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Supplementary Fig. 1. Stimulus design. The stimuli consisted of sequences of grayscale 
natural photos. a, Spatial characteristics. The photos were masked with a circle (20° diameter) 
and placed on a gray background. The outer edge of each photo (1° width) was linearly blended 
into the background. A central white square (0.2° side length) served as the fixation point. b, 
Temporal characteristics. The photos were presented for 1 s with a delay of 3 s between 
successive photos. Each 1-s presentation consisted of a photo being flashed ON-OFF-ON-OFF-
ON where ON corresponds to presentation of the photo for 200 ms and OFF corresponds to 
presentation of the gray background for 200 ms. 
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Supplementary Fig. 2. Gabor wavelet pyramid design. The receptive field model used in the 
present study is based on a Gabor wavelet pyramid11–13. a, Spatial frequency and position. 
Wavelets occur at five (or, in some cases, six) spatial frequencies. This panel depicts one wavelet 
at each of the first five spatial frequencies. At each spatial frequency f cycles per field-of-view 
(FOV), wavelets are positioned on an f × f grid, as indicated by the translucent lines. b, 
Orientation and phase. At each grid position, wavelets occur at eight orientations and two phases. 
This panel depicts a complete set of wavelets for a single grid position. Dashed lines indicate the 
bounds of the mask associated with each wavelet. 
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Supplementary Fig. 3. Gabor wavelet pyramid model. Each image is projected onto the 
individual Gabor wavelets comprising the Gabor wavelet pyramid (see Supplementary Fig. 2). 
The projections for each quadrature pair of wavelets are squared, summed, and square-rooted, 
yielding a measure of contrast energy. The contrast energies for different quadrature wavelet 
pairs are weighted and then summed. Finally, a DC offset is added. The weights are determined 
by gradient descent with early stopping (see Supplementary Methods 6). 
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Supplementary Fig. 4. Effect of number of voxels on identification performance. To 
optimize performance of the identification algorithm, we preferentially selected voxels whose 
receptive field models had the highest predictive power (see Supplementary Methods 7). In this 
figure the x-axis indicates the number of voxels selected and the y-axis indicates identification 
performance. The dashed green line indicates chance performance, and results were obtained for 
a set size of 120 images. In all cases optimal performance was achieved using ~500 voxels. 
Therefore, all identification results in this study were obtained using 500 voxels. 
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Supplementary Fig. 5. Identification performance for the retinotopy-only model. To 
determine whether identification is a mere consequence of the retinotopic organization of early 
visual areas, we evaluated an alternative retinotopy-only model that captures the location and 
size of each voxel's receptive field but discards orientation and spatial frequency information.  
a, Comparison of identification performance for the retinotopy-only (RO) model and the Gabor 
wavelet pyramid (GWP) model (results for subject S1 and repeated trials). The x-axis indicates 
set size and the y-axis indicates identification performance. The number to the right of each line 
gives the estimated set size at which performance declines to 10% correct, and the dashed green 
line indicates chance performance. Performance for the RO model was substantially lower than 
for the GWP model. b, Results for subject S2 and repeated trials. Once again the RO model 
performed substantially worse than the GWP model. c–d, Single-trial results for subjects S1 and 
S2. Although identification performance was poorer overall when single trials were used, the 
GWP model still outperformed the RO model. These results collectively indicate that spatial 
tuning alone does not yield optimal identification performance; identification improves 
substantially when orientation and spatial frequency tuning are included in the model. 
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Supplementary Fig. 6. Example of constraints on orientation and spatial frequency tuning. 
To assess the individual contributions of orientation and spatial frequency tuning to identification 
performance, we evaluated several constrained versions of the Gabor wavelet pyramid model. 
These models were constructed by fixing the spatial envelope of each voxel and then imposing 
different constraints on orientation and spatial frequency tuning (see Supplementary Methods 9 
for details). This figure illustrates the tuning of one representative voxel under the various 
models. Nine plots are arranged in three columns and three rows. Each plot depicts the joint 
orientation and spatial frequency tuning obtained under one specific model (format is the same as 
in Fig. 2b). The three columns represent different constraints on orientation tuning: in the left 
column it is constrained to be flat; in the middle column it is constrained to match the mean 
orientation tuning across voxels in the corresponding region-of-interest (i.e. V1, V2, or V3); in 
the right column it is unconstrained (the model is allowed full flexibility in orientation tuning). 
The three rows represent different constraints on spatial frequency tuning: in the bottom row it is 
constrained to be flat; in the middle row it is constrained to match the mean spatial frequency 
tuning across voxels in the corresponding region-of-interest; in the top row it is unconstrained. 
These plots demonstrate that the models successfully incorporate the intended tuning constraints. 
(In the bottom-right plot orientation tuning at low spatial frequencies is not perfectly matched to 
the marginal orientation tuning. This is a consequence of the fact that the lowest-frequency 
wavelets are truncated by the field-of-view, effectively increasing their spectral bandwidth.) 



page 8 of 40 

 
 
