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The theory of Caspar and Klug (1962) for the structure of isometric viruses has
been generalized to the case in.which the identical repeating unit is composed of
n nonidentical polypeptide chains. This modified theory accounts for the
structure of picornaviruses, the lambda phage head, cowpea mosaic virus, and
4X174, while at the same time conserving the principle of having identical
subunits in identical environments. Furthermore, the modified theory suggests
amending the triangulation number to T[n] for capsids with n nonidentical
polypeptide chains as the repeating unit.

Identical subunits located in identical or at
least quasiequivalent bonding domains provide
the foundation for the theory of the capsid
architecture of spherical viruses (5, 6, 20),
which have been shown to have icosahedral
symmetry (5-7, 11, 20). Icosahedral symmetry
requires 60n (n = 1, 2, 3, .. .) subunits; however,
it is impossible to arrange more than 60 identi-
cal subunits on the surface of a sphere such that
they are in identical bonding environments (6,
7, 20). Therefore, a severe dilemma arose when
chemical data suggested about 180 rather than
60 identical polypeptide chains (14) for one
small spherical virus.
The resolution to this dilemma was provided

by the recognition that certain arrangements
allowed the identical subunits to be in nearly
identical (quasiequivalent) bonding environ-
ments (6, 20). The allowed arrangements could
be classified by a triangulation number, T,
where a capsid contains 60T identical units.
The rules governing T were shown (6) to be T =
Pf2where f = 1, 2, 3 andP = h2 + hk + k2forall
pairs of integers, h,k having no common factor.
T provides a selection rule. For example, 60

identical subunits (T = 1; f = 1; h,k = 1,0) and
180 identical subunits (T = 3; f = 1; h,k = 1,1)
can be arranged in identical and nearly identi-
cal environments, respectively, but 120 cannot.
These constraints formed the basis for models

which could be compared with the observed
morphology of the small spherical viruses. This
approach accounted beautifully for the surface
morphology of turnip yellow mosaic virus (6, 16,
20, 29). Subsequently, determination of the
triangulation number, T, has become the basis
for structural classification of the spherical
viruses.

By now several spherical viruses and empty
capsids have been found to contain nonidentical
polypeptide chains (1, 12, 17, 18, 21, 24, 25, 27,
28, 30, 32, 34) apparently in equimolar ratios.
Picornaviruses of various mammalian hosts are
heavily represented on this list (17, 18, 24, 25,
27, 30, 32, 34), but the list also includes an RNA
insect virus (21), as well as two DNA bacterio-
phages (1, 28) and an RNA plant virus (12). The
insect virus may be structurally equivalent to
the mammalian picornaviruses.

It is proposed that the structure of these
viruses can be explained by amending the
structure theories of Caspar and Klug (6) for the
more general case in which the identical subunit
is formed from n nonidentical polypeptide
chains.

In terms of their theory of virus construction,
Caspar and Klug (6) discuss: (i) the possible
surface morphologies of spherical viruses, (ii)
the possible bonding contact patterns of the
polypeptide chains, and (iii) the possible capsid
fragments. In the present communication, each
of these aspects of virus structure is considered
for capsids with nonidentical polypeptide
chains.

EXPERIMENTAL
(i) Possible surface morphologies for capsids

with n nonidentical polypeptide chains. A hexago-
nal net of protein subunits contains sixfold, threefold,
and twofold rotation axes. Conversion of selected
sixfold axes to fivefold axes generates an icosahedral
shell. The set of sixfold axes that are converted to
fivefold determine the triangulation number (6).

Hexagonal nets with n nonidentical polypeptide
chains as the basic unit can be used to generate
icosahedral shells by exactly the same procedure as
described above. An example is shown in Fig. 1.
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STRUCTURE OF ISOMETRIC VIRUSES

For a net with identical polypeptide chains, the
polypeptides can cluster about the twofold axis, the
threefold axis, or the sixfold axis, depending on the
relative strengths of the different bonding interfaces.
Thus, the final capsid can have 60T monomers (no
clustering), 30T dimers, 20T trimers, or 10(T - 1)
hexamers plus 12 pentamers (6).

