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Text S1 – Notations and proofs 
 

Similarly as a value of importance (proportion) is attributed to a species within a 

community, the communities themselves can be given different importance values in the 

analysis: wij will denote the importance given to community ij. Alternatively, similarly as 

species’ importance can be set equal within a community (e.g. presence-absence data), 

communities can be attributed equal weights: 1/ijw rm  for all ij. In the main text, we have 

chosen equal weights for all communities. Nevertheless to demonstrate the flexibility of our 

approach, it is important to acknowledge that unequal weights are allowed when appropriate 

for a given study. In addition, as all demonstrations below are still valid with unequal weights, 

we present them in this more general case. Mathematically, the only requirements that cannot 

be violated are that 0ijw   for all ij and 1ijij
w  . We will see, in proof 4 below and in Text 

S2, that an additional interesting requirement is that ij i jw w w   where wi+ is the importance 

given to level i of factor A and w+j is the importance given to level j of factor B. 

Communities’ importance can thus derive from the importance given to levels of a factor. 

Alternatively, communities’ importance can be defined first and then the importance given to 

levels of factor A and factor B are defined as follows: 
1

m

i ijj
w w 

   and 
1

r

j iji
w w 

  . 

Ecologically speaking, differential importance can be attributed to communities for instance 

when local community sizes are unequal or when communities have been sampled 

differentially (in that case the importance given to a community can be its relative sample 

size), when communities represent different areas (in which case the importance given to a 

community can be its relative area) (e.g., [1]). Similarly differential importance can be given 

to levels of a factor when the number of individuals attributed to each level is biased towards 

a few levels or when levels represent regions of different areas.  
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NOTATIONS 

● General matrices: 

nI  denotes the n n  matrix of identity, 1n denotes a 1n  vector of units, and n0  denotes a 

1n  vector of zeros. 

● Distance matrices: 

Δ is the matrix of distances among species. 

● Vector of weights: 

All vectors belong to 

  1 1
,..., | 0 for all , 1

SS t
S k kk

P p p p k p


   p , where t is the transpose. 

ijw  is the weight attributed to community ij associated with level i of factor A and level j of 

factor B.  

1

m

i ijj
w w 

  is the weight attributed to level i of factor A. 

1

r

j iji
w w 

   is the weight attributed to level j of factor B.  

1 1

r m

k ij ijki j
p w p  

    is the weight attributed to species k, where ijkp  is the proportion of 

species k in community ij. 

 A 1 ,..., ,...,t
i rw w w  w  and  B 1,..., ,...,t

j mw w w  w  are vectors of weights associated 

with factors A and B. 

 C 11 12, ,..., ,...,t
ij rmw w w ww   is the vector of weights associated with the communities. 

● Vectors and matrices of proportions: 

 1,..., ,...,t
ij ij ijk ijSp p pp  is the vector of species proportions in community ij.  

1
/

m

i ij ij ij
w w 

 p p  is the vector of species proportions associated with level i of factor A. 

1
/

r

j ij ij ji
w w 

 p p  is the vector of species proportions associated with level j of factor B. 

1 1

r m

ij iji j
w  

  p p  is the vector of species proportions over the whole data set. 

The S r  matrix  A 1 2 ... r  P p p p   has species as rows and levels of factor A as columns. 

The S m   matrix  B 1 2... m  P p p p  has species as rows and levels of factor B as columns. 

The S rm  matrix  C 11 12... rmP p p p  has species as rows and communities as columns. 

● Diagonal weight matrices: 



3 
 

Let  S diag W p  be the diagonal matrix with the species weights,  A AdiagW w , 

 B BdiagW w  and  C CdiagW w . 

● Centring matrix:  

t
S S S S Q I 1 1 W  

 

THE SPACE OF DPCOA 
 

With the notations given above, the weighted principal coordinated analysis (PCoA) of the 

Euclidean matrix Δ=( kl ) defines a space where species, communities and levels of factors 

are positioned. It consists in 

t QDQ XX  

where the S   matrix X gives the coordinates (per row) of each species and  2 2klD . ν 

is the number of axes of this space (see [2]). As specified in the main text, the coordinates of 

the communities, levels of factor A and levels of factor B are given by matrices A A
tY P X ; 

B B
tY P X ; C C

tY P X , respectively. 

 

PROOF 1 – PROOF THAT THE MEASURES OF POINT DISPERSIONS, 

IN THE SPACE OF DPCOA, CORRESPOND TO THE CROSSED 

DECOMPOSITION OF QUADRATIC ENTROPY 

 

For the general notations, see above.  