Supplementary Fig. 7. Example of ROI-averaged tuning curves. Several of the constrained 
versions of the Gabor wavelet pyramid model involve fixing the orientation or spatial frequency 
tuning curve of a voxel to match the mean tuning curve across voxels in the corresponding 
region-of-interest (i.e. V1, V2, or V3). a, Example ROI-averaged orientation tuning curve for 
area V1. The x-axis indicates orientation and the y-axis indicates predicted response. Error bars 
indicate ± 1 s.e.m. across voxels (bootstrap procedure). The orientation tuning curve is nearly 
flat. b, Example ROI-averaged spatial frequency tuning curve for area V1. The format is the 
same as panel a, except that the x-axis indicates spatial frequency. The spatial frequency tuning 
curve is band-pass. 
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Supplementary Fig. 8. Contribution of orientation and spatial frequency tuning to 
identification performance. Constrained versions of the Gabor wavelet pyramid model were 
used to investigate the individual contributions of orientation and spatial frequency tuning to 
identification performance (see Supplementary Fig. 6). a, Summary of identification 
performance under each model. The nine models are labeled by capital letters, and are arranged 
in three columns and three rows. Different columns represent different constraints on orientation 
tuning, and different rows represent different constraints on spatial frequency tuning (as in 
Supplementary Fig. 6). Colors and percentages denote identification performance achieved under 
each model (repeated-trial, 1,000 images, performance averaged across subjects). Both 
orientation and spatial frequency tuning contribute to identification performance (C > A and  
G > A), but spatial frequency tuning is relatively more important (G > C). Voxel-to-voxel 
variation in orientation and spatial frequency tuning also contributes to identification 
performance (F > E and H > E). b, Statistical comparisons of identification performance. This 
table provides p-values for all pairwise model comparisons (one-tailed paired sign test, p-values 
rounded up). A red p-value indicates that the model in the corresponding column performed 
significantly better than the model in the corresponding row (p < 0.05), while a black p-value 
indicates that the improvement was not statistically significant (p ≥ 0.05). The symbol '–' 
indicates that performance for the column model was less than or equal to that for the row model. 
The differences in identification performance noted in panel a are all statistically significant. 
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Supplementary Fig. 9. Additional examples of receptive field models. a–c, Receptive field 
models for three representative voxels. The format of each panel is the same as that of Fig. 2. 
Receptive field (RF) location, size, orientation tuning, and spatial frequency tuning all vary 
substantially across voxels. The RFs also vary in reliability; for example, the RF shown in  
panel c exhibits less reliable spatial tuning than the RFs shown in panels a–b. 
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Supplementary Fig. 10. Validation of retinotopic information derived from receptive field 
models. Since retinotopy is a well-established property of voxels in early visual areas14,16,18, one 
way to validate the Gabor wavelet pyramid (GWP) model is to confirm that it produces 
reasonable estimates of voxel receptive field location. In this figure we compare angle and 
eccentricity estimates obtained from the GWP model to those obtained from the multifocal (MF) 
retinotopic mapping technique17,31 (see Supplementary Methods 11). Note that the data used for 
the MF technique were completely independent of the data used for the GWP model. a, 
Comparison of retinotopic maps for a representative hemisphere. Voxel data were assigned to 
surface vertices using nearest neighbor interpolation, and the maps were not smoothed or 
thresholded. Black lines indicate the boundaries of visual areas V1, V2, and V3. (The same 
boundaries are replicated on each map.) Overall, the GWP maps are similar to the MF maps and 
exhibit the typical retinotopic organization32,33. The GWP maps are somewhat noisier than the 
MF maps, which is expected given that the MF technique is specifically optimized to provide 
retinotopic information. b, Quantitative comparison of angle estimates. Dots represent individual 
voxels taken across subjects (voxels for which the predictive power of the GWP model was not 
statistically significant at p < 0.01 are omitted). Notice that the MF and GWP angle estimates are 
well matched. c, Quantitative comparison of eccentricity estimates (format same as panel b). The 
MF and GWP eccentricity estimates are generally well matched, but there appear to be 
systematic discrepancies at the lowest and highest eccentricities. The likely cause of the 
discrepancies is the spatial granularity of the stimuli used for MF mapping32. 
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Supplementary Fig. 11. Relationship between receptive field size and eccentricity. In the 
course of fitting the Gabor wavelet pyramid model, estimates of the location and size of each 
voxel's receptive field (RF) were obtained. We examined the relationship between RF size and 
eccentricity to see if the expected pattern of results could in fact be demonstrated. In this figure 
the x-axis indicates RF eccentricity and the y-axis indicates RF size. (RF size is defined as ± 2 
s.d. of a fitted two-dimensional Gaussian; see Supplementary Methods 5.) Voxels were pooled 
across subjects and then binned by eccentricity. (To ensure robust results, voxels for which RF 
predictive power was not statistically significant at p < 0.01 or for which estimated RF location 
was not completely within the stimulus bounds were omitted before pooling.) For each bin with 
at least 10 voxels, the median RF size is plotted, with error bars indicating ± 1 s.e. (bootstrap 
procedure). RF size increases with eccentricity and across visual areas, consistent with previous 
fMRI studies15,19,34–36. The fact that our model estimation approach uncovers differences in RF 
size across areas suggests that it could potentially reveal other area differences. 
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Subject 
Visual 
area 

Total number 
of voxels 

High SNR 
(% of total) 

High 
predictive power 

(% of total) 

High SNR and high 
predictive power 
(% of high SNR) 

S1 V1 1331 431 (32%) 533 (40%) 406 (94%) 
 V2 2208 659 (30%) 677 (31%) 558 (85%) 
 V3 1973 425 (22%) 343 (17%) 260 (61%) 

S2 V1 1513 275 (18%) 382 (25%) 256 (93%) 
 V2 1982 369 (19%) 426 (21%) 291 (79%) 
 V3 1780 223 (13%) 224 (13%) 138 (62%) 

 
Supplementary Table 1. Signal-to-noise ratio of voxel responses and predictive power of 
receptive field models. The column High SNR (% of total) gives the number of voxels with a 
signal-to-noise ratio (SNR) greater than 1.5; High predictive power (% of total) gives the number 
of voxels for which the predictive power of the best initial model was statistically significant  
(p < 0.01, bootstrap procedure); and High SNR and high predictive power (% of high SNR) gives 
the number of voxels that satisfied both criteria. (See Supplementary Methods 3 and 6 for details 
concerning SNR and predictive power, respectively.) Although SNR varied greatly across 
subjects, SNR was fairly consistent for areas V1, V2, and V3 within each subject. Predictive 
power generally decreased from V1 to V2 to V3, likely reflecting the fact that the Gabor wavelet 
pyramid model is not optimal for visual areas beyond V1. 
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Supplementary Discussion 1. Classification-based decoding methods cannot be used to 
identify novel images 
 
Previous classification-based studies did not identify novel images 
 
Several fMRI studies of visual cortex4,5,37,38 have shown that classification-based decoding 
methods can be used to determine the category of an image seen by an observer, even if the 
image is a novel instance of the category. In addition, one neurophysiological study of IT 
neurons7 showed that classification methods can be used to determine which object was seen by 
an observer, even if the object was presented at novel positions or scales. At a superficial level 
these results may seem to contradict our claim that classification methods cannot be used to 
identify novel images. However, there are two key differences between these previous studies 
and the present study. First, the previous studies achieved decoding for only specific kinds of 
novel images (e.g. novel images drawn from fixed categories). In contrast the present study 
achieves decoding for arbitrary novel natural images. 
 
Second, the previous studies demonstrated classification, not identification. The goal of 
classification is to discriminate images belonging to a given category from those belonging to 
other categories. Classification thus aggregates over the individual images belonging to a given 
category. In contrast, the goal of identification is to discriminate an individual image from a 
number of other images. Identification thus treats each image as a distinct entity. To illustrate 
these ideas, consider a hypothetical experiment that measures brain activity evoked by an image 
of a dog. The goal of classification is to assign the image to one of several pre-defined categories 
such as dog or cat; the goal of identification is to discriminate the specific dog image from a 
number of other images (regardless of category membership). 
 