With n type of subunits, it is possible for the
different types of polypeptides to cluster about n
different axes simultaneously.
Symmetry requires multiples of two chains about

the twofold axis, multiples of three about the three-
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FIG. 1A. Folding hexagonal nets containing noni-
dentical chains. An arbitrary choice of a hexagonal
net with three nonidentical units is shown. Such a net
can be folded by the methods of Caspar and Klug (6)
to yield T = 1 13], T = 313], etc., shells (see Fig. JB).
Similar operations are possible for nets ofn nonidenti-
cal subunits.
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fold axis, and multiples of six about the sixfold axis.
Thus, there can be 0, 2, 4, . . . r chains clustered about
the twofold; 0, 3, 6, ... s about the threefold; and 0, 6,
12, 18, ... t about the sixfold. Quasiequivalence
permits a maximum of two identical chains to be
clustered about the twofold axes, three about the
threefold, and six about the sixfold. Therefore, the
number of nonidentical polypeptide chains about the
twofold is given by r/2, the number about the three-
fold is given by s/3, and the number about the sixfold
is given by t/6. With n nonidentical chains, r/2 x s/3
x t/6 = n.
The number of morphological subunits for such a

capsid would be 30T x (1- 5[r]) + 20T x (1 - 6[s]) +
[10(T - 1) + 12] x (1 - b[t]); where 5(r), b(s), and
6(t) are the usual delta functions; that is b(0) = 1, 6(x
# 0) = 0. The various possibilities have been deter-
mined for n = 1, 2, 3, 4 (Tables 1-4). Included in the
tables are representative examples of viruses whose
morphology can be accounted for by these considera-
tions.

TABLE 1. Possible clustering patterns for T[l]

No. of
chains clustered No. of
about each axis Name of pattern morphological

Two- Three- Six- subunits

fold fold fold

2 0 0 Dimer clusteringa 30T

0 3 0 Trimer clustering 20T

0 0 6 Hexamer-pentamer 10(T - 1) + 12
clusteringb

a Turnip crinkle virus probably displays dimer clustering
(10).

bTumip yellow mosaic virus clusters into hexamers and
pentamers (6, 10, 16, 20, 29).
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FIG. 1B. See legend for Fig. 1A.
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880 DUNKER

TABLE 2. Possible clustering patterns for T[2]

No. of
chains clustered about

each axis Name of No. of morphological
pattern subunits

Two- Three- Six-
fold fold fold

4 0 0 4-0-0a 30T
2 3 0 2-3-0 30T + 20T = 50T
2 0 6 2-0-6 30T + 10(T + 1) + 12

= 40T + 2
0 6 0 0-6-Oa 20T
0 3 6 0-3-6b 20T + 10(T - 1) + 12

= 30T + 2
0 0 12 0-0-12a 10(T - 1) + 12

11 ~~~=10OT + 2

a In these patterns the two nonidentical chains could
sub-cluster into a single unit. If this occurs, there would be
60T morphological units for each of these patterns.

b If T = 1, this is probably the clustering pattern observed
for cowpea mosaic virus (8); if T = 7, this is the pattern
observed in lambda phage heads (Williams and Richards, J.
Mol. Biol., in press). Notice that for T = 7, there are 30 x 7 +
2 = 212 morphological subunits. For hexamer-pentamer
clustering with only one type of chain, a triangulation number
of T = 21 also gives 212 morphological subunits (10(21 - 1) +
12 = 212). Thus, it is not surprising that the lambda head was
mistaken for T = 21 by freeze etching (2).

J. VIROL.

The symmetry axes are the same for capsids with
identical and nonidentical polypeptide chains. Cap-
sids with nonidentical chains can display capsomer

arrangements that are not possible for capsids with
identical chains only. However, when capsids with
nonidentical chains have the same number of mor-

phological subunits as capsids with identical chains,
the symmetry of the particle requires that the posi-
tions of the morphological subunits be the same in
both cases. Thus, capsids with identical and noniden-
tical polypeptide chains can be morphologically
equivalent. The footnotes to Tables 2 and 3 contain
particular examples of morphological equivalence.

For capsids with identical polypeptides, a single
type of capsid can have all dimers, all trimers, or

hexamers and pentamers. Thus, the capsomers must
necessarily be of equal or of nearly equal size. Obvi-
ously, for capsids with nonidentical polypeptides, the
capsomers may be of equal or very unequal sizes.