Given we restricted discussion to the situations where Δ=( kl ) is Euclidean, there exists a 

Euclidean space with S points Mk, so that k l klM M   for all k and l. This space can be 

obtained through a Principal Coordinate Analysis (PCoA). 

 

As highlighted above, the weighted PCoA of matrix Δ=( kl ) consists in 

t QDQ XX  

where the S   matrix X gives the coordinates (per row) of each species and  2 2klD . 

The coordinates of the communities, levels of factor A and levels of factor B are given by 

matrices A A
tY P X ; B B

tY P X ; C C
tY P X , respectively. 
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Let kM , ijC , iA , jB  and G be the points corresponding to species k, community ij, 

level i of factor A, level j of factor B and the centre of the Euclidean space, respectively. Let 

kx  be the vector that correspond to the kth row of X and contains the coordinates of kM . The 

vectors ijc , ia  and jb  are the ijth row of CY , the ith row of AY  and the jth row of BY , 

respectively. These vectors contain the coordinates of the points ijC , iA , and jB , respectively. 

Denote g the vector of 0 corresponding to the coordinates of G. These vectors verify the 

following relationships: 

1

S
t

ij ij ijk k
k

p


 c X p x ,  

and 
1 1 1 1 1 1 1 1 1

r m r m S S r m S

ij ij ij ijk k ij ijk k k k
i j i j k k i j k

w w p w p p
        

 
   

 
    c x x x  

1 1

S m
ijt

i i ijk k
k j i

w
p

w
  

 a X p x ,  

and 
1 1 1 1 1 1 1 1

r r S m S r m S
ij

i i i ijk k ij ijk k k k
i i k j k i j ki

w
w w p w p p

w  
       

 
   

 
     a x x x  

1 1

S r
ijt

j j ijk k
k i j

w
p

w
  

 b X p x  

and 
1 1 1 1 1 1 1 1

m m S r S r m S
ij

j j j ijk k ij ijk k k k
j j k i k i j kj

w
w w p w p p

w  
       

 
   

 
     b x x x  

This leads to 
1 1 1 1 1

r m r m S

i i j j ij ij k k
i j i j k

w w w p  
    

     a b c x  

By definition of the weighted PCoA,  

 
1

0,...,0
S

t

k k
k

p


  x g ,  

which completes the demonstration that all sets of points (for species, communities, levels of 

factor A, levels of factor B) are centred for their respective weights. 

 

We now have to demonstrate that  21
2 ,i i i iA A D    p p ,   2

1
2 ,i j j jB B D    p p , 

 2
1
2 ,ij i j ij i jC C D    p p . It can be noted that for any vectors p and q in PS [2]: 

     1
2,

t
D    p q p q D p q  
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where  2 2klD  (see above). 

Given that 1t
S p 1 ,  t t t t t t t t

S S S S S S S S S     p Q p I 1 1 W p p 1 1 W p 1 W  . Then, 

       t tt t t t
S S S S      p q Q p 1 W q 1 W p q  

This leads to  

       
   

   

1
2

1
2

1
2

,
t

t t

tt t t t

D    

  

  

p q p q QDQ p q

p q XX p q

X p X q X p X q

 

Because, t
i i X p a , t

j j X p b  and t
ij jX p c , it follows that 

     1
2,

t

i i i i i iD        p p a a a a  

     1
2,

t

j j j j j jD        p p b b b b  

     1
2,

t

ij i j ij i j ij i jD         p p c c c c  

 

It can now be easily demonstrated that the components of diversity in the analysis of quadratic 

entropy (ANOQE) are measures of multivariate point dispersion: 

2
2

1 1 1 1

1

2 2

S S S S
kl

k l k l k l
k l k l

SST p p p p M M


   
   

    

  2

' ' '
1 ' 1 1 ' 1

1
,

2

r r r r

i i i i i i i i
i i i i

SSA w w D w w A A      
   

  p p  

  2

1 1 1 1

1
,

2

m m m m

j j j j j j j j
j j j j

SSB w w D w w B B         
    

  p p  

22

1 1 1 1 1 1 1 1

1 1

2 2

r m S S r m S S

ij ijk ijl kl ij ijk ijl k l
i j k l i j k l

SSW w p p w p p M M
       

      

In addition simple developments give that (see for instance [2]),  

2

1

S

k k
k

SST p M G


  

2

1

r

i i
i

SSA w AG


  

2

1

m

j j
j

SSB w B G


   
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2

1 1 1

r m S

ij ijk k ij
i j k

SSW w p M C
  

    

See proof 4 below for the component of interaction. 