Limitations of classification-based decoding methods 
 
Classification-based decoding methods are inherently limited by the fixed set of categories that 
are used in training. For example, suppose a classifier is trained to discriminate brain activity 
evoked by dogs from that evoked by cats; without additional training the classifier would be 
unable to discriminate brain activity evoked by birds from that evoked by dogs or cats. This 
limited generality entails that classification methods cannot be used to identify novel images. To 
illustrate: suppose we adapt the classification framework to the problem of identification by 
treating each individual image as if it defines a unique category3,7,8. If prior measurements of 
brain activity evoked by each image are available for training purposes, standard classification 
procedures can achieve identification. However, in the case of novel images (i.e. no prior 
measurements of brain activity evoked by the images are available), we are faced with a critical 
problem: how do we perform classification for categories we have not trained for? (For 
additional discussion of the limitations of classification methods, see ref. 3.) 
 
An extension of classification-based decoding methods yields poor identification performance 
 
Is it possible to extend classification-based decoding methods to achieve identification of novel 
images? To address this question we developed a straightforward extension of classification 
methods. In this analysis we treated each image used in the model estimation stage of the 
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experiment as if it defined a unique category (similar to refs. 3, 7, 8). Thus, the 1,750 voxel 
activity patterns measured in the model estimation stage of the experiment were taken to 
represent 1,750 unique categories. We call these the category activity patterns. 
 
For each of the 120 voxel activity patterns measured in the image identification stage of the 
experiment, we attempted to identify which specific image had been seen. This was 
accomplished by taking a given voxel activity pattern m and finding the category activity pattern 
most similar to m (similarity was quantified by Pearson's r). We call the image associated with 
the found category activity pattern the matched image. (Intuitively, the matched image is the 
image from the model estimation stage of the experiment that is "brain-wise" most similar to the 
image seen by the subject.) The matched image was then compared to each of the 120 images 
used in the image identification stage of the experiment, and the image most similar to the 
matched image was selected. Two metrics for image similarity were tested: correlation of pixel 
luminance and correlation of local contrast. (To calculate the local contrast of a given image, the 
image was divided into n° × n° blocks and root-mean-square contrast was calculated for each 
block. The results reported below were obtained using the value of n that yielded the best 
performance, n = 0.6.) 
 
Identification performance using the pixel luminance metric was 1.7% (2/120) and 0.8% (1/120) 
for subjects S1 and S2, respectively (repeated-trial). These values were not significantly above 
chance (p ≥ 0.05, one-tailed binomial test). Identification performance using the local contrast 
metric was 5% (6/120) and 5.8% (7/120) for subjects S1 and S2, respectively (repeated-trial). 
These values were above chance (p < 0.0001, one-tailed binomial test) but far below the 
performance levels achieved by the identification algorithm described in the main text (92% and 
72% for subjects S1 and S2, respectively). These results suggest that classification methods 
cannot be easily extended to achieve accurate identification of novel images. 
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Supplementary Discussion 2. Comparison of classification, identification, and 
reconstruction 
  
The problems of classification, identification, and reconstruction can be defined formally. Let x1, 
x2, x3, ... represent different images. (There may be an infinite number of images.) Let l represent 
a function that maps images to a certain set of labels. For example, l(xi) is the label assigned to 
image xi. Let pi represent an activity pattern evoked by image xi on a given trial. We define the 
following problems: 

• Classification: given activity pattern pi, determine l(xi). 
• Identification: given activity pattern pi and a finite set of images (e.g. {x2 x7 x3}) such that 

xi is a member of the set, determine xi. 
• Reconstruction: given activity pattern pi, determine xi. 

 
At the most general level the three problems are similar: in each case the goal is to infer certain 
information based on a given activity pattern. In theory, identification can be considered a 
special case of classification where the label assigned to an image is simply the index of that 
image in the given set of images. However, classification normally refers to the case where a 
single label is assigned to multiple images, so in practice identification is distinct from 
classification. Furthermore, although the goal of both identification and reconstruction is to 
determine the specific image that had evoked a given activity pattern, in identification a set of 
potential images is provided whereas in reconstruction no such set is provided. 
 
Note that these definitions do not specify what information is available to train a decoder, though 
this is an important issue in the present study. Unlike classification-based methods, our decoding 
method can achieve accurate identification of an image even when that image is novel, i.e. even 
when brain activity evoked by the image is not available for training. 
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Supplementary Discussion 3. Previous research on voxel tuning properties 
 
The receptive field model used in the present study is based on a Gabor wavelet pyramid (GWP). 
The GWP has long been regarded as the standard model of how primary visual cortex (V1) 
represents shape11–13. Under the assumption that fMRI activity reflects local pooled neural 
activity1,2,39–41, it is reasonable to suppose that the GWP model is appropriate for describing 
voxels in early visual areas. Indeed, previous results suggest that fMRI activity in V1 reflects the 
average activation of a population of Gabor filters28. The GWP model used in the present study 
describes tuning along the dimensions of space, orientation, and spatial frequency. Each of these 
dimensions has been previously investigated in fMRI. 
 
Spatial tuning has received considerable attention from many laboratories. The phase-encoded 
retinotopic mapping technique was introduced in the early days of fMRI14,16,18 and continues to be 
widely used. This method provides an estimate of the location of each voxel's receptive field. 
Recent studies have demonstrated that estimates of voxel receptive field size can be extracted 
from phase-encoded data through the use of a spatial tuning model3,15,19,35 such as a two-
dimensional Gaussian. An alternative method for estimating spatial tuning is the multifocal 
retinotopic mapping technique where the stimulus consists of spatial elements (e.g. wedges, 
rings, sectors) flashed pseudorandomly across the visual field17,31. This method provides a more 
direct estimate of the spatial envelope of a voxel receptive field, but is limited by the granularity 
of the stimuli and by the assumption of linear spatial summation17. 
 
Orientation tuning has typically been investigated in fMRI by using adaptation-based 
techniques42–47 or by pooling signals across many voxels20,48. However, recent classification-
based studies have shown that individual voxels have a slight orientation bias1,2. These studies 
are also noteworthy since they demonstrate that multivariate analysis techniques can increase the 
amount of information extracted from fMRI data compared to conventional univariate analysis 
techniques. 
 
