SUPPLEMENTARY MATERIAL FOR

7,8-dihydro-8-oxoadenine, a Highly Mutagenic Adduct, is repaired by *E. coli* and Human Mismatch-Specific Uracil/Thymine-DNA Glycosylases

Ibtissam TALHAOUI^{1,3}, Sophie COUVE^{1,3}, Alexander A. ISHCHENKO¹, Christophe KUNZ², Primo SCHÄR², Murat SAPARBAEV^{1,*}

¹Groupe «Réparation de l'ADN», Université Paris Sud, Laboratoire « Stabilité Génétique et Oncogenèse » CNRS, UMR 8200, Institut de Cancérologie Gustave Roussy, F-94805 Villejuif Cedex, France

²Department of Biomedicine, University of Basel, Basel, CH-4058 Switzerland

*To whom correspondence should be addressed. Tel: +33142115404; Fax: +33142115008; Email: smurat@igr.fr

³The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

This file includes: Supplementary Tables S1 and S2 and Supplementary Figure S1 to Figure S4.

Supplementary Data Tables

	Substrate			
	80x0A•T	80x0A•C	80x0A•G	80x0A•A
$k_{\max} \left(\min^{-1} \right)^{a}$	0.35 ± 0.05	0.32 ± 0.04	1.64 ± 0.05	ND

Table S1. Pre-steady-state kinetic parameters of hTDG-catalyzed excision of 80xoA when paired with various bases

 ${}^{a}k_{max}$ constants were calculated by one phase exponential association equation using GraphPad Prism 5.

Name of the oligonucleotide duplex	DNA sequence of oligonucleotide substrates		
8oxoA•T ^a	5'-AATTGCTATCTAGCTCCGC <u>X</u> CGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCG <u>T</u> GCGACCATGGGTAGAGTACT-5'		
U•G ^b	5'-AATTGCTATCTAGCTCCGC <u>U</u> GGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCG <u>G</u> CCGACCATGGGTAGAGTACT-5'		
εC•G ^a	5'-AATTGCTATCTAGCTCCGC <u>&C</u> CGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCG <u>&</u> GCGACCATGGGTAGAGTACT-5'		
T•G ^b	5'-AATTGCTATCTAGCTCCGC <u>T</u> GGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCG <u>G</u> CCGACCATGGGTAGAGTACT-5'		
CXC (80xoA•A)	5'-AATTGCTATCTAGCTCCGC <u>X</u> CGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCG <u>A</u> GCGACCATGGGTAGAGTACT-5'		
CXC (80xoA•C)	5'-AATTGCTATCTAGCTCCGC X CGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCG <u>C</u> GCGACCATGGGTAGAGTACT-5'		
CXC (80xoA•G)	5'-AATTGCTATCTAGCTCCGC <u>X</u> CGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCG <u>G</u> GCGACCATGGGTAGAGTACT-5'		
GXC (80x0A•T)	5'-AATTGCTATCTAGCTCCGGXCGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCCTGCGACCATGGGTAGAGTACT-5'		
AXC (80x0A•T)	5'-AATTGCTATCTAGCTCCGAXCGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCTTGCGACCATGGGTAGAGTACT-5'		
TXC (80x0A•T)	5'-AATTGCTATCTAGCTCCGT <u>X</u> CGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCA <u>T</u> GCGACCATGGGTAGAGTACT-5'		
CXG (80x0A•T)	5'-AATTGCTATCTAGCTCCGC <u>X</u> GGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCG <u>T</u> CCGACCATGGGTAGAGTACT-5'		
CXA (80x0A•T)	5'-AATTGCTATCTAGCTCCGCXAGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCGTTCGACCATGGGTAGAGTACT-5'		
CXT (80xoA•T)	5'-AATTGCTATCTAGCTCCGC <u>X</u> TGCTGGTACCCATCTCATGA-3' 3'-TTAACGATAGATCGAGGCG <u>T</u> ACGACCATGGGTAGAGTACT-5'		

Table S2. Sequence of the 40 mer oligonucleotides used in this study, where X is 80x0A.

^aThe sequence context used in the standard DNA repair reactions and for the kinetic parameters measurements of 80x0A- and ɛC-DNA glycosylase activities, unless otherwise stated. ^bThe sequence context used in the standard DNA repair reactions and for the kinetic parameters

measurements of mismatched uracil- and thymine-DNA glycosylase activities, unless otherwise stated.

Figures

Figure S1. Pre-steady-state single-turnover kinetic of hTDG, hTDG^{cat} and MUG DNA glycosylases. Single-turnover kinetic experiments were performed at 37°C using 500 nM of TDGs or 5 μ M of MUG in reaction buffer containing 20 mM Tris (pH 8.0), 1 mM EDTA, 1 mM DTT, 100 μ g/ml BSA and 100 mM NaCl and 50 nM 5'-[³²P]-labelled oligonucleotide duplex U•G (**■**), ϵ C•G (**▼**), 80xoA•T (**▲**) or T•G (•). (A) hTDG. (B) TDG^{cat}. (C) MUG. The data were fitted to the one phase exponential association equation to calculate k_{max} constant.

Figure S2. Effects of DNA sequence context on 80xoA-DNA glycosylase activity of hTDG. 40 mer 80xoA•T duplex oligonucleotides containing 80xoA residue placed in different sequence context: CXC, CXA, CXT, CXG, GXC, AXC and TXC, where X is a 80xoA residue, were used as DNA substrates. 50 nM of 80xoA•T (5 nM of 5'-[³²P]-labelled and 45 nM of non-labelled duplexes) was incubated with 50 nM of hTDG for 15 min at 37°C. Each bar represents the mean values of hTDG activity \pm S.D. of three independent experiments. For details see Materials and Methods.

Figure S3. In vitro reconstitution of the human BER pathway using 80x0A•T duplex DNA substrate and purified proteins. 5 nM of 80x0A•T oligonucleotide duplex was incubated in the presence of 20 nM hTDG, 5 nM APE1, 2 nM FEN1, 0.1 units POL β and 5 nM T4 DNA Ligase in buffer containing 20 μ Ci of [α -³²P]dATP, 50 μ M dNTPs, 50 mM HEPES-KOH (pH 7.6), 30 mM NaCl, 0.1 mg/mL BSA, 2 mM DTT, 2 mM ATP and 3 mM MgCl₂ for 30 min at 37°C, unless otherwise stated. (A) Gel analysis of all reaction products in the presence or absence of one of the five DNA repair proteins. Lane 1, no hTDG; lane 2, no APE1; lane 3, no FEN1; lane 4, no POL β ; lane 5, no T4 DNA Ligase; lane 6, all enzymes. (B) Generation of full-length repaired product depending on the presence of DNA repair proteins. Lane 1, POL β ; lane 2, POL β and APE1; lane 3, POL β and FEN1; lane 4, POL β , APE1 and FEN1; lane 5, APE1, FEN1 and T4 DNA Ligase; lane 6, all enzymes except hTDG; lane 7, all enzymes. For details see Materials and Methods.

Figure S4. Repair activities toward $\varepsilon C \cdot G$ duplex oligonucleotide in extracts from *E. coli* and MEF cells. 2.5 nM of 5'-[³²P]-labelled $\varepsilon C \cdot G$ oligonucleotide duplexes were incubated with either 30 μ g of MEFs extract, or 20 μ g of *E. coli* cell extract or the purified 50 nM hTDG and 20 nM APE1 proteins. The repair assay (volume 100 μ l) was performed in BER+EDTA buffer containing 50 mM KCl, 20 mM HEPES-KOH (pH 7.6), 0.1 mg/ml BSA, 1 mM DTT and 1 mM EDTA for 1 h at 37°C. The reactions were stopped by adding SDS and proteinase K. (A) Denaturing PAGE analysis of the cleavage products after incubation of $\varepsilon C \cdot G$ duplexes with *E. coli* cell extracts. (B) Graphic representation of the mean values of cleavage activities in *E. coli* and MEF cell extracts. For details see Materials and Methods.