(ii) Possible bonding networks. In their original
paper, Caspar and Klug (6) showed that the bonds
between the polypeptide chains must circumscribe
the two-, three-, and sixfold axes of the hexagonal net.
Furthermore, they suggest that only two of the three
bonds are necessary. Thus, for capsids with identical
units, the set of possible bonding contacts is simple
and well-defined; i.e., the net must contain dimer
bonds + trimer bonds, dimer bonds + hexamer

TABLE 3. Possible clustering patterns for T[3]

No. of polypeptide chins clustered
about each axis Name of pattern No. of morphological subunits

Twofold Threefold Sixfold

6 0 0 6-0-0a 30T
4 3 0 4-3_0b 30T + 20T = 50T
4 0 6 4-0-6c 30T + 10(T - 1) + 12 = 40T + 2
2 6 0 2-6-0 30T + 20T = 50T
2 3 6 2-3-6 30T + 20T + 10(T - 1) + 12 = 60T + 2
2 0 12 2-0-12 30T + 10(T - 1) + 2 = 40T + 2
0 9 0 0-9_0a 20T
0 6 6 0-6-6d 20T + 10(T - 1) + 12 = 30T + 2
0 3 12 0-3-12 20T + 10(T - 1) + 12 = 30T + 2
0 0 18 0-0-18a 10(T - 1) + 12 = 10T + 2

aIn these patterns, the three nonidentical chains could cluster with a single unit. In such a case, all of these
patterns would exhibit 60T morphological units. Notice also that, if T = 1, the last pattern accounts very neatly
for the poliovirus studies of Horne and Nagington (15). Furthermore, such a clustering pattern might be related
to the dissociation products observed for ME virus (9, 31) and Mengo virus (25).
bWhenever more than the minimal number of chains cluster about a single axis, the possibility of

sub-clustering exists. In this particular example, the four chains could be clustered into two morphological units
each containing two nonidentical chains

that is, 8 as compared to (:)

Thus, there could be 2 x 30T + 60T = 80T morphological units. The possibility of sub-clustering thus further
increases the potential complexity of capsids with nonidentical polypeptide chains.

c For T = 1, this pattern would give 42 subunits and would be morphologically equivalent to a T = 4 capsid
with identical polypeptide chains in hexamer-pentamer clustering (10(4 - 1) + 12 = 42). If poliovirus occa-
sionally clustered in this manner, this could explain the results of Agrawal (1).

d For T = 1, this pattern would give 32 subunits. If poliovirus occasionally clustered in this pattern, one could
account for the results of Mayor (26). Note that for hexamer-pentamer clustering, a capsid with T = 3 (10(3-1)
+ 12 = 32) would display equivalent morphology.
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TABLE 4. Possible clustering patterns for T[4]

No. of polypeptide chains clustered
about each axis Name of pattern No. of morphological subunits

Twofold Threefold Sixfold

8 0 0 8-0-0 30T
6 3 0 6-3-0 30T + 20T = 50T
6 0 6 6-0-6 30T + 10(T- 1) + 12 = 40T + 2
4 6 0 4-6-0 30T + 20T = 50T
4 3 6 4-3-6 30T + 20T + 10(T - 1) + 12 = 60T + 2
4 0 12 4-0-12 30T + 10(T - 1) + 12 = 40T + 2
2 9 0 2-9-0 30T + 20T = 50T
2 6 6 2-6-6 30T + 20T + 10(T - 1) + 12 = 60T + 2
2 3 12 2-3-12 30T + 20T + 10(T - 1) + 12 = 60T + 2
2 0 18 2-0-18 30T + 10(T - 1) + 12 = 40T + 2
0 12 0 0-12-0 20T
0 9 6 0-9-6 20T + 10(T - 1) + 12 = 30T + 2
0 6 12 0-6-12 20T + 10(T - 1) + 12 = 30T + 2
0 3 18 0-3-18 20T + 10(T - 1) + 12 = 30T + 2
0 0 24 0-0-24 10(T - 1) + 12 = 10T + 2

bonds, trimer bonds + hexamer bonds, or all three
types of bond.

For capsids with n identical polypeptide chains, the
possibilities for bonding contact geometries become
considerably more complex. In addition to the two
bonds between the identical units to define the
hexagonal net (these are the same as the bonds for the
single polypeptide chain case), there must be at least
n - 1 bonding interfaces within any repeating unit of
n nonidentical chains. Furthermore, the locations of
the bonding interfaces within the repeating unit are
not restricted by the symmetry axes, which adds a
further complicating feature.