Spatial frequency is the final dimension represented in the GWP model. Of the various 
dimensions, spatial frequency has been the least studied in fMRI. A few studies have shown that 
fMRI signals pooled across entire visual areas exhibit some spatial frequency tuning21,22,49. 
However, these studies did not investigate potential voxel-to-voxel variation in tuning. 
 
Most fMRI experiments measure tuning along one dimension at a time. This approach assumes 
that stimulus dimensions are separable and that they can be measured independently of one 
another. In addition, fMRI experiments usually measure tuning using artificial stimuli such as 
gratings and checkerboard patterns (but see exceptions21,28,50). In the present study the GWP 
model is fit to voxel responses evoked by natural images. This approach measures tuning along 
multiple dimensions simultaneously, and produces a unified description of how images are 
mapped onto fMRI activity. 
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Supplementary Methods 1. Design of model estimation and image identification runs 
 
The experiment consisted of two distinct stages, model estimation and image identification. 
Model estimation runs and image identification runs were conducted in the same fMRI scan 
sessions. Each estimation run used 70 distinct images presented 2 times each. Each run consisted 
of 168 trials, and had a duration of 168 trials × 4 s = 11.2 min. The first four and last four trials 
were null trials (no images presented). For the remaining 160 trials, every 8th trial was also a 
null trial. The presentation order of the images was determined by randomly generating a large 
number of sequences under the constraint that same image could not be presented on consecutive 
trials, and then choosing the sequence that yielded the greatest estimation efficiency51. 
 
Each identification run used 12 distinct images presented 13 times each. The presentation order 
of the images was determined by an m-sequence52 of level 13, order 2, and length 132 – 1 = 168. 
The m-sequence included 12 null trials (no images presented). Code for m-sequence generation 
was provided by T. Liu (http://fmriserver.ucsd.edu/ttliu/mttfmri_toolbox.html). During stimulus 
presentation the first 6 trials were repeated at the end of the 168-trial sequence. In the repeated-
trial analysis, data collected during the initial 6 trials were ignored53,54. In the single-trial analysis, 
all data were used. Each run had a duration of 174 trials × 4 s = 11.6 min. 
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Supplementary Methods 2. Reconstruction and coregistration of brain volumes 
 
Functional and anatomical brain volumes were reconstructed using the ReconTools software 
package (https://cirl.berkeley.edu/view/BIC/ReconTools). For functional volumes, a phase 
correction was applied to reduce Nyquist ghosting and image distortion, and differences in slice 
acquisition times were corrected by sinc interpolation. 
 
All functional volumes acquired for a given subject were registered to a single spatial reference 
frame. Automated motion correction procedures (SPM99, http://www.fil.ion.ucl.ac.uk/spm/) 
were used to correct differences in head positioning within scan sessions by rigid-body 
transformations. Manual coregistration procedures (in-house software) were used to correct 
differences in head positioning across scan sessions by affine transformations. Each functional 
volume was resampled only once (by sinc interpolation); this minimized interpolation errors that 
could accumulate over multiple resamplings. No additional spatial filtering was applied to the 
functional volumes. 
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Supplementary Methods 3. Time-series preprocessing 
 
The time-series data for each voxel were preprocessed prior to the model estimation and image 
identification stages of the experiment. The primary purpose of the preprocessing was to estimate 
and deconvolve voxel-specific response timecourses from the time-series data. This decreased 
the computational requirements of subsequent analyses by reducing the effective number of data 
points. Preprocessing was based on the basis-restricted separable (BRS) model (see 
Supplementary Methods 4). In brief, the BRS model uses a set of basis functions to characterize 
the shape of the response timecourse and a set of parameters to characterize the amplitudes of 
responses to different images. 
 
During preprocessing the time-series data were analyzed both as repeated trials and as single 
trials. The repeated-trial analysis produced, for each voxel, an estimate of the amplitude of the 
response (a single value) evoked by each distinct image used in the model estimation and image 
identification runs. In this case each estimate reflects data from multiple image presentations. 
The single-trial analysis produced, for each voxel, an estimate of the amplitude of the response (a 
single value) evoked by each trial of the model estimation and image identification runs. In this 
case each estimate reflects data from a single image presentation. 
 
Repeated-trial analysis 
 
The following procedure was performed for each voxel in each scan session. First, the BRS 
model was fit to the time-series data from the model estimation runs. A set of Fourier basis 
functions was used to characterize the shape of the response timecourse, and a separate 
parameter was used to characterize the amplitude of the response to each distinct image. Fitting 
the BRS model produced an estimated timecourse and a set of estimated response amplitudes. If 
necessary, the estimated timecourse and estimated response amplitudes were multiplied by −1 so 
that the estimated timecourse had a positive value at a time lag of 5 s. (This prevented ambiguity 
with respect to the sign of the response amplitudes.) We refer to the estimated timecourse as the 
hemodynamic response function (HRF), and the estimated response amplitudes as the model 
estimation responses. 
 
Second, the BRS model was fit to the time-series data from the image identification runs. One 
basis function was used to characterize the shape of the response timecourse; this basis function 
was simply the HRF calculated in step 1. A separate parameter was used to characterize the 
amplitude of the response to each distinct image. Fitting the BRS model produced a set of 
estimated response amplitudes. We refer to the estimated response amplitudes as the image 
identification responses. 
 
Third, the model estimation responses were standardized, and the same transformation (i.e. the 
same mean and standard deviation) was applied to the image identification responses. 
Standardization improved the consistency of responses across scan sessions (data not shown). 
 
After this procedure was performed for each voxel in each scan session, model estimation 
responses and image identification responses were aggregated across scan sessions. For each 
model estimation response, the ratio between the absolute value of the response and its standard 
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error was calculated. For a given voxel the median ratio across model estimation responses was 
taken as the signal-to-noise ratio (SNR) of that voxel. 
 
Single-trial analysis 
 
The following procedure was performed for each voxel in each scan session. First, the BRS 
model was fit to the time-series data from the model estimation and image identification runs. 
One basis function was used to characterize the shape of the response timecourse; this basis 
function was simply the HRF calculated in the repeated-trial analysis. A separate parameter was 
used to characterize the amplitude of the response to each trial. Fitting the BRS model produced 
a set of estimated response amplitudes. We refer to the estimated response amplitudes for the 
model estimation and image identification runs as the single-trial model estimation responses 
and single-trial image identification responses, respectively. Next, the single-trial model 
estimation responses were standardized, and the same transformation (i.e. the same mean and 
standard deviation) was applied to the single-trial image identification responses. After this 
procedure was performed for each voxel in each scan session, single-trial model estimation 
responses and single-trial image identification responses were aggregated across scan sessions. 
 
