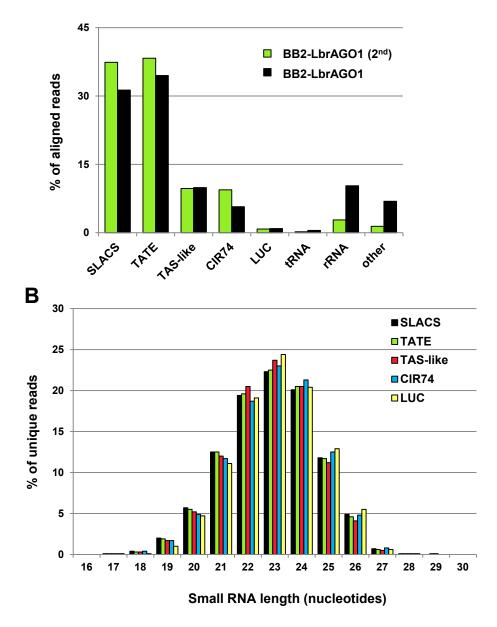
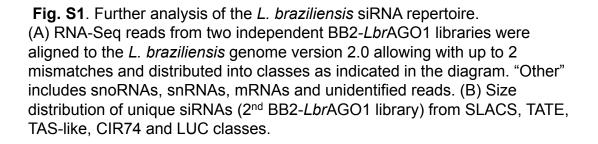
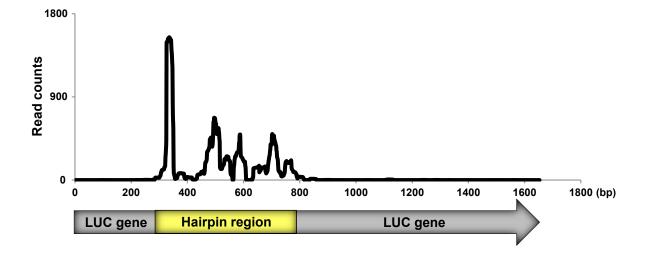
Supporting Information

The structure and repertoire of small interfering RNAs in *Leishmania (Viannia) braziliensis* reveal diversification in the trypanosomatid RNAi pathway


Vanessa D. Atayde^{1,6}, Huafang Shi¹, Joseph B. Franklin², Nicholas Carriero³, Timothy Notton^{4,7},


Lon-Fye Lye⁴, Katherine Owens⁴, Stephen M. Beverley⁴, Christian Tschudi⁵,

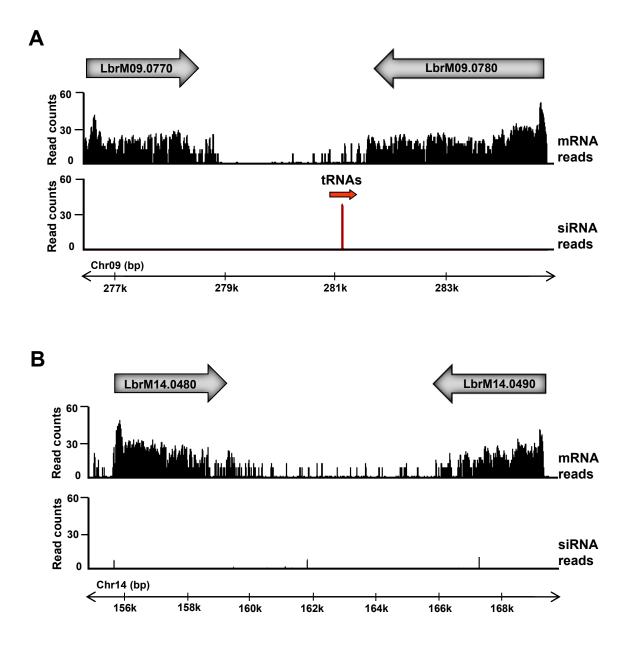
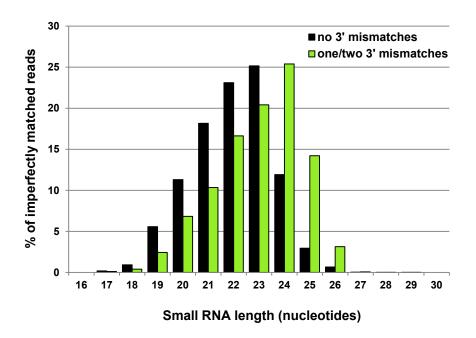
and Elisabetta Ullu^{1, 2, *}

