                                                                                                |

20 Appendix 1

## 21 FISH protocol

22 Specimens were collected directly into Carnoy's fixative (ethanol: chloroform: glacial acetic

acid, 6:3:1) and fixed overnight. After fixation, the samples were decolorized in 6% H<sub>2</sub>O<sub>2</sub> in

ethanol for 2 h and then hybridized overnight in hybridization buffer (20 mM Tris-HCl (pH

8.0), 0.9 M NaCl, 0.01% sodium dodecyl sulfate, 30% deionized formamide) containing 10

26 pmol of fluorescent probes. Stained samples were viewed under a Leica TC Sp5 confocal

- 27 microscope.
- 28
- 29
- 30 Appendix 2

## 31 **Q-PCR protocol**

32 Quantitative PCRs were finished mainly by the SYBR<sup>®</sup> Premix Ex Taq<sup>TM</sup> II and Bio-Rad

33 CFX96<sup>TM</sup> Real-Time System. Each of the PCR mixtures consisted of 10.0  $\mu$ l of 2×SYBR<sup>®</sup>

Premix Ex Taq<sup>TM</sup> II buffer (Takara, Dalian, China), 0.8 μl forward and reverse primer solution

 $(10 \,\mu\text{M each})$ , 2.0  $\mu$ l of DNA sample solution and 6.4  $\mu$ l of double distilled water. The PCR

temperature profile was 2 min at 95 °C, 40 cycles of 5 s at 95 °C and 34 s at 60°C. Standard

37 curves for each of the genes were drawn using standard plasmid samples at concentrations of

 $10^2$ ,  $10^3$ ,  $10^4$ ,  $10^5$ ,  $10^6$ ,  $10^7$  and  $10^8$  gene copies per  $\mu$ l of the target gene.

39

41 Fig. S1



- 43
- 44

45 Fig. S1 RFLP pattern of PCR products of 16S rRNA gene of the OLO and *Rickettsia* in *B*.

46 *tabaci* corresponding to *HphI* digestion. The different profiles were obtained from two

47 individuals representing each of the OLO and *Rickettsia* in *B. tabaci*. The bands shown on the

48 lower left are primer dimers. Lane 1,10, no template controls; lane 2-3, undigested OLO; lane

49 4-5, undigested *Rickettsia*; lane 6-7, digested OLO, resulting in fragments of 566 bp and 101

50 bp, respectively; lane 8-9, digested *Rickettsia*, resulting in fragments of 411 bp, 128 bp, 99 bp

and 27 bp (although the three lower bp bands are blurred), respectively; lane M, DNA size

52 markers (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 and 1.5 kb from bottom to top).

53

55 Fig. S2





- 58 Fig. S2 Phylogenetic analysis of the OLO identified from different *Bemisia tabaci* populations
- 59 based on bacterial 16S rRNA gene sequences (644 sites). The tree was constructed using a
- 60 TPM3 + G substitution model for Bayesian analysis. Bayesian posterior probabilities (>0.50)
- are shown at the nodes. The names and sequence accession numbers are shown in parentheses.
- 62 Sequences obtained in this study are shown in bold.
- 63



65 66

**Fig. S3 FISH controls.** China 1: no probe control; Mediterranean: OLO-free control; China 1

68 with competitive control. A-F: Overlay of channels of DAPI (blue), "Ca. Portiera

69 aleyrodidarum" (red) and OLO (green); G-L: Overlay of channels of DAPI, "Ca. Portiera

70 aleyrodidarum", OLO and white light. Competitive controls lack DAPI for the break of DAPI

71 detector. Signals on legs and wings are chitin autofluoresence.