Analysis for additional scan sessions 
 
In addition to the scan sessions for the main experiment, three additional scan sessions were 
conducted (see Methods in the main text). Each of these scan sessions consisted solely of image 
identification runs. To analyze the time-series data from these scan sessions, the following 
procedure was performed for each voxel in each scan session. First, the BRS model was fit to the 
time-series data from the image identification runs using the procedure described in step 1 of the 
repeated-trial analysis. This produced a set of image identification responses. Second, the image 
identification responses were standardized. Third, the BRS model was fit to the time-series data 
from the image identification runs using the procedure described in step 1 of the single-trial 
analysis. This produced a set of single-trial image identification responses. Fourth, the single-
trial image identification responses were standardized. After this procedure was performed for 
each voxel in each scan session, image identification responses and single-trial identification 
responses were aggregated across scan sessions. 
 
Construction of voxel activity patterns 
 
The results of the repeated-trial and single-trial analyses were used to construct the voxel activity 
patterns used in the image identification stage of the experiment. Each voxel activity pattern 
represents the ensemble voxel response to an image. Repeated-trial activity patterns reflect data 
from multiple image presentations, and were constructed by concatenating individual voxels' 
estimated response amplitudes for an image. Single-trial activity patterns reflect data from single 
image presentations, and were constructed by concatenating individual voxels' estimated 
response amplitudes for a single trial. 
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Supplementary Methods 4. Basis-restricted separable model 
 
The basis-restricted separable (BRS) model was used to preprocess the time-series data for each 
voxel (see Supplementary Methods 3). The BRS model assumes that each distinct image evokes 
a fixed response and that responses to different images sum over time. In addition, the model 
assumes that the response timecourses elicited by different images differ by only a scale factor53. 
To account for stimulus-related effects, the BRS model uses a set of basis functions to 
characterize the shape of the response timecourse51 and a set of parameters to characterize the 
amplitudes of responses to different images. To account for noise-related effects, the model uses 
a set of polynomials53 of degrees 0 through 3 and a first-order autoregressive noise model55. 
 
Let t be the number of time-series data points, e be the number of distinct images or trials, l be 
the number of points in the response timecourse, m be the number of timecourse basis functions, 
and p be the number of polynomial regressors. The time-series data for a given voxel are 
modeled as 

y = (X ! (Lc))h + Sb + n  
where y is the data (t × 1), X is the stimulus matrix (t × e), L is the set of timecourse basis 
functions (l × m), c is a set of parameters (m × 1), ! denotes convolution, h is a set of response 
amplitudes (e × 1), S is the set of polynomial regressors (t × p), b is a set of parameters (p × 1), 
and n is a noise term (t × 1). 
 
For the analysis of the time-series data as repeated trials, X consisted of one column per distinct 
image, where each column was a binary sequence with ones indicating the onsets of an image. 
For the analysis of the time-series data as single trials, X consisted of one column per trial, where 
each column was a binary sequence with a one indicating the onset of a trial. In cases where the 
shape of the timecourse was unknown, L was a set of Fourier basis functions consisting of a 
constant function and sine and cosine functions with 1, 2, and 3 cycles. These basis functions 
extended from 1 to 16 s after image onset. In cases where an estimate of the shape of the 
timecourse was available, L was simply taken to be that estimate. 
 
Model parameters were estimated using a variant of the Cochrane-Orcutt procedure55. After 
initializing h to all ones, iterations alternated between ordinary least-squares estimation of c and 
b while holding h fixed and ordinary least-squares estimation of h and b while holding c fixed. 
After each iteration autoregressive noise parameters were estimated from the residuals of the 
model fit. These autoregressive noise parameter estimates were used to transform the data and 
design matrix prior to the next iteration. Fitting proceeded until convergence of parameter 
estimates. 
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Supplementary Methods 5. Model estimation 
 
In the model estimation stage of the experiment, a receptive field was estimated for each voxel 
using the Gabor wavelet pyramid (GWP) model. The model estimation procedure is complicated 
because it involves multiple uses of the GWP model. For this reason we provide a high-level 
description of the procedure in this section, and present specific details of the GWP model in 
Supplementary Methods 6. 
 
Rough localization of the receptive field 
 
The first step of the model estimation procedure was to obtain a rough localization of the 
receptive field (RF). This was accomplished by fitting several initial models to the data. Each of 
the initial models covered a specific region of the stimulus (called the field-of-view), and was an 
instantiation of the GWP model at a resolution of 128 px × 128 px. One model covered the full 
20° × 20° extent of the stimulus. In this case performance was limited by the fact that the 
maximum wavelet spatial frequency was 1.6 cycles/°. To better characterize voxels tuned to 
higher spatial frequencies, two additional models were used. One covered the central  
10.1° × 10.1° of the stimulus, and the other covered the central 5.2° × 5.2° of the stimulus. In 
these cases the maximum wavelet spatial frequencies were 3.2 cycles/° and 6.2 cycles/°, 
respectively. (Voxels tuned to higher spatial frequencies tended to be found in more central 
regions of the visual field; data not shown.) 
 
For each of the initial models, the RF was constrained to be orientation invariant. This was 
accomplished by summing over groups of input channels that differ in orientation but share the 
same spatial frequency and position, prior to fitting the model. The orientation invariance 
constraint reduced the number of free parameters and improved predictive power (data not 
shown). (Note that the final model was not constrained to be orientation invariant; see below.) 
There were a total of 1,367 free parameters for each initial model. 
 
Precise localization of the receptive field 
 
The second step of the model estimation procedure was to obtain a more precise estimate of the 
RF location. This was accomplished by fitting an isotropic two-dimensional Gaussian function to 
the spatial envelope associated with each initial model. The RF location was estimated as the 
region bounded by ± 2 s.d. of the fitted Gaussian. (The RF size was taken to be the size of this 
region.) For the 10.1° × 10.1° and 5.2° × 5.2° models, the estimated RF location was considered 
valid only if the 2-s.d. region was completely within the field-of-view of the model. This 
criterion excluded models artificially truncated by the field-of-view. 
 