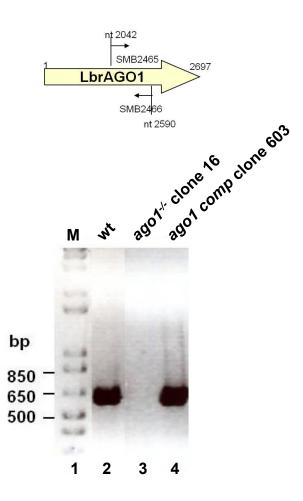

¹ Departments of Internal Medicine and ² Cell Biology, School of Medicine, Yale University, New Haven, CT, 06536, USA; ³ Department of Computer Science, Yale University, New Haven, CT, 06520, USA; ⁴ Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO, 63110, USA; ⁵ Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, CT, 06536, USA.

^{*}For correspondence. E-mail: <u>elisabetta.ullu@yale.edu</u>; Tel. (+1) 203 785 3563; Fax. (+1) 203 785 7329

Α

Fig. S2. Distribution of reads through the LUC gene. Distribution of unique LUC-derived reads through the LUC gene. The region used to generate the hairpin structure for RNAi is represented by the yellow box.


Fig. S3. L. braziliensis Convergent Transcription Units (CTUs) are not sources of siRNAs.

Snapshots of the *L. braziliensis* Genome Browser showing the distribution of mRNA reads (upper panel; unpublished data) and small RNA reads (lower panel) at two CTU loci (www.TriTrypDB.org). (A) CTU locus from chromosome 9, with a tRNA gene cluster in-between the convergent transcription units. (B) CTU locus from chromosome 14. Grey arrows represent predicted open reading frames. Red arrow represents tRNA genes.

Fig. S4. Size distribution of perfectly matched reads versus reads that contain one or two 3' end mismatches. Size distribution of redundant reads that aligned to the *L. braziliensis* genome after trimming the 3'adapter, subtracting

putative degradation products, and grouping in perfectly-matched (no 3' mismatches) or one/two non-templated 3' nucleotides (one/two 3' mismatches).

Fig. S5. Deletion and complementation of the *L. braziliensis* AGO1 gene. Schematic representation of the *L. braziliensis* Ago1 gene and position of oligonucleotides used in the PCR (top panel). Drawing is not to scale. PCR tests establishing the absence of AGO1 in the *ago1*-/- cell line clone 16 (lane 3, bottom panel) and its restoration in the complemented cell line (lane 4, bottom panel). **Table S1**. Read distribution at convergent (CTU) and divergent transcription units (DTU).