In a hexagonal network with n distinct polypeptide
chains, it is evident that there must be n + 1 bonding
connections. For the particular case of n = 3, this is
illustrated in Fig. 2.
The number of distinguishable ways of forming n +

1 bonding connections among n nonidentical chains
arranged in a hexagonal net is given approximately by

mx(n2 x n3 + n2 x n6 + n3 x n6)

where m is the number of ways of forming bonding
interfaces within the identical unit, n2 is the number
of ways of forming connections between units to
specify the twofold axis, and so on for n3 and n,. The
definitions of m, n2, n%, and n6 are clarified by a few
examples for the particular case of n = 3 (Fig. 3). The
above expression does not provide the exact number
of distinct bonding nets (see below). Nevertheless,
this expression does yield a method for listing the
possibilities, which can then be checked for redundan-
cies.

CaseI,a= 1
m = 1 (The identical unit is a single polypeptide

chain.)
n2, n3, n6 = 1 (The bonds are between identical

units.)
Thus, there are 1 x (1 x 1 + 1 x 1 + 1 x 1) = three

distinct 2-bonded nets.

Case II, n = 2

m = 1 (a - b)
n2, n3, n6 = 3 (a - a, a - b, b - b)
Thus, there are 1 x (3 x 3 + 3 x 3 + 3 x 3) = 27

distinct 3-bonded nets.

Models show that nets with n3, n2 = (a - b), n,, n2 =
(a - b), and n6, n3 = (a - b) are actually the same.
Thus, one net is counted three times, and so there are
actually 25 rather than 27 distinct 3-bonded nets.

FIG. 2A. Bonding connections for an n = 3 net.
One of the 240 distinct bonding nets is shown. The
four bonding interfaces (see Fig. 2B) can be divided
into two bonds within an (a#-y) unit (see Fig. 2C) and
two bonds between (a#7y) units (see Fig. 2D). It is
apparent that for n nonidentical chains within a unit,
there must be at least n-i connections to hold the
unit together. Thus, there are at least (n - 1) + 2 = n
+ 1 connections in a hexagonal net having n noniden-
tical units.

VOL. 14, 1974 881
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FIG. 2B, C, D, See legend for Fig. 2A.
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FIG. 3. Counting the distinct bonding nets for n =

3. For an n = 3 hexagonal net, the number of ways of
specifying intra-subunit bonds, m, is equal to 3 (A).
The number of ways of specifying the twofold axis, n2,

is equal to 6 (B). Likewise, it is apparent than n3 and
n6 also equal 6.

Case III, n = 3
b b b

m = 3 (a/- c; a c; a-\c)
n2, ns, n,

= 6 (a - a, a - b, a - c, b - b, b - c, c - c)
Thus, there are 3 x (6 x 6 + 6 x 6 + 6 x 6) = 324

networks.

Many nets were found to be redundantly counted; the
total number of distinguishable nets was actually
found to be 240.

Case IV, n = 4
m= 16(a - b - c - d,a - c - b - d,a - b - d -

c, a - d - b - c, a - c - d - b, a - d - c - b, b
-a - c - d, b - c - a - d, b - d - a - c, b - a
- d - c, c - a - b - d, c - b - a - d, a - d - c,
b - c - d, a - b - d, a - b - c)

n2, n3, n6 = 10 (a - a, a - b, a - c, a - d, b - b, b -
c, b - d, c - c, c - d, d - d)

Thus, there are approximately 16 x [10 x 10 + 10 x
10 + 10 x 10] = 4,800 networks.

The bonding nets described above (summarized in
Table 5) contain the minimal number of bonding con-

tacts. It is straightforward to work out the possibilities
for capsids containing more than the minimal number
of bonding interfaces.

TABLE 5. Minimal bonding nets

n m n2, n3, n. mx(n2n3 + n2n, + n anb)Distinguish-

1 1 1 3 3
2 1 3 27 25
3 3 6 324 240
4 16 10 4,800 nda

a nd, Not determined.

(iii) Possible capsid fragments. Caspar and Klug
(6) indicated possible aggregates of polypeptide
chains that might occur as intermediates of capsid
assembly or dissociation. Although not considered in
detail in their paper, the particular case of stepwise
dissociation (or assembly) intermediates is of special
interest. Stepwise dissociation intermediates are
those intermediates that result from complete non-
association of one or more types of bonding interfaces.

For capsids with identical polypeptide chains, the
only possible stepwise intermediates are dimers, tri-
mers, and hexamers/pentamers.

Characterization of dissociation fragments has pro-
vided the most useful approach to date for determin-
ing the structure of picnornaviruses (9, 18, 25, 30, 32).
In the particular case of ME virus, essential clues for
determining a structural model were provided by
characterizing 14 and 5S subunits derived by con-
trolled (stepwise) dissociation of the virus (9, 32). The
same general approach should prove useful for other
viruses containing nonidentical polypeptide chains.
Controlled dissociation has an advantage as a poten-
tial means for shedding light on the identities of the
polypeptide chains constituting particular morpho-
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STRUCTURE OF ISOMETRIC VIRUSES

logical units. The main difficulty would be in finding
conditions to specifically dissociate one type of bond-
ing interface.

For purposes of illustration, the stepwise interme-
diates of a T[3] capsid are presented.

For a capsid with three nonidentical polypeptide
chains, consideration of the symmetry axes in turn
suggests that there are 31 possible stepwise intermedi-
ates (Table 6). Conservation of mass can be used to
determine the 45 ways of combining these fragments
by the addition of one bond to yield a complete capsid
(Table 7). Picornavirus maturation and assembly
have added features that encourage a more detailed
analysis than the one presented here (A. K. Dunker,
manuscript in preparation).

It should be kept in mind that partial association of
a particular capsid bonding interface could lead to
still other intermediates. As an example, (a-y)s units
could associate to form [(aY)s32, [(aT). ], etc. But
complete association of the same bonding interface
would lead to a spherical shell, [(a)s320T = (a'Y)o0T.

TABLE 6. Possible stepwise intermediates for T[3]
capsids (a#ry).OT

(a#)o0T (aW)5(a5)s(a3ry) as

(aY)GOT (aY)s s
(07y)eoT (af)s (ry)3 (a$) I T3

(aT)5 (ay)1
(a)eoT (fy)o (afry)2 (0T) I a2
(16) OT 02
(T)6oT (a)s(a3)2 a5 Y2

(aT) 2 s
(fry)2 T5

DISCUSSION
Due to the lack of a theory for capsids with

nonidentical polypeptide chains, there has been
some uncertainty about the proper triangula-
tion number assignment for these viruses. For
example, certain picornaviruses have three size
similar but nonidentical polypeptide chains in
equimolar ratios. Virtually identical structural
models have been proposed for several such
picornaviruses: ME virus (32), poliovirus (18),
Coxsackie virus (30), foot and mouth disease
virus (35), rhinovirus 1A (27), bovine en-
terovirus (17), and Mengo virus (25). Yet, when
viewing the same model for the capsid struc-
ture, some workers have suggested that the
picornavirus capsid should be classified as T =

1 (32), whereas others have suggested T = 3
(30). As pointed out previously (31), the am-
biguity arises because there are 180 polypeptide
chains of about equal size (which favors T = 3),
but there are only 60 groups of equivalent sets of
polypeptide chains (which favors T = ).

In an effort to resolve this ambiguity we wish
to point out that the derivation of the formula
for T requires of the subunits only that they be
identical. There is no requirement that these
identical subunits be a single polypeptide
chain; on the contrary, as we have shown, an
identical structure unit composed of nonidenti-
cal polypeptide chains serves just as well.

Furthermore, note that T is independent of

TABLE 7. Possible stepwise dissociation modes of a T[3] capsid (afty)60T

(a ry).oT - (a,B).oT + 12y5 + 1O(T - 1)T.
- (a)o60T + 20Ty3
- (af)6OT + 30Ty2
- (a#)6OT + 60TTy1
- (ay)6oT + 12 5 + 1O(T -06
_ (ay)eoT + 20TO3
- (ay)eoT + 30Th2
- (a-y)6OT + 6OTr1
- (f)6oT + 12a5 + 1O(T - 1)a6
- (fry)60T + 2OTas
- (6ry)6T + 30Ta2
- (0Y)6OT + 6OTa1

a6OT + 12(pSy)5 + 1O(T - 1) (fly)e
aGOT + 20T(fry)3
aeOT + 30T(fry)2
a*OT + 60T(fry)I
OSOT + 12(aT)s + 1O(T - 1) (a-y)6

-6 OT + 20T(a'y)3
- 6OT + 30T(ay)2
- 6OT + 60T(aY)1

T'OOT + 12(a,6)5 + 10(T - 1) (a,6)6
TYOOT + 20T(aJ6)s
TYOOT + 30T(a()2
T6OT + 6OT(afl),

(a#-y).ur -12 (a#By)6 + 10(T - 1) (a#-y)6,
- 20T (a#ry)3

- 30T(afry)2
- 12(a#j)5 + 10(T - 1) (a#)6 + 20Ty3

112(a,B + 10(T - 1) (a) 6 + 30TY2
12(ay), + 10(T - 1) (ay). + 20Ti3

_ 12(ay) + 1O(T - 1) (ay)6 + 30Th2
1l2((By) + 10(T - 1) (fry)6 + 20Ta3
12(fry)5 + 10(T - 1) (fry)6 + 3OTa2

- 2OT(afl)3 + 12T5 + 1O(T - O)Ty
2OT(afl)3 + 30TY2

- 2OT(a-y)s + 12(B5 + 1O(T - 1)#,
_ 2OT(a-y)s + 30TO2

2OT(fly)s + 12a, + 1O(T - 1)as
- 2OT(,By)3 + 30Ta2
_ 3OT(a/B)2 + 12y5 + 1O(T - l)Ty
- 3OT(a(6)2 + 20TT3
_ 3OT(ay)2 + 12#5 + 1O(T - 1)#,
_ 30T(ay)2 + 20T(63
_ 30T(fry)2 + 12a5 + 1O(T - 1)a6

30T(fly)2 + 3OTa,
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how the subunits are packed or clustered. For
example, icosahedral capsids composed of 180
subunits are classified as- T = 3 regardless of
whether they are packed as 180 monomers, 90
dimers, 60 trimers, or 20 hexamers plus 12
pentamers. By the same token, assignment of T
to a capsid containing nonidentical chains
should be likewise independent of the packing
details. As an example, a capsid that can be
resolved into 60 symmetrically equivalent sets
of three nonidentical chains should be classified
as T = 1 regardless of whether the capsid is
organized as (i) 60 identical three-chain clus-
ters, e.g., (a, b, c)6o, (ii) 20 six-chain clusters
plus 12 five-chain clusters, e.g., (a3b3)20 (c5)12,
or (iii) any of the many additional clustering
possibilities.

Finally, it should be kept in mind that the
triangulation number is a means for structural
classification; T is not dependent upon knowl-
edge about the function of polypeptides, nor
about 4he morphopoetic pathway of capsid
assembly, nor about the stability of the differ-
ent subunit bonding contacts against dissocia-
tion by various denaturing agents.
These three considerations suggest a simple

way of clarifying the aforestated ambiguity;
namely, include with the triangulation number
the number of nonidentical polypeptides com-
prising the repeating subunit. Our proposal is to
follow the triangulation number with brackets
enclosing a description of the identical unit,
that is T[n]. The number n is the number of
nonidentical polypeptide chains within the re-
peating unit of the surface lattice of the virion.
This proposal has two very positive features.

First, it refocuses attention away from the
nonidentical polypeptide chains and back to the
identical subunit as required by the foundations
of triangulation theory. Second, it increases the
information content of the triangulation num-
ber.
By this proposal the 60 subunit (protomer)

model for picornaviruses (9, 25, 30, 32), in which
each protomer (19) consists of four nonidentical
chains (30, 34), would be assigned T = 1 [4].
Similarly, the capsid composition (12) and
three-dimensional image reconstruction (8) sug-
gest T = 1(2] for cowpea mosaic virus; the
capsid composition (28) and morphology (R.
C. Williams and K. E. Richards, J. Mol.
Biol., in press) suggest T = 7 [2] for the lambda
head.
The capsid of kX174 apparently contains 60

each of three nonidentical chains (1) and so
should be classified as T = 1 [3], even though
two of the proteins are commonly referred to as
"spike" proteins rather than as capsid proteins.

Appendages, such as tails in lambda and the
12 copies of a spike protein in OX174 (1), are not
part of the repeating unit in the capsid and so
do not affect the current proposal. The matura-
tion protein of the bacteriophages R17 and Q,
(33) and the proteins present in a single copy in
OX174 (13) can also be logically relegated to the
appendage category, whereas rare uncleaved
polypeptides such as VPO or the episilon chain
in the capsid of mature picornaviruses (9, 22,
24, 27, 30) would more properly be regarded as
"lattice defects" (R. R. Rueckert, personal com-
munication).

In general, the electron microscope cannot
distinguish nonidentical polypeptide chains.
Thus, other methods are needed to determine
which polypeptide chains lie adjacent to which
other polypeptide chains. Chemical cross-link-
ing, which is being pioneered by workers in the
ribosome field (2, 23), probably offers the best
hope for determining these bonding contacts.
Cross-linking subviral fragments (A. K. Dun-
ker, Ph.D. thesis, University of Wisconsin,
Madison, 1969; 25, 30) should provide an ex-
tremely useful source of additional information.
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