Of all the initial models that yielded a valid estimate of RF location, the model that achieved the 
least squared error on a separate stopping set was chosen (see Supplementary Methods 6). We 
refer to this model as the best initial model, and it was taken as providing the best estimate of the 
RF location. To reduce computational demands, subsequent analyses included only those voxels 
for which the predictive power of the best initial model was statistically significant (see 
Supplementary Methods 6). 
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Final estimate of the receptive field 
 
The last step of the model estimation procedure was to obtain a final estimate of the RF. This 
was accomplished by fitting a GWP model that was specifically tailored to the estimated RF 
location. This model had a resolution of 64 px × 64 px, and was not constrained to be orientation 
invariant. There were a total of 2,730 free parameters in this final model. 
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Supplementary Methods 6. Gabor wavelet pyramid model 
 
In Supplementary Methods 5 we described how the Gabor wavelet pyramid (GWP) model was 
used to estimate the receptive field of each voxel. In this section we provide specific details of 
the GWP model, such as how model parameters are determined. 
 
Basic framework 
 
The GWP model is applied to a specific region of the stimulus, called the field-of-view (FOV). 
The resolution is typically 64 px × 64 px, though in some cases, a resolution of 128 px × 128 px 
is used. The model describes how the portion of the stimulus within the FOV (henceforth simply 
referred to as the image) is transformed into a predicted response. Note that the GWP model does 
not include a temporal component because voxel-specific response timecourses are removed 
from the time-series data in preprocessing.  
 
Stimulus preprocessing 
 
To accommodate a variety of FOVs and resolutions, the stimuli used in the experiment were 
preprocessed at multiple resolutions. The dimensions of the preprocessed stimuli were given 
by min(500,round(29! x /8 )) where x ranges from 0 to 24. For example, for x = 0 the stimuli were 
left at the original resolution of 500 px × 500 px, and for x = 10 the stimuli were downsampled to 
a resolution of 215 px × 215 px. Stimuli were converted to luminance values using the measured 
luminance response of the goggles (see below). The mean luminance across all stimuli was then 
subtracted. 
 
The luminance response of the goggles was measured with a Minolta LS-110 photometer 
(Konica Minolta Photo Imaging, Mahwah, NJ). The luminance response of the left-eye display 
was slightly different from that of the right-eye display; for analysis, the average of the two 
luminance responses was assumed. The minimum, maximum, and mean luminance was 0.8 
cd/m2, 11.1 cd/m2, and 6.3 cd/m2, respectively. 
 
Design of the wavelet pyramid 
 
The Gabor wavelet pyramid is illustrated in Supplementary Fig. 2. For the 64 px × 64 px model 
resolution, wavelets occur at five spatial frequencies: 1, 2, 4, 8, and 16 cycles per FOV. (For the 
128 px × 128 px model resolution, wavelets occur at six spatial frequencies: 1, 2, 4, 8, 16, and 32 
cycles per FOV.) At each spatial frequency f cycles per FOV, wavelets are positioned on an f × f 
grid. At each grid position wavelets occur at eight orientations, 0, 22.5°, 45°, ..., and 157.5°, and 
two quadrature phases, 0° and 90°. An isotropic Gaussian mask is used for each wavelet, and its 
size relative to spatial frequency is such that all wavelets have a spatial frequency bandwidth of 1 
octave and an orientation bandwidth of 41°. A luminance-only wavelet that covers the entire 
image is also included. 
 
Wavelets are truncated to lie within the bounds of the image, and are restricted in spatial extent 
by setting to zero the portions of the masks whose values are less than 0.01 of the peak value 
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(Supplementary Fig. 2b). Each wavelet is made zero-mean and unit-length within the bounds of 
its associated mask. 

 
Transformation from image to predicted response 
 
The following steps transform a given image into the predicted response from the GWP model 
(Supplementary Fig. 3). First, the image is projected onto the set of Gabor wavelets. The 
projections for each quadrature pair of wavelets are then squared, summed, and square-rooted, 
yielding a set of input channels. These input channels reflect the contrast energy contained in 
quadrature wavelet pairs. (For the luminance-only wavelet, the projection is squared, multiplied 
by 2, and square-rooted.) Next, the input channels are weighted by a set of values called the 
kernel and then summed. Finally, a DC offset is added to the result. 
 
Wavelets positioned near the edge of the circular stimulus mask (see Supplementary Fig. 1) yield 
artifactually small projections. To avoid instability in parameter estimation, the projection for a 
given wavelet is set to zero if more than half of its associated mask lies beyond 90% of the 
stimulus radius. 
 
The quantification of contrast energy is a nonlinear operation that transforms the stimulus into a 
space where the relationship between stimulus and response is more linear; for this reason, the 
GWP model is termed a linearized model10. A purely linear model that characterizes the voxel 
response as a weighted sum of the raw wavelet projections yields very poor fits (data not shown). 
 
Estimation of model parameters 
 
Responses to the images used in the model estimation runs of the experiment are used to fit the 
GWP model. Formally, let p be the number of images, and q be the number of input channels. 
The voxel responses were modeled as 

y = Xh + c1 + n  
where y is the set of responses (p × 1), X is the set of input channels (p × q), h is the kernel  
(q × 1), c is the DC offset (1 × 1), 1 is a vector of ones (p × 1), and n is a noise term (p × 1). 
Model parameters were estimated using gradient descent with early stopping56. Gradient descent 
is an iterative fitting technique where the difference between the model fit and the data is 
gradually reduced. Early stopping is a form of regularization10 where the magnitude of model 
parameter estimates are shrunk in order to prevent overfitting. 
 
The specific procedure was as follows. A randomly selected 20% of the responses were removed 
and kept as a stopping set. The mean of the remaining responses yµ (1 × 1) was subtracted, 
yielding responses

 
!y (p × 1). The mean of each input channel Xµ (1 × q) was subtracted and the 

standard deviation of each input channel X
!
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channels
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where h
i
is the kernel at iteration i, g

i
is the normalized error gradient at iteration i, 

and ! = 0.001 is the step size. The normalized error gradient is given by 
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where x[ ] = x / x represents vector length normalization, ! = 0.9 is a momentum parameter57, 
and g

0
= 0. Iterations proceeded until the squared error on the stopping set no longer decreased, 

or until the squared error on the responses no longer decreased. The final estimate of the kernel 
was calculated as 

ĥ = h final . /X!

T  
where h final is the kernel at the last iteration and . / denotes element-by-element division. The 
final estimate of the DC offset was calculated as 

 
ĉ = !y ! Xµĥ  

where the symbols are as defined earlier. 
 