Location	Designation	Length	siRNA reads
LbrM.02:125000144999	CTU	20000	22
LbrM.03:197900217899	CTU	20000	56
LbrM.04:309900328199	CTU	18300	1
LbrM.05:390000409999	CTU	20000	4
LbrM.09:215000234999	CTU	20000	3
LbrM.09:270000289999	CTU	20000	319
LbrM.10:251000270999	CTU	20000	4
LbrM.10:543900561599	CTU	17700	3
LbrM.11:7300095999	CTU	23000	21
LbrM.12:162000182999	CTU	21000	10
LbrM.13:182000202999	CTU	21000	42
LbrM.14:154000174999	CTU	21000	12
LbrM.15:314000334999	CTU	21000	143
LbrM.16:431000452999	CTU	22000	137
LbrM.17:423000443999	CTU	21000	56
LbrM.18:414000435999	CTU	22000	9
LbrM.20:414000433999	CTU	20000	536
LbrM.21:421000441999	CTU	20149	12
LbrM.22:450000469999	CTU	19427	25
LbrM.23:711000731999	CTU	21000	24
LbrM.24:434000455999	CTU	22000	25
LbrM.24:589000609999	CTU	21000	159
LbrM.25:354000376999	CTU	23000	17
LbrM.27:379000399999	CTU	21000	68
LbrM.27:719000739999	CTU	21000	105
LbrM.28:107000127999	CTU	21000	100
LbrM.28:604000625999	CTU	22000	2
LbrM.28:10520001071999	CTU	20000	7
LbrM.29:620000639999	CTU	20000	1
LbrM.30:690000710999	CTU	21000	23
LbrM.31:180000199999	CTU	20000	19
LbrM.32:545000565999	CTU	21000	50
LbrM.34:543000564999	CTU	22000	94
LbrM.34:9840001006999	CTU	23000	2
LbrM.35:10290001049999	CTU	19234	15
LbrM.35:18820001901999	CTU	20000	104
LbrM.35:498000518999	CTU	21000	372
LbrM.35:11130001132999	CTU	20000	1
	38 CTUS	Average	69

LbrM.06:112000131699	DTU	19700	19
LbrM.09:230000249999	DTU	20000	6
LbrM.13:90000109999	DTU	20000	13
LbrM.14:385000404999	DTU	20000	11
LbrM.15:82000101999	DTU	20000	24
LbrM.16:333000355999	DTU	23000	7
LbrM.16:614000633999	DTU	20000	7
LbrM.17:391000411999	DTU	21000	1
LbrM.18:224000244999	DTU	21000	34
LbrM.20.1:1900040999	DTU	22000	12
LbrM.20.1:874000894999	DTU	21000	40
LbrM.22:291000311999	DTU	21000	2
LbrM.22:549000568999	DTU	20000	1
LbrM.23:486000506999	DTU	21000	1
LbrM.24:544000564999	DTU	21000	2
LbrM.25:194000216999	DTU	23000	21
LbrM.25:627000647999	DTU	21000	19
LbrM.26:280000299999	DTU	20000	3
LbrM.27:6900089999	DTU	21000	1
LbrM.27:9990001019999	DTU	21000	751
LbrM.28:270000290999	DTU	21000	14
LbrM.28:833000853999	DTU	21000	3
LbrM.29:328000348999	DTU	21000	9
LbrM.29:950000969999	DTU	20000	27
LbrM.30:250000269999	DTU	20000	27
LbrM.32:202000222999	DTU	21000	1
LbrM.32:11820001201999	DTU	20000	22
LbrM.33:208000227999	DTU	20000	5
LbrM.34:14580001477999	DTU	20000	2
LbrM.34:635000656999	DTU	22000	3
LbrM.35:170000189999	DTU	20000	39
LbrM.35:799000818999	DTU	20000	32
	32 DTUs	Average	36

Additional experimental procedure

Library preparation from small interfering RNAs

- The protocol described below was modified from the original version kindly provided to us by Dr. Gregory Hannon (Cold Spring Harbor Laboratory, NY, USA).

- Making libraries from small RNAs is a multistep and relatively long procedure. Prior experience with handling RNA and working with small amounts of material is strongly advised.

- It is essential to use freshly-made solutions, clean the working area and pipettes and avoid working on a bench where you or others have used RNase or made "big" PCR amplifications.

1. Ligation to 3' adaptor

3' adaptor (Modban-IDT) AMP-5'p=5'pCTGTAGGCACCATCAATdideoxyC-3'

1A. Purify small RNAs from Argonaute immunoprecipitates (100 ml of procyclic cells, 300 ml BS trypanosomes or 500 ml *Leishmania* promastigotes (2 x 10^7 /ml) are sufficient). RNA should be extracted from the beads with phenol:chloroform and not with TRIZOL, and resuspended in 10 µl of water. An aliquot of the RNA is radiolabeled at the 3' end with [5'-³²P]pCp to serve as a tracer during the various steps. Alternatively, the 5'end of the RNA can be labeled with T4 polynucleotide kinase and [γ -³²P]ATP. We have used either method successfully.