 

PROOF 2 – CROSSED-DPCOA VERSION 2: PROOF THAT THE 

ORTHOGONAL PROJECTOR IN THE SPACE OF THE LEVELS OF 

FACTOR B IS   1

B B B B B
t t 

Π Y Y Y Y  (USED IN TEXT S2). 

 

The principal axes and principal components of the points corresponding to the levels of B are 

given by the generalized singular value decomposition of the triplet  B B, ,Y I W : 

1/2
B

tY VΛ U  

B B B
t tY W Y UΛU  

B B
t tY Y VΛV  

The matrices U and V verify t
mU U I  and B

t
V W V I . The orthogonal projector in the 

space of B is   1t t t
U U U U UU . The following relationships link the principal axes with the 

principal components: 1/2
B

V Y UΛ  and 1/2
B B
t U Y W VΛ . Thus 

1
B B B B

t t tUU Y W VΛ V W Y . Given that  

 1
B B

t t t t VΛV W VΛ V W VΛV VΛV , 

then  

   1 11
B B B B

t t t   W VΛ V W VΛV Y Y . 

This leads to   1

B B B B
t t t 
UU Y Y Y Y . 

 

PROOF 3 – CROSSED-DPCOA VERSION 2: PROOF THAT THE FINAL 

COORDINATES ARE CENTRED 

 

The demonstration is immediate by the fact that intermediate coordinates X, AY , BY  and CY  

are centred (i.e. t
S S SX W 1 0 , A A

t
r rY W 1 0 , B B

t
m mY W 1 0 , C C

t
rm rmY W 1 0 ): 
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PROOF 4 – SIMPLE EXPRESSION FOR THE COMPONENT OF 

INTERACTION 

 

A simple expression for the component of interaction can be obtained when wij=wi+w+j. Let 

ij be a point located at coordinates (pij-pi+-p+j+p++)tX. This point represents a position 

community ij would have if all positions of the levels of factor A and those of the levels of 

factor B were moved to the centre of the space of DPCoA. This re-centring process would 

remove the main effects of A and B. With these notations, the inertia of points ij for all i and 

j would be 

 
2

1 1 1 1

,
2

r m r m
ij i j

ij i j
i j i j

SS A B w w
 

 
    

 
   

 

Proof: 

   t t
ij i j ij i j i j i j ij i j i j i j                                    p p p p p p p p XX p p p p p p p p

     t
t

ij i j ij i j i i j j ij i j i i j j                                          p p p p p p XX p p p p p p  

   

   

t ttt t t
ij i j ij i j ij i j i i i i j j j j

t tt t
ij i j i i i i ij i j

t tt t
ij i j j j j j ij i j

                

        

        

                        

           

                  

p p XX p p p p XX p p p p XX p p

p p XX p p p p XX p p

p p XX p p p p XX p p

   tt t t
i i j j j j i i          



           p p XX p p p p XX p p

 

   

 

 

2

2

2

t ttt t t
ij i j ij i j ij i j i i i i j j j j

t t
ij i j i i

t t
ij i j j j

t t
i i j j

                

   

   

    

                        

    

        

    

p p XX p p p p XX p p p p XX p p

p p XX p p

p p XX p p

p p XX p p
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   

2

1 1 1 1 1 1 1 1

1 1 1 1

1

1

2 2

1

2

1

2

r m r m r m r m tij i j t
ij i j ij i j ij i j ij i j

i j i j i j i j

r m r m
t t

ij i j i i i i
i j i j

m t t
ij i j j j j j

j

w w w w

w w

w w

 
       

          

      
    

      


 
        

  

        

 



p p XX p p

p p XX p p

p p XX p p

 

 

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

r m r

i j i

r m r m t t
ij i j ij i j i i

i j i j

r m r m t t
ij i j ij i j j j

i j i j

r m r m
t t

ij i j i i j j
i j i j

w w

w w

w w

  

     
    

     
    

      
    

    

        

    









p p XX p p

p p XX p p

p p XX p p

 

Because wij=wi+w+j, 

2

2

1 1 1 1 1 1 1 1

2

1 1

2

1 1

2

1 1

2

1 1

1

2 2

1

2

1

2

r m r m r m r m
ij i j

ij i j ij i j ij i j
i j i j i j i j

r r

i i i i
i i

m m

j j j j
j j

r r

i i i i
i i

m m

j j j j
j j

w w w w C C

w w A A

w w B B

w w A A

w w B B

 
     

          

    
 

    
 

    
 

    
 



 









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