Estimation of variance 
 
One hundred bootstrap samples were drawn from the original set of responses, and parameter 
estimates were obtained for each bootstrap sample. (The size of each bootstrap sample was equal 
to the number of responses, and the stopping set was selected after each bootstrap sample was 
drawn.) Standard errors on parameter estimates were calculated as the standard deviation across 
bootstraps. Final parameter estimates were calculated as the mean across bootstraps. 
 
To prevent artificially high variance of parameter estimates, the number of fitting iterations was 
held constant across bootstrap samples. This was accomplished as follows. Prior to 
bootstrapping, parameter estimates were obtained using gradient descent with early stopping on 
the original set of responses. The number of fitting iterations n was recorded. Then, for each 
bootstrap sample, parameter estimates were obtained using gradient descent for n iterations. 
 
Quantification of predictive power 
 
An objective measure of the quality of a receptive field model is how well the model predicts 
responses to images not used for model estimation10. Here, the predictive power of a receptive 
field model was calculated as the correlation (Pearson's r) between measured and predicted 
responses for the images used in the image identification runs of the experiment. (There were 
120 images used in the image identification runs, and these were distinct from the 1,750 images 
used in the model estimation runs; see Methods in the main text.) A bootstrap procedure was 
used to estimate statistical significance of predictive power (r > 0, one-tailed p-values). 
 
Calculation of tuning curves 
 
Tuning curves for space, orientation, and spatial frequency were calculated for each receptive 
field (RF) model. To calculate the spatial tuning curve, i.e. spatial envelope, of an RF, the 
wavelet mask associated with each input channel was normalized to sum to 1, and was then 
scaled by the absolute value of the kernel weight associated with that input channel. The spatial 
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envelope was obtained by summing all wavelet masks. To calculate the orientation and spatial 
frequency tuning curves of an RF, a set of sinusoidal gratings were constructed at the same 
orientations and spatial frequencies used in the GWP model. At each combination of orientation 
and spatial frequency, gratings were constructed at multiple phases. The response of the RF to 
each grating was calculated, and tuning curves were obtained by averaging responses over one or 
more of the dimensions of orientation, spatial frequency, and phase. 
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Supplementary Methods 7. Image identification 
 
Voxel selection 
 
In our experiment ~5000 voxels were located in the stimulated portions of visual areas V1, V2, 
and V3 (see Supplementary Fig. 10 and Supplementary Table 1). There was substantial variation 
in the predictive power of the receptive field models obtained for different voxels. Therefore, to 
optimize performance of the identification algorithm, we preferentially selected voxels whose 
receptive field models had the highest predictive power. (Predictive power was quantified as how 
well a given model predicts responses to images not used to estimate the model; see 
Supplementary Methods 6). Note that the image to be identified was not included in the 
calculation of predictive power; this prevented voxel selection bias. 
 
All identification results in this study were obtained using 500 voxels, as that number yields 
optimal performance (Supplementary Fig. 4). Most of these voxels were located in area V1 
where predictive power was highest (Supplementary Table 1). 
 
For measurement of identification performance under the Gabor wavelet pyramid and 
retinotopy-only models, voxels were selected based on the predictive power of the specific 
model under consideration. This ensured that each model had the best possible chance at 
performing well. For measurement of identification performance under the various constrained 
versions of the Gabor wavelet pyramid model, a single, fixed set of voxels was used. (The voxels 
in this set were selected based on the predictive power of the model that imposed no constraints 
on orientation and spatial frequency tuning.) Fixing the set of voxels used ensured that 
differences in identification performance directly reflect the different constraints imposed by the 
models. 
 
Identification performance for different set sizes 
 
To measure identification performance for set sizes up to 1,000 images, the following procedure 
was used. First, a library of 999 images was constructed. These images were randomly selected 
and were different from the images used in the model estimation and image identification stages 
of the experiment. Then, for set size s and measured voxel activity pattern m, identification 
performance was calculated as the probability that the predicted voxel activity pattern for the 
correct image is more correlated with m than the predicted voxel activity patterns for s − 1 
images drawn randomly from the library: 

f (m, s) =
1,000 ! g(m) ! i

1,000 ! ii=1

s!1

"  

where f (m, s) is identification performance and g(m) is the number of library images whose 
predicted voxel activity patterns were more correlated with m than with the correct image. 
Finally, identification performance was averaged over all measured voxel activity patterns m. 
 
To measure identification performance for larger set sizes, an extrapolation method was used. 
First, the correlation between the measured voxel activity pattern m and the predicted voxel 
activity pattern for each library image was calculated. This produced a distribution of 999 
correlation values. Next, the distribution was smoothed using a Gaussian kernel. Kernel width 
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was chosen by pseudo-likelihood cross-validation58 using code provided by A. Ihler 
(http://ttic.uchicago.edu/~ihler/code/). (Smoothing in this way produces a better estimate of the 
true underlying distribution, and is reasonable given that the library images were randomly 
selected.) Identification performance was then calculated as 

f (m, s) = 1! h(m)( )
s!1  

where f (m, s) is identification performance and h(m) is the fraction of the smoothed distribution 
larger than the correlation between m and the predicted voxel activity pattern for the correct 
image. This equation quantifies the probability that the predicted voxel activity pattern for the 
correct image is more correlated with m than with the predicted voxel activity patterns for s − 1 
images drawn randomly from all possible images. Finally, identification performance was 
averaged over all measured voxel activity patterns m. To validate the described extrapolation 
method, we calculated empirical performance levels for a set size of six million images, and 
confirmed that these values are accurately estimated by extrapolation. 
 
Estimation of the noise ceiling 
 
The noise ceiling on identification performance was estimated in order to determine whether 
differences in identification performance across subjects could be attributed to differences in 
signal-to-noise ratio (see Fig. 4a). The noise ceiling is the theoretical maximum performance that 
could ever be achieved, given the level of noise in the data. To estimate the noise ceiling, 25 
bootstrap-like simulations were conducted for each of the 120 images used in the image 
identification stage of the experiment. In each simulation, the first step was to generate a 
measured voxel activity pattern for the correct image. This was accomplished by taking the mean 
of a random sample drawn from the single-trial activity patterns evoked by the correct image. 
The next step was to generate a predicted voxel activity pattern for each potential image the 
subject could have seen. This was accomplished by taking the mean of a random sample drawn 
from the single-trial activity patterns evoked by each potential image. (The intuition here is that 
the quality of the predicted voxel activity patterns is limited only by intrinsic measurement 
variability, not by the predictive power of receptive field models.) Finally, the image whose 
predicted voxel activity pattern was most correlated with the measured voxel activity pattern was 
selected. The noise ceiling was calculated as the percentage of simulations where identification 
was successful. 



page 31 of 40 

Supplementary Methods 8. Retinotopy-only model 
 
The retinotopy-only (RO) model characterizes the response of each voxel as a function of the 
luminance and contrast of a specific region of the stimulus (this region is henceforth simply 
referred to as the image). There are two input channels. The luminance channel represents 
absolute deviation from mean luminance. (It has been shown that changes in uniform 
illumination evoke fMRI activity in early visual areas27.) The contrast channel represents the 
total energy contained in the image excluding overall luminance. Note that the RO model is 
invariant to the particular orientations and spatial frequencies present in the image. 
 