1B. Label 1/10 of the RNA with radiolabeled $[5'-{}^{32}P]pCp$. Set up the following reaction:

RNA	1 µl
DMSO	1 µl
[5'- ³² P]pCp	5 µl

Heat at 90°C for 30 sec, keep on ice and spin briefly. Then add:

10x Buffer	1 µl
10 mM ATP	1 µl
T4 RNA ligase	1 µl

<u>10x Buffer</u>: 500 mM Tris-HCl pH 7.5, 100 mM MgCl₂, 100 mM DTT, 500 µg/ml BSA

Incubate overnight (ON) at 4°C. Add 35 μ l water and 5 μ l 20xSET (3 M NaCl, 0.5 M Tris-HCl pH7.8, 20 mM EDTA). Do one phenol-chloroform extraction, remove most of the organic phase from the bottom, spin briefly and transfer "all" the aqueous phase to a new tube. Add 15 μ g of

glycoblue and 2.5 volumes ETOH. Mix and spin for 30 minutes at top speed at 4° C. Remove sup and check that most of the radioactivity is in the pellet. If not spin longer. Wash pellet with 70% ETOH, let dry at RT. Resuspend in 6 µl of Urea sample buffer (7 M urea,1xTBE plus dyes).

1C. Mix the cold (9 μ l) and the hot RNA (6 μ l). heat at 90°C for two minutes, spin briefly and separate the sample on a 20 cm x 20 cm x 0.5 mm 15% acrylamide-7M Urea gel. In a separate well away from the sample load a sufficient amount of radiolabeled DNA molecular weight marker (MspI-digested pBR322) to be visualized within a 30 minutes exposure to film or a phosphorimager screen. The size of each well should be 7 mm x 9 mm x 0.5 mm. Run the gel till the Bromophenol Blue (BPB) has run out and expose it to a phosphorimager screen (30 min should be sufficient). Identify the position of the 20-30 nt RNAs with the help of the radiolabeled DNA marker and the pCp labeled material. Cut out the gel slice containing the material of interest and add 400 μ l of 0.4 M NaCl. Freeze in dry ice-ethanol and set the tube in the fridge overnight to elute.

1D. Quickly vortex and spin the tube for 2 min at top speed, transfer the eluate to a siliconinzed microfuge tube and check that most of the radioactivity is in the eluate. Do one phenol:chloroform extraction, remove most of the organic phase from the bottom, spin briefly and transfer "all" the aqueous phase to a new tube. Add 15 μ g glycoblue and 2.5 volumes ETOH. Mix and spin for 30 minutes at top speed at 4°C. Remove sup and check that most of the radioactivity is in the pellet. If not spin longer. Wash pellet with 70% ETOH, let dry at RT. Resuspend in 13 μ l water.

1E. 3' adaptor ligation

Set up the following reaction:

Gel purified RNA in water:	13 µl
DMSO	2 µl
Heat at 90°C for 1 min, set on ice for	1 min, spin briefly. Then add:

10 x ATP-free T4 RNA ligase buffer	2 µl
3' adaptor (50 µM)	1 µl
Mutant T4 RNA ligase (NEB)	2 µl
Total	20 µl

Incubate at RT for 1 hr and then at 4°C ON.