| Source of variation                 | Bacterial densities in terms of 16S<br>rRNA gene copies per insect |        |         | Bacterial densities in terms of 16S rRNA<br>gene copies per $\beta$ -actin gene copy |        |         |
|-------------------------------------|--------------------------------------------------------------------|--------|---------|--------------------------------------------------------------------------------------|--------|---------|
|                                     |                                                                    |        |         |                                                                                      |        |         |
|                                     | df                                                                 | F      | Р       | df                                                                                   | F      | Р       |
| Time                                | 2                                                                  | 0.716  | 0.493   | 2                                                                                    | 2.402  | 0.099   |
| Sex                                 | 1                                                                  | 33.179 | < 0.001 | 1                                                                                    | 24.151 | < 0.001 |
| Symbiont                            | 1                                                                  | 0.274  | 0.602   | 1                                                                                    | 0.960  | 0.331   |
| Time × sex                          | 2                                                                  | 0.214  | 0.808   | 2                                                                                    | 1.193  | 0.311   |
| Time × symbiont                     | 2                                                                  | 2.255  | 0.114   | 2                                                                                    | 1.742  | 0.184   |
| Sex × symbiont                      | 1                                                                  | 0.037  | 0.848   | 1                                                                                    | 0.338  | 0.563   |
| Time $\times$ sex $\times$ symbiont | 2                                                                  | 1.533  | 0.224   | 2                                                                                    | 1.085  | 0.345   |
| Error                               | 58                                                                 |        |         | 58                                                                                   |        |         |
| Total                               | 69                                                                 |        |         | 69                                                                                   |        |         |

**Table S1** Statistics of three-factor ANOVA of effects of development time, host sex and symbionts on symbiont density

## **Table S2** AT contents of 16S rRNA gene of OLO, the primary and secondary symbiont of various insects (*B. tabaci* included), and

76 free-living bacteria representing the Alpha-subclass of the *Proteobacteria*.

| Symbiont                              | Host insect                       | AT content (%) | GenBank accession no. |
|---------------------------------------|-----------------------------------|----------------|-----------------------|
| OLO of Bemisia tabaci China 1         | Bemisia tabaci (whitefly)         | 48.5           | JX042442              |
| Primary symbiont of various insects   |                                   |                |                       |
| Portiera aleyrodidarum                | Bemisia tabaci (whitefly)         | 52.3           | JN204485              |
| Buchnera aphidicola                   | Baizongia pistaciae (aphid)       | 51.8           | NC_004545             |
| Wigglesworthia glossinidia            | Glossina brevipalpis (tsetse fly) | 51.3           | NC_004344             |
| Secondary symbiont of various insects |                                   |                |                       |
| Arsenophonus symbiont                 | Bemisia tabaci (whitefly)         | 45.8           | JN204476              |
| Arsenophonus symbiont                 | Stomaphis quercus (aphid)         | 46.2           | FJ655543              |
| Cardinium symbiont                    | Bemisia tabaci (whitefly)         | 50.8           | JN204480              |
| Cardinium symbiont                    | Aspidiotus nerii (buckler scale)  | 52.2           | GQ455437              |
| Hamiltonella defensa                  | Acyrthosiphon pisum (aphid)       | 46.2           | AY907546              |
| Regiella insecticola                  | Sitobion avenae (aphid)           | 46.3           | FJ357498              |
| Rickettsia symbiont                   | Bemisia tabaci (whitefly)         | 49.5           | DQ077707              |
| Rickettsia symbiont                   | Curculio hilgendorfi (weevil)     | 48.7           | AB604668              |
| Serratia symbiotica                   | Cinara tujafilina (aphid)         | 45.5           | EU348323              |
| Wolbachia symbiont                    | Bemisia tabaci (whitefly)         | 53.0           | JN204502              |
| Wolbachia pipientis                   | Drosophila sp. (fruit fly)        | 52.2           | EU096232              |
| Free living bacteria                  |                                   |                |                       |
| Acetobacter aceti                     |                                   | 44.6           | D30768                |
| Agrobacterium tumefaciens             |                                   | 45.2           | D01256                |
| Caulobacter crescentus                |                                   | 44.4           | AJ227756              |
| Rhodospirillum rubrum                 |                                   | 43.2           | D30778                |