Supplementary Information

Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution

Jean-Paul Armache^{1,2*}, Andreas M. Anger^{1,2*}, Viter Márquez^{1,2#}, Sibylle Franckenberg^{1,2#}, Thomas Fröhlich^{1,3}, Elizabeth Villa⁴, Otto Berninghausen^{1,2}, Michael Thomm⁵, Georg J. Arnold^{1,3}, Roland Beckmann^{1,2,6} and Daniel N. Wilson^{1,2,6}

- ¹ Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor Lynen Str. 25, 81377, Munich, Germany
- ² Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Germany
- ³ Laboratory for Functional Genome Analysis LAFUGA, Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Feodor Lynen Str. 25, 81377, Munich, Germany
- ⁴ Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
- ⁵ Lehrstuhl für Mikrobiologie, Regensburg University, Universitätstraße 32, 93053 Regensburg, Germany

⁶ Corresponding authors: wilson@lmb.uni-muenchen.de, beckmann@lmb.uni-muenchen.de

- * These authors contributed equally to this work
- [#] These authors contributed equally to this work

Protein names	E		KA CA		EA							В					
	Sce	Hsa	Kcr	Ape	Sma	Eco	Pae	Pfu	Tko	Mig	Mth	Mka	Afu	Hma	Tvo	Tth	Eco
RACK1			-	-	_	-	-	-	-	_	-	_	-	_	-	-	-
S1e		\checkmark														-	-
(S3ae)															_ , _		
S2																	
S3																	
S4																	
S4e																_	-
S5																	
S6e									\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	—	—
S7			\checkmark						\checkmark			\checkmark	\checkmark		\checkmark		\checkmark
S7e		\checkmark	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
S8		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark							
S8e												\checkmark	\checkmark			-	-
S9			\checkmark						\checkmark			\checkmark	\checkmark		\checkmark		\checkmark
S10		\checkmark		\checkmark		\checkmark		\checkmark		\checkmark							
S10e	\checkmark		-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
S11		\checkmark							\checkmark		\checkmark						\checkmark
S12	\checkmark		\checkmark	\checkmark					\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark
S12e	\checkmark		-	-	-	-	-	-	-	-	-	-	_	-	_	_	-
S13													\checkmark				
S14									\checkmark		\checkmark	\checkmark	\checkmark				\checkmark
S15												\checkmark	\checkmark				\checkmark
S17									\checkmark		\checkmark	\checkmark	\checkmark				
S17e								\checkmark				\checkmark	\checkmark			-	-
S19												\checkmark					\checkmark
S19e												\checkmark	\checkmark			-	-
S21e			-	-	-	-	-	-	-	-	-	-	-	-	-	_	_
S24e	\checkmark		\checkmark													-	_
S25e		\checkmark	-			\checkmark		-	-	-	-	-	-	-	-	-	-
S26e	\checkmark		\checkmark	\checkmark				-	_	_	_	_	_	_	_	-	_
S27e			\checkmark	\checkmark												_	_
S28e					\checkmark					\checkmark	\checkmark	\checkmark			-	—	-
S30e		\checkmark						-	-	-	-	-	-	-	_	_	_
S31e												\checkmark				Thx	-
(S27ae)																	
L8eS	-	-	u	u	\checkmark					\checkmark	\checkmark	u	u	u		_	_
(L7ae)																	

Supplementary Table 1. Distribution of ribosomal proteins on the ribosomal small subunit in Eukarya (E), Korarchaeota (KA), Crenarchaeota (CA), Euryarchaeota (EA) and Bacteria (B)

Hsa (Homo sapiens), Kcr (Korarchaeum cryptofilum, Ape (Aeropyrum pernix), Sma (Staphylothermus marinus), Sac (Sulfolobus acidocaldarius), Pae (Pyrobaculum aerophilum), Pfu (Pyrococcus furiosus), Tko (Thermococcus kodakaraensis), Mig (Methanococcus igneus), Mth (Methanobacterium thermautotrophicus), Mka (Methanopyrus kandleri), Afu (Archaeoglobus fulgidus), Tvo (Thermoplasma volcanii), Hma (Haloarcula marismortui), Eco (Escherichia coli)

- Thx Protein known to exist in Tth belonging to bacterial S31e family, but unrelated to eukaryotic S31e
- √ Present
- Absent
- u Distribution unknown

Protein		<u>Е</u>	KA		C	A	(-	,, .	,		1	EA				Ē	3
names																	
	Sce	Hsa	Kcr	Ape	Sma	Sac	Pae	Pfu	Tko	Mig	Mth	Mka	Afu	Hma	Tvo	Eco	Tth
L1					. √		√										
L2																	
L3	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
L4		\checkmark								\checkmark	\checkmark					\checkmark	
L5	\checkmark	\checkmark								\checkmark	\checkmark					\checkmark	
L6	\checkmark	\checkmark						\checkmark		\checkmark	\checkmark					\checkmark	
L6e	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
L8e(L7ae)	\checkmark	\checkmark			\checkmark			\checkmark			\checkmark					-	_
L11	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark
L13	\checkmark	\checkmark									\checkmark						\checkmark
L13e	\checkmark	\checkmark				_ *		-	-	-	-	-	-	-	-	-	-
L14	\checkmark	\checkmark								\checkmark						\checkmark	
L14e		\checkmark											-	_	_	-	-
L15	\checkmark											\checkmark					
L15e	\checkmark													\checkmark		-	-
L16			V	V			V								V		
L18							V						V		V		
L18e			V	V		V		V	V			V	V	V		_	_
L19e	V	V	v.	v.	V	V	v	V	V	√	V	v	v	v V	V	_	_
L20e(L18ae)	v	V	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
L21e	V	V.														_	_
1.22	J.	1	1	v	v.	V	1	V	V	1	v V	V	V	v v	1		
L22e	V	Ń	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
L23	v	Ń															
L24	v	v.	v V	, V	v	v	v	v V	V	V	v	V	V	v v	, V	v.	, V
L24e	v	V	v V	v	v	v	v	V	v	v	v	v	V	V	V	_	_
L27e			_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
L28e	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
L29											\checkmark						
L29e			_	_	_	-	-	_	_	_	_	_	_	_	_	-	_
L30										\checkmark	\checkmark						
L30e	\checkmark	\checkmark								\checkmark	\checkmark	-		-	_	-	-
L31e	\checkmark	\checkmark								\checkmark	\checkmark				\checkmark	_	_
L32e		\checkmark								\checkmark	\checkmark					_	_
L33e(L35ae)	\checkmark	\checkmark	-		\checkmark	-	-			-	-	-	-	-	-	-	_
L34e	\checkmark	\checkmark			\checkmark	\checkmark					\checkmark		-	_	-	-	_
L36e	\checkmark		-	-	-	-	-	-	-	-	-	-	_	_	_	-	_
L37e	\checkmark			\checkmark		\checkmark	-	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	-	_
L38e	\checkmark		-	\checkmark		-		-	-	-	-	-	-	-	-	-	-
L39e	\checkmark					\checkmark		\checkmark		\checkmark				\checkmark		-	_
L40e	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark	-	-	_
L41e	\checkmark	\checkmark	-	-	-	-	-			\checkmark	-	-	-	-	-	-	_
L43e(L37ae)	\checkmark	\checkmark								\checkmark	\checkmark					_	_
L44e	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	-	_
P0(L10)	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	
P1(L12)	\checkmark					\checkmark		\checkmark		\checkmark	\checkmark			\checkmark		\checkmark	\checkmark
P2(L12)	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	-	-
L8e2(L7ae)	-	-	u	u		\checkmark	-	\checkmark		-	\checkmark	u	u	_ **	u	-	_
L14e2(L14e)	-	-	u	u		\checkmark				\checkmark		u	-	_	-	-	-
LX(L20e)	-	-	-			\checkmark		\checkmark		\checkmark		\checkmark			-	-	-
S24eL	-	-	u	u	-	-	-	\checkmark		-	-	u	u	-	u	-	_

Supplementary Table 2. Distribution of large subunit r-proteins in Eukarya (E), Korarchaeota (KA), Crenarchaeota (CA), Euryarchaeota (EA) and Bacteria (B)

* Present in *Sulfolobus* species, but not found *S. acidocaldarius*, ** Unknown whether it is absent, or less stably bound, $\sqrt{}$ Present, - Absent, u Distribution unknown.

Protein Name		• •	Amino	.9	Molecular	_
(Family)	LC/MS	2D	acids	gi"	mass (kDa)	pl
S1e (S3ae)	\checkmark		200	57641189	23.02	10.1
S2	\checkmark		201	57641431	23.01	8.9
S3	\checkmark		209	57641471	23.4	9.6
S4	\checkmark		180	57641440	21.2	10.2
S4e	\checkmark		243	57641464	27.8	9.9
S5	\checkmark		235	57641456	26.3	9.4
S6e	\checkmark		125	57641886	13.7	10.1
S7	\checkmark		215	57641012	24.5	10.0
S8	\checkmark		130	57641461	14.6	9.5
S8e	\checkmark		130	57641126	14.5	10.8
S9	\checkmark		135	57641435	15.3	10.5
S10	\checkmark		102	57640242	11.7	10.1
S11	\checkmark		140	57641439	15.1	10.3
S12	\checkmark		147	57641013	16.4	10.6
S13	\checkmark		149	57641441	16.9	10.8
S14 ^b	\checkmark		56	57641462	6.6	10.4
S15			151	57641186	17.5	10.5
S17			114	57641467	13.2	9.5
S17e			67	57642227	8	10.3
S19			133	57641473	15.4	10.3
S19e			150	57641211	17.3	9.4
S24e			98	57641631	11.4	5.5
S27e			65	57641034	7.1	9.2
S28e			70	57641245	7.9	11.0
S31e (S27ae)	\checkmark		57	57641630	6.7	10.2

Supplementary Table 3. *T. kodakaraensis* 30S r-proteins identified by LC-MS and 2D-PAGE

^a gi refers to the GenInfo identifier for retrieval from NCBI ^b Identified with only a single peptide

Protein Name			Amino		Molecular	
(Family)	LC/MS	2D	acids	gi ^a	mass (kDa)	pI
L1	\checkmark		216	57641352	24.1	9.7
L2	\checkmark		239	57641474	26.0	10.7
L3	\checkmark		346	57641477	39	10
L4	\checkmark		255	57641476	28.7	10.5
L5	\checkmark		183	57641463	20.9	9.8
L6			184	57641460	20.8	9.2
L8e (L7ae)	\checkmark		125	57641246	13.7	5.2
L11			165	57641353	17.6	5.4
L12			106	57641350	10.8	3.9
L13			142	57641436	16.3	10.3
L14	\checkmark		141	57641466	15.2	11.5
L14e	\checkmark		83	57641448	8.9	9.9
L15	\checkmark		148	57641454	16.5	10.2
L15e	\checkmark		194	57641389	22.6	11.2
L16 (L10e)	\checkmark		182	57641481	21.1	10.3
L18	\checkmark		201	57641457	22.9	6.5
L18e	\checkmark		121	57641437	13.8	10.4
L19e	\checkmark		150	57641458	17.6	10.9
L20e (LX)	\checkmark		77	57641257	9.2	9.0
L21e	\checkmark	\checkmark	98	57640837	11.3	11.5
L22	\checkmark		156	57641472	17.8	10.7
L23	\checkmark	\checkmark	86	57641475	9.9	9.7
L24	\checkmark		121	57641465	14.2	10.0
L24e	\checkmark	\checkmark	67	57641244	8.1	10.3
L29	\checkmark		66	57641470	7.9	10.3
L30	\checkmark		155	57641455	17.8	10.2
L30e ^b	\checkmark		102	57641015	10.9	8.9
L31e			90	57641255	10.3	10.6
L32e	\checkmark		126	57641459	14.7	11.5
L34e	\checkmark		90	57641450	10.5	11.7
L33e (L35ae)	\checkmark		86	57640904	9.5	10.9
L43e (L37ae)			86	57640550	9.2	11.6
L37e	\checkmark		63	57640910	7.5	11.8
L39e	\checkmark		51	57641254	6.2	12.6
L40e	\checkmark		51	57641430	5.8	10.9
L41e			37	57641850	5.0	12.7
L44e			94	57641033	11.1	11.1
P0 (L10p)	\checkmark		340	57159675	36.8	4.8

Supplementary Table 4. *T. kodakaraensis* 50S r-proteins identified by LC-MS and 2D-PAGE

^a gi refers to the GenInfo identifier for retrieval from NCBI ^b Identified with only a single peptide

Supplementary Figures

Supplementary Figure 1 Molecular model for rRNA of the *P. furiosus* **70S.** (A-B) Secondary structure diagrams of the (A) 16S and (B) 5S and 23S rRNA for *P. furiosus*. Distant parts of the secondary structure drawing are connected by thin lines. (C-D) Molecular model of the rRNA for the (A) small and (B) large subunit of the *P. furiosus* **70S** ribosome. Conserved rRNA core is coloured black, eukaryotic-like expansion segments (ES) and variable regions (VR) are coloured orange. ESs and VRs that adopt a unique archaea-specific structure are coloured green.

Supplementary Figure 2 Comparison of *P. furiosus* ESs and VRs with bacterial and eukaryotic homologous structures. (A-E) Comparison of (A) h33, (B) H15 (ES5L), (C) H28-H31 (ES9L), (D) H54 (ES20L, ES26L), H58 and (E) H25 (ES7L) between the bacteria *T. thermophilus* (blue) (29), the archaea *P. furiosus* (orange), the eukaryote *S. cerevisiae* (green) (7), *S. cerevisiae* ES7L was taken from (32).

Supplementary Figure 3 Novel rRNA conformations in *P. furiosus* **70S ribosome.** (A-C) Comparison of h16/17 on the small subunit (left) and H98 (ES39L) on the large subunit (right) between (A) the bacterial (*E. coli*) (30) and (B) archaeal (*P. furiosus*) 70S ribosome, with the (C) eukaryotic (*S. cerevisiae*) 80S ribosome (7). CP marks the central protuberance.

Supplementary Figure 4 Comparison of cryo-EM maps and models for the *M. thermautotrophicus* 50S subunit and the *P. furiosus* 70S ribosome. (A-L) Comparison of four distinct regions of the large subunit, namely focusing on (A-C) H15 (ES5L), H16-H18 and L8e(1), (D-F) H25 (ES7L) and L8e(2), (G-I) H28 and ES9L and (J-L) ES20L/ES26L and L14e(2). Left panel (A,D,G,J) presents *M. thermautotrophicus* map (EMD-2012) and associated model (PDB4 ADX) (15), middle panel (B,E,H,K) displays *M. thermautotrophicus* map with *P. furiosus* model, and right panel (C,F,I,L) presents the *P. furiosus* map and model. In each case, the cryo-EM density (grey mesh) is shown with rRNA (blue) and proteins (gold).

Supplementary Figure 5 Secondary structure diagram of the *P. furiosus* **16S rRNA.** The *P. furiosus* 16S rRNA diagram was taken from (51) and adjusted according to the final rRNA model. Grey shaded regions highlight relevant ESs and VRs.

Supplementary Figure 6 Secondary structure diagram of the 5' region of *P. furiosus* **23S rRNA.** The *P. furiosus* 23S secondary structure representation is based on the corresponding diagram for *Thermococcus celer* obtained from (51) and was adjusted according to the final rRNA model. Grey shaded regions highlight relevant ESs and VRs.

Supplementary Figure 7 Secondary structure diagram of the 3' region of *P. furiosus* 23S rRNA and complete 5S rRNA. The *P. furiosus* 23S and 5S secondary structure representations are based on the corresponding diagrams for *T. celer* and *Pyrococcus woesei*, respectively obtained from (51) and were adjusted according to the final rRNA model. Grey shaded regions highlight relevant ESs and VRs.

Supplementary Figure 8 *P. furiosus* **L8e (L7ae) interaction with kink-turn motifs in C/D and H/ACA snoRNPs. (A-B)** Interaction of L8e (grey) with bulged out uridine nucleotide (red) within the internal loop of kink-turn motives found in (A) C/D snoRNP (PDB 3NMU) (52) and (B) H/ACA snoRNPs (PDB 2HVY) (42). Insets show secondary structure diagrams of the respective C/D and H/ACA snoRNP kink-turn motives. NC indicates the non-canonical stem.

Supplementary Figure 9 Binding positions of *P. furiosus* L8e, L14e and S24e and respective regions on the eukaryotic ribosome. Comparison of binding positions of (A-C) L8e (red), (D-E) S24e (blue) and (F-G) L14e (green) between *P. furiosus* 70S (left panels) and *S. cerevisiae* 80S (right panels) (7) (Note: ES7L was taken from (32)) ribosomes. Relevant rRNA sections shown as orange ribbon, all other ribosomal components are coloured white. Inset shows a schematic view of the location of L8e (red), L14e (green), LX (light blue) and S24e (blue) on the small (yellow) and large (grey) subunit.

Supplementary Figure 10 Structure and sequence alignments of L8e/L14e/LX with S12e/L27e/L20e. (A-C) Superimpositions of the structures of (A) *P. furiosus* L8e with *S. cerevisiae* S12e (7), (B) *P. furiosus* L14e with *S. cerevisiae* L27e (7), and (C) *P. furiosus* LX with *S. cerevisiae* L20e (7). The corresponding sequence alignments shown below were generated using Clustal W (34). Conserved residues are highlighted.

Supplementary Figure 11 Phylogenic distribution of the KT-33 in archaea and eukaryotes. (A) Structure of KT-33 with bulged guanine nucleotide (red) from the S. cerevisiae ribosome (7). (B) Secondary structure diagram of KT-33 from (A). (C) Structural alignment of KT-33 showing conservation of guanine in eukaryotes and uridine in archaea (equivalent to position G1228 in S. cerevisiae shaded red). The two tandem sheared A/G base pairs characteristic for the KT motif (indicated in orange) are conserved in Archaea and Eukarya. The alignment was generated in S2S (27) using the yeast (Sce) KT-33 structure as template. Colors highlight structural conservation according to the Leontis-Westhof classification (53) implemented in S2S (27), with dark colors indicating isosteric secondary (blue) or tertiary (brown) interactions. Light colors indicate interactions that are geometrically possible, but not necessarily isosteric with the template base-pairs. Nucleotides highlighted in two colors are simultaneously involved in secondary and tertiary interactions. Abbreviations: Apis mellifera (Ame), Caenorhabditis elegans (Cel), Danio rerio (Dre), Gallus gallus (Gga), Homo sapiens (Has), Oryza sativa (Osa), Saccharomyces cerevisiae (Sce), Tetrahymena thermophila (Tth), Trypanosoma brucei (Tbr), Xenopus laevis (Xle), Aeropyrum pernix (Ape), Archaeoglobus fulgidus (Afu), Haloarcula marismortui (Hma), Korarchaeum cryptofilum (Kcr), Methanobacterium thermoautotrophicus (Mth), Methanococcus jannaschii (Mja), Methanopyrus kandleri (Mka), Pyrobaculum aerophilum (Pae), Pyrococcus furiosus (Pfu), Staphylothermus marinus (Sma), Sulfolobus acidocaldarius (Sac), Thermococcus kodakaraensis (Tko), Thermoplasma acidophilum (Tac).

Supplementary Figure 12 Distribution of S24e(L) and L14e(2) binding sites in archaeal ribosomes. (A-L) Fit of molecular models of (A-F) S24e (blue) and (G-H) L14e (green) into the cryo-EM density (mesh) of the (A,G) *M. thermautotrophicus* 50S (EMD-2012) (15), (B,H) *S. acidocaldarius* 50S (EMD-1797) (21), (C,I) *S. marinus* 50S, 50S subunit of the (D,J) *T. kodakaraensis* and (E,K) *M. igneus* 70S ribosomes, and the (F,L) *P. aerophilum* 50S (EMD-1796) (21). Ribosomal RNA is shown in tan with additional r-proteins coloured light blue.

Supplementary Figure 13 Phylogenic distribution of the KT-25 in archaea. (A) Structure of KT-25 with bulged uridine nucleotide (red) from the *P. furiosus* ribosome. (B) Secondary structure diagram of KT-25 from (A). (C) Structural alignment of KT-25 showing conservation of uridine (shaded red, equivalent to position U588 in *P. furiosus*) and KT motif characteristic tandem sheared A/G base pairs (orange). The two KT features can be found in many archaea, but are absent in *Haloarcula marismortui* (Hma), *Archaeoglobus fulgidus* (Afu), *Pyrobaculum aerophilum* (Pae) and *Methanococcus jannaschii* (Mja). The alignment was generated in S2S (27) using the *P. furiosus* (Pfu) KT-25 structure as template. Colors highlight structural conservation according to the Leontis-Westhof classification (53) implemented in S2S (27), with dark colors indicating isosteric secondary (blue) interactions. Non-alignable sequences are shaded grey. Abbreviations used as in Supplementary Figure 11.

Supplementary Figure 14 Intermediate complexity of archaeal ribosomes compared to bacteria and eukaryotes. (A-F) Comparison of the structures of the (A-B) bacterial (29), (C-D) archaeal and (E,F) eukaryotic ribosomes (7). Core rRNA (white) and r-proteins (pale green) are conserved in bacteria, archaea and eukaryotes. The bacterial (A) small and (B) large subunit are shown with bacterial-specific r-proteins coloured yellow, whereas for the archaeal (C) small and (D) large subunit, the archaeal-specific r-proteins are coloured green, the eukaryotic-like r-proteins and rRNA parts are coloured light blue and orange, respectively. In the eukaryotic 80S ribosome, the eukaryotic-specific r-proteins and rRNA parts are coloured blue and red, respectively.

L8e	
Ape/1-127 Afu/1-119 Hma/1-120 Kcr/1-127 Mth/1-123 Mja/1-117 Mka/1-123 Pae/1-151 Pae/1-151 Pae/1-128 Sac/1-126 Tkc/1-123 Tac/1-121	10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 M5KP1YVRFEVPEDLAEKAVEAVEAVEAVEAVEAVEAUVEAUVEGLAKVVVVFEGLAKVVEGLAKVVV A EDVDPPIVAHLPLLCEKNPVVVPSKKEGEAGIEVAAASVAITEPGDAETLVREVEKVKELRAKAGV MVVRFEVPEDMONEALSLEKVRESS - KVKKGTNETTKAVERGLAKVVV A EDVDPPIVAHLPLLCEEKNPVVVPSKKEGEAGIEVAAASVAITEPGDAETLVREVEKVKELRAKAGV MVVRFEVPEDMONEALSLEKVRESS - KVKKGTNETTKAVERGEAGFVV A EDVDPPIVAHLPLLCEEKNPVIVVSKKAGGEAGIEVAAASVAITEPGDAETLVREVEKVKELRAKAGV MVVRFEVPEDDAONEALSLEKVRESS - KVKKGTNETTKAVERGEAGFVV A EDVDPPIVAHLPLLCEEKNPVVVPSKEGGEAGIEVAAASVAITEPGDAETKEGSVKKELRAKAGV MVVRFEVPKDLVPKILELVARDTG - KVKGTNETTKAVERGEAGFVV MSKDKPSVVKFEVPKDLVPKILELDVAKAGA. MAKPSVVKFEVPKDLVPKILELDVAKAGA. MAKPSVVKFEVPKDLVPKILELDVAKAGSSTGGKLRKGVNETTKAVERGEAGFVV KAUTTKAVERGEAGFVV MAVTIDPKTFYANPPPGKFFVREEVFXDLVPKILELDVAKAGA. MSKDKPSVVKFEVPKELAEKAQAVEIARDTG - KIKKGTNETTKAVERGEAGFVV KAUTTKAVERGEAGFVV MAKPSVVKFEVPKELAEKAQAVEIARDTG - KIKKGTNETTKAVERGEAGFVV MAVTIDPKTFYANPPCKELAGAAGINVG MAKPSVVKFEVPKELAEKAQAVEIARDTG - KIKKGTNETTKAVERGEAGVDPPEIVAHLPLLCEEKGPVVVPSKELGGAAGINVGAAASVAITEPGQAAGLUVEETA MAKPSVVKFEVPKELAEKAQAVEIARDTG - KIKKGTNETTKAVERGEAKLVII AEDVVPEEVVAHLPLLCEEKGPVVVPSKELGGAAGINVGAAASVAITEPGQAAGLUVEETAKVEEKK- MAKPSVVKFEVPKELAEKAQAVEIARDTG - KIKKGTNETTKAVERGEAKLVII AEDVVPEEVVAHLPLLCEEKKVPVVVPSKELGGAAGINVGAAASVAITEPGQAAGLUVEETAKVEEKK- MAKPSVVKFEVPKELAEKAQAVEIARDTG - KIKKGTNETTKAVERGAKLVII AEDVVPEEVVAHLPLLCEEKKVPVVVVSKELGAAGGIVVAAASVAITEPGQAAGLUVEETAKVEEKK- MAKPSVVKFEVPFELAEKAQAVEIARDTG - KIKKGTNETTKAVERGAKLVII AEDVVPEVVAHLPLLCEEKKVPVVVVSKELGAAAGINVSAAAAVVIEPGQAAGEVEKKUVEEKK- MKKDSVKFEVPFELAEKAQAVEIARDTG - KIKKGTNETTKAVERGAKLVII AEDVVPEVVAHLPLLCEEKKVPVVVVSKKELGAAAGINVSAAAVVIEPGQAAGEVEKKKKEEKK- MSKPSVKFEVPPELAEKVVEAVKKKKESS- MKKDSVKFEVPPELAEKVVEAVKKKKESS- MKKDSVKFEVPFELAEKALGAVEIARDTG - KIKKGTNETTKAVERGAKLVII AEDVDPEVAHLPLLCEEKKIPVVVVVSKKAAGINVEELGAAASVAITEPGKKDLVEETAKKSKKEEKK- MSKDSVSSVKFEVPPELAEKVVEAVKKKKESS- MKKDSVKFEVPPELAEKVVEAVKKKKKSSS- MKKDSVKFEVPFELAEKALGAVEIARDTG - KIKKGTNETTKAVERGAKLVII AEDVDPEVVVVVKKKKADDGSKVGIAS-AASVXIEPGGAASVS
L14e	
Ape/1-100 Kcr/1-92 Mth/1-75 Mja/1-80 Mka/1-94 Pae/1-103 Pfu/1-83 Sma/1-96 Sac/1-96 Tko/1-83	MAKV- VEVGRI I CVKTR BREAGR KCVI VDI I DEN FVLVTGAK SLTGVR RRRVN I DHI E I LDKKVDI QKGAS DE EVLKALEË AGLAD FMRË VRI ARI I TPFTL M-GV-TEVGRV CRKVA GREAGRLCVVRTI DKNFVEAT GPKELTGVR BRRVN KHLV LPVKLDI PEGAR DE EVI E ALKGTDL YEKLQKARVSG N-PA-TEVGRV CVKTAGREAGRVCVI VDI LDKNFV I VDG V KNRCCNVSHLEPT EN KIELKS-DDI EE IKKELE SLE M-PA-TEVGRV CVKTAGREAGRVCVI VD LDKNFV I VDG V KNRCCNVSHLEPT EN KIELFS-DDI EE IKKELE SLE M-PAPTEEVGRV CVKTAGREAGRVCVI VD LDKNFV I VDG V KNRCCNVSHLEPT EN KIELFS-DDI EE IKKELE SLE M-PAPTEEVGRV CVKTAGREAGRVCVI VD LDKNFV I VDG V KNRCCNVSHLEPT EN KIELFS-DDI EE IKKELE SLE M-PAPTEEVGRV CVKTAGREAGRVCVI VD U DKNFV I VDG V KNRCCNVSHLEPT EN KIELFSTEEVKLA LDAAGLL KEE M-PAPTEEVGRV CVKTAGREAGRVCVI VD VDENT VI TGAFKPITGVKRRRVNI HEFT EKKILDI KRGAS DE EVKEALE AGALLOLMKEGI V SGS M-PAPTEVGRV CVKTAGREAGRVCVVD VDENT VVTGAFKPITGVKRRRVNI HEFT DKKILDI KRGAS DOE VAKA I E AAGU EVYMRERVKPS FVGI TKAAFT M-PA-TIE I GRI CVKVAGREAGRKCVI VDI I DKNFVLVT GAG-LNKVKRRRMNI KHIEFT LDKVI DI SRGAS DE EVKEALE AGAL SLA M-PA-TIE I GRI CVKVAGREAGRKCVI VDI I DKNFVLVT GAG-LNKVKRRRMNI KHIEFT LDKVI DI SRGAS DE EVKEALE AGAL SLA M-PA-TIE I GRI CVKVAGREAGRKCVI VDI I DKNFVLVT GAG-LNKVKRRRMNI KHIEFT LDKVI DI SRGAS DE EVKAALE KAGI SLA M-PA-TIE I GRI CVKVAGREAGRKCVI VDI I DKNFVLVT GAG-LNKVKRRRMNI KHIEFT LDKVI DI SRGAS DE EVKAALE KAGI SLA M-PA-TIE I GRI CVKVAGREAGRKCVI VDI I DKNFVLVT GAG-LNKVKRRRMNI KHIEFT LDKVI DI SRGAS DE EVKAALE GAGI SLA M-PA-TIE I GRI LCVKVAGREAGRKCVI VDI I DKNFVLVT GAG-LNKVKRRRMNI KHIEFT LDKVVE I NKGAT DE SVKOI FEGAGI SLGSLT FORKEI VKPKI VVE NGAS DE EVKAALE GAGI SLGSLT FORKEI VKPKI VVE NGAS DE EVKAALE GAGI SLGSLT FORKEI VKPKI VNE NGAT DE SVKOI TE GAS LEVGSLT FORKEI NGAN SU TAGAN START VKTI TE FT DKKVE I NKGAT DE SVKOI TE GAGI SLGSLT FORKEI VKPKI VKON TE FT DKKVE FT FT TAGA SKRRRVNI LEFT DKKVE TI NGAT START FT TANG TO KKRRRVNI TAGA START VKTI TE FT TAKVE TAGA SKRRRVNI TAGA START VKTI TE FT TAKVE TAGA START VKTI TAGA START FT TAGA SKRRVNI TAGA START FT
S24e	10 20 30 40 50 60 70 80 90 100 110 120 130
Ape/1-118 Afu/1-110 Hma/1-102 Kcr/1-95 Mth/1-100 Mja/1-101 Mka/1-116 Pae/1-121 Pfu/1-99 Sma/1-118 Sac/1-118 Tko/1-98 Tac/1-98	M SV PQAR EAR NI LI GEVQU Ó FY NP LVK RR FI VMI LI HH ELK PT FMR I MLRÓK LA EV LGV DÍ KR I VJ RY I KT GY GAGL SK V RV HV DS PERÁLS FE PKY LI ER NG

Supplementary Figure 15 Sequence alignments of archaeal r-proteins L8e, L14e and S24e. Increasing conservation is shown with

darker shading of the amino acids (<40%, white, >40%, >60% to >80%). Abbreviations used as in Supplementary Figure 11.