<u>10 x ATP-free T4 RNA ligase buffer</u>: 500 mM Tris-HCl (pH 7.5-7.6), 100 mM MgCl₂. 100 mM DTT, 600 μ g/ml BSA (NEB)

To the ligated material add 80 μ l water, 10 μ l 20xSET and 100 μ l phenol:chloroform. Vortex, spin and remove aqueous phase to a siliconized microfuge tube. Add 15 μ g glycoblue and 300 μ l

ETOH, mix and spin for 15 minutes at top speed at 4° C. Remove sup, wash 1x with cold 70% ETOH. Dry pellet. Resuspend in 10-15 µl of Urea sample buffer.

Separate the sample on a 20 cm x 20 cm x 0.5 mm 15% acrylamide-7 M Urea gel. The size of each well should be 7 mm x 9 mm x 0.5 mm. Run the gel till the BPB is out and expose it to a phosphorimager screen (30 min should be sufficient). Identify the position of the RNA-3`adaptor ligation product with the help of a radiolabeled DNA marker (MspI-digested pBR322) and the pCp labeled material. Cut out the gel slice containing the material of interest and add 400 μ l of 0.4 M NaCl. Freeze in dry ice-ethanol and set the tube in the fridge ON to elute.

Quickly vortex and spin the tube for 2 min at top speed, transfer the eluate to a siliconinzed microfuge tube and check that most of the radioactivity is in the eluate, do one phenol:chloroform extraction, remove most of the organic phase from the bottom, spin briefly and transfer "all" the aqueous phase to a new tube. Add 15 μ g glycoblue and 2.5 volumes ETOH. Mix and spin for 30 minutes at top speed at 4°C. Remove sup and check that most of the radioactivity is in the pellet. If not spin longer. Wash pellet with 70% ETOH, let dry at RT. Resuspend in 5 μ l water.

2. Ligation to 5' RNA adaptor (beware this is RNA!!!)

SIADAR-RC (IDT) 5'- ACACGACGCUCUUCCGAUCU -3'

10x buffer (50 µl) (Make fresh)

1 M Tris-HCl pH 8.0	25 µl
acetylated BSA 1mg/ml (NEB)	5 µl
1 M MgCl ₂	5 µl
100 mM HCC (hexamine cobalt (III) chloride)	5 µl
100 mM ATP	1 µl
100 mM DTT	5 µl
Water	4 µl

To the RNA ligated to the 3' adaptor in 5 μ l of sterile water, add:

1 µl SIADAR-RC (300 µg/ml)

Heat at 90°C for 1 min, transfer to ice, spin down briefly. Make sure RNA is resuspended. Then add:

10x ligation buffer	2 µl
35% PEG (8000)	6 µl
T4 RNA ligase	2 µl (from AMBION)
Water	4 µl

Gently mix by pipetting up and down, do not vortex. Incubate ON at 15°C.

3. <u>cDNA synthesis</u>

To the ligated material add 80 μ l water, 10 μ l 20xSET and 100 μ l phenol:chloroform. Vortex, spin and remove aqueous phase to a siliconized microfuge tube. Add 15 μ g glycoblue and 300 μ l ETOH, mix and spin for 30 minutes at top speed at 4°C. Remove sup, wash 1x with cold 70% ETOH. Air dry pellet.

To the dry pellet add:

3'RT primer (750 µg/ml in water)	1 μl (5'-ATTGATGGTGCCTACAG-3')
H_2O	7 µl

Heat for 1 min at 90°C in a PCR machine. Set on ice for 1 min, spin briefly and check that the RNA is in solution by drawing the solution in a pipette tip.

Add:

5xRT buffer	4 μl	
	1 1 1 1	

Incubate at 65°C for 5 minutes, transfer to ice for 5 minutes, spin down briefly

Add:

0.1 M DTT	2 µl
10 mM dNTPs (no dCTP)	1 µl
α - ³² P-dCTP (10 μ Ci/ μ l)	5 µl
Superscript III RT	1 µl

Incubate at 50°C for 30 min, then add 1 μ l 10 mM dCTP and 1 μ l RT. Let reaction proceed for additional 30 min.

4. RNA hydrolysis and gel purification of cDNA

Add:

1N NaOH 7 μl

Incubate at 55°C for 30 min

Neutralize by adding 10 μ l 1M Tris-HCl pH 7.4 plus 7 μ l 1N HCl. Add 47 μ l 5 M Ammonium Acetate (Ambion), 2 μ l glycoblue (Ambion) plus 300 μ l ETOH. Mix, spin for 15 min at 4°C, wash with 70% ETOH (2x), dry pellet.

Resuspend pellet in 10 μ l H₂O, heat at 65°C for 5 minutes, check that the cDNA is in solution.

Add 10 μ l formamide loading buffer (Ambion) and heat at 90-100°C for 5 minutes with the cap open. Load on a 20 cm x 20 cm x 0.5 mm 15% sequencing gel and run till BPB is at the bottom. As a marker use radiolabeled pBR322/MspI. Cover the gel with Saran Wrap and expose to a phosphorimager screen for the necessary time (15-30 minutes is usually sufficient). The cDNA should migrate as a series of bands approximately 59-69 nt long. We also observe lower as well as higher MW material, but it should be of much lower intensity than the major cDNA product.

Cut out the gel section corresponding to the cDNA, transfer to a siliconized microfuge tube and add 400 μ l of 0.4 M NaCl. Freeze in dry ice-ethanol and set the tube in the fridge ON to elute.

Proceed as described in section 1D.

5. PCR amplification of ligated cDNA

Make three dilutions of ligated cDNA - 1:25, 1:50, 1:100. Use water for the dilutions and always use siliconized tubes.

Primers Sequences:

<u>SOL5'PRIM-Fwd</u> 5`AATGATACGGCGACCACCGACACTCTTTCCCTACACGACGCTCTTCCGATCT

<u>SOL3'PRIM-Rev</u> 5` CAAGCAGAAGACGGCATACGAGCTCTTCCGATCATTGATGGTGCCTACAG 3`

PCR Reaction

10x Pfx buffer	5 µl
50 mM MgSO ₄	2 µl
10 mM dNTPs	1 µl
SOL5'PRIM (100µg/ml)	1 µl
SOL3'PRIM (100µg/ml)	1 µl
H ₂ O	38 µl
Platinum Pfx polymerase	1 µl

Do one reaction with 1μ l H₂O to serve as negative control. Set up 4 reactions: one with 1μ l of undiluted cDNA and 3 reactions with 1μ l each of the three cDNA dilutions.

For PCR we use the MJ machine with the following cycling parameters:

Step 1	94°C	2 min
Step 2	94°C 54°C 68°C	15 sec 30 sec 30 sec
Repeat step 2, x4 cycles		
Step 3	94°C 65°C 68°C	15 sec 30 sec 30 sec

Repeat step 5, x22 cycles

 $72^{\circ}C$ 5 min

Run 10 μ l of the PCR products on a 1.5 % agarose gel in TBE buffer next to 0.5 μ g of the 100 bp DNA ladder (Invitrogen). The PCR products run at about 120-150nt.

It is essential that the PCR reaction does not reach saturation. For this reason, after choosing the dilution, the number of cycles should be adjusted. You have to use the number of cycles where the reaction is not saturated.

Repeat step 5 above, x15, x18, x21, x24 taking 5 µl aliquots every 3 cycles.

Run PCR products on a 1.5% agarose gel in 1x TBE buffer next to 0.5 μ g of the 100 bp DNA ladder (Invitrogen).

Once you have determined the required amplification parameters, set up a preparative 100 μ l PCR reaction. Run the products on a 1.5% agarose gel in 1xTBE. Cut the gel slice containing the amplified material and purify the DNA from the agarose gel using standard procedures. Determine DNA concentration by running 1/10 of the recovered material on a 1.5% agarose gel in 1x TBE using a DNA marker ladder in which the mass of each band is known (50 bp DNA ladder from NEB).

To determine the quality of your library it is advisable to TA clone a small aliquot and send for sequencing 20 plasmid clones.