Supplemental materials

Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus

Tatsuya Ibuki, Yumiko Uchida, Yusuke Hironaka, Keiichi Namba, Katsumi Imada, and Tohru Minamino

Fig S1. Evolutionary conserved residues of FliJ. (A) The primary structure of *Salmonella enterica* FliJ. FliJ is a small protein with 147 amino acids. The binding regions of FliJ for FliH, FliI, FlgN, and FliT are shown in blue, light green, yellow, and red, respectively. A well-conserved, surface-exposed region, which is formed by residues 38-49 and 72-83, is colored magenta. (B) Space filling drawing of FliJ colored in accordance with evolutionary conservation among 50 different bacterial species. The figure is prepared by ConSurf server (http://consurf.tau.ac.il/). (C) Stick representation of FliJ viewed from the same orientation as (B). The model is colored in rainbow spectrum from the N-terminus (blue) to the C-terminus (red). The eight well-conserved residues are labeled and colored magenta.

Fig. S2. Dominant negative effect of various point mutant variants of GST-FIIJ on motility of and flagellar protein export by wild-type cells. (A) Expression level of various forms of GST-FIIJ. Whole cell proteins were prepared from SJW1103 (wild-type) transformed with pGEX-6p-1-based plasmids encoding various forms of GST-FIIJ and subjected to SDS-PAGE, followed by Coomassie brilliant blue (CBB) staining. Lane1, GST; lane 2, GST-FIIJ (indicated as WT); lane 3, GST-FIIJ(Q38A) (indicated as Q38A); lane 4, GST-FIIJ(L42A) (indicated as L42A); lane 5, GST-FIIJ(Y45A) (indicated as Y45A); lane 6, GST-FIIJ(Y49A) (indicated as Y49A); lane 7, GST-FIIJ(F72A) (indicated as F72A); lane 8, GST-FIIJ(L76A) (indicated as L76A); lane 9, GST-FIIJ(A79S) (indicated as A79S); lane 10, GST-FIIJ(H83A) (indicated as H83A). The positions of various GST-FIIJ variants and GST are indicated by arrows. (B) (Left panel) Motility of the same transformants in soft agar. The plates were incubated at 30°C for 4 hours. (Right panel) Secretion assays of FIIC. Secretion of FIIC was analyzed by CBB staining.

Fig. S3. Effect of FliJ mutations on the interaction of FliJ with FlhA_c. Purified His-FlhA_c was mixed with purified GST, GST-FliJ, GST-FliJ(Y45A), GST-FliJ(Y49A), GST-FliJ(F72A) or GST-FliJ(L76A) and then these mixtures were dialyzed overnight against PBS with 2 changes. The mixtures (indicated as L) were loaded onto a GST column. After washing with 5 ml PBS, proteins were eluted with 50 mM Tris-HCl, pH 8.0, 10 mM reduced glutathione. The eluted proteins (E) were analyzed by CBB staining.