The RO model provides a plausible functional description of a voxel in early visual areas, and it 
is similar to recently proposed models of phase-encoded retinotopic mapping data3,15,19,35. Since 
the RO model captures only spatial tuning, it serves as a way of testing whether the additional 
orientation and spatial frequency tuning captured by the Gabor wavelet pyramid (GWP) model 
have a significant impact on identification performance. If orientation and spatial frequency 
tuning are irrelevant for identification or if they cannot be estimated reliably from voxel 
responses, then performance for the RO model should be at least as good as performance for the 
GWP model. 
 
To ensure that the RO and GWP models are compared fairly, the RO model was applied to the 
same estimated receptive field location as used for the GWP model (see Supplementary Methods 
5), and both models were fit using the same gradient descent method (see Supplementary 
Methods 6). 
 
Spatially-weighted metrics for luminance and contrast 
 
To implement the RO model we must choose metrics for luminance and contrast. The standard 
metrics for luminance and contrast are the mean and standard deviation of the pixel luminance 
values, respectively. These metrics are spatially homogenous in the sense that all portions of the 
image contribute equally. However, it is reasonable to presume that the receptive field of a voxel 
exhibits spatial gradation such that portions of the image near the center of the receptive field 
contribute more strongly to the response than portions of the image near the periphery of the 
receptive field. Indeed, previous studies3,15,35 have proposed a two-dimensional Gaussian model 
of the spatial envelope of a voxel receptive field. Moreover, the receptive fields obtained in the 
present study under the GWP model do appear to be spatially graded (see Fig. 2 and 
Supplementary Fig. 9). 
 
To accommodate spatial gradation the RO model uses the following metrics. The spatially-
weighted luminance of an image is given by 
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where L is the spatially-weighted luminance, wi is the weight on pixel i, and xi is the luminance 
of pixel i. The spatially-weighted contrast of an image is given by 
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where C is the spatially-weighted contrast and the other symbols are as defined earlier. These 
metrics are calculated at the original stimulus resolution (downsampling is not necessary). Note 
that in the case where all weights are equal to one, the spatially-weighted metrics for luminance 
and contrast reduce to the standard metrics for luminance and contrast. 
 
Transformation from image to predicted response 
 
Let G represent the two-dimensional Gaussian fit to the spatial envelope associated with the best 
initial model (as described in Supplementary Methods 5). The following steps transform a given 
image into the predicted response from the RO model. First, the spatially-weighted luminance of 
the image is calculated using the weights provided by G. The absolute value of the result 
constitutes the first input channel. (This full-wave rectification parallels how luminance is treated 
in the GWP model.) Next, the spatially-weighted contrast of the image is calculated using the 
weights provided by G. The result constitutes the second input channel. The two input channels 
are then weighted by a set of values and summed. Finally, a DC offset is added to the result. 
 
Validation of the spatially-weighted metrics 
 
To verify that the spatially-weighted metrics yield reasonable results, we compared identification 
performance achieved using the spatially-weighted metrics to that achieved using the standard 
metrics. (The standard metrics were calculated using the region of the stimulus bounded by ± 2 
s.d. of the Gaussian function G.) Identification performance was 55% and 42% for the spatially-
weighted metrics and standard metrics, respectively (repeated-trial, 120 images, performance 
averaged across subjects). This validates the spatially-weighted metrics and indicates that we 
have cast the RO model in the best possible light. 
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Supplementary Methods 9. Constrained versions of the Gabor wavelet pyramid model 
 
Several constrained versions of the Gabor wavelet pyramid (GWP) model were constructed in 
order to assess the individual contributions of orientation and spatial frequency tuning to 
identification performance. These models are based on the GWP model instantiated at a 
resolution of 64 px × 64 px, and impose various constraints on orientation and spatial frequency 
tuning. The models were applied to the same estimated receptive field location as used for the 
GWP model (see Supplementary Methods 5) and were fit using the same gradient descent 
method (see Supplementary Methods 6). 
 
Model simplification 
 
To facilitate manipulation of orientation and spatial frequency tuning, the spatial envelope of the 
GWP model was first fixed. This was accomplished by weighting the image with the two-
dimensional Gaussian associated with the estimated receptive field location (see Supplementary 
Methods 5), and summing over input channels that differ in position but share the same 
orientation and spatial frequency. (Note that different voxels had different spatial envelopes.) To 
facilitate imposition of tuning constraints, input channels were linearly transformed such that 
weights on input channels directly reflect how the model responds to sinusoidal gratings (details 
of the transformation are provided in a later section). 
 
Constraints on orientation and spatial frequency tuning 
 
Systematic constraints were imposed on orientation and spatial frequency tuning. Three different 
constraints were used for each dimension, yielding a total of 3 × 3 = 9 different models. Under 
the constraint of flat tuning, the tuning curve of each voxel is constrained to be entirely flat. 
Under ROI-averaged tuning, the tuning curve of each voxel is constrained to match the mean 
tuning curve across voxels in the corresponding region-of-interest (i.e. V1, V2, or V3), and any 
voxel-to-voxel variation in tuning is ignored. Under individual-voxel tuning, each voxel is 
allowed full flexibility in tuning, so voxel-to-voxel variation in tuning is captured. (For an 
illustrative example, see Supplementary Fig. 6.) 
 
Tuning constraints were achieved by applying marginalization operations to input channels. To 
achieve flat tuning, input channels were summed across the relevant dimension; to achieve ROI-
averaged tuning, input channels were multiplied by the appropriate ROI-averaged tuning curve 
(see Supplementary Fig. 7) and then summed across the relevant dimension; and to achieve 
individual-voxel tuning, input channels were left as-is. To illustrate, consider the model that 
imposes flat orientation tuning and ROI-averaged spatial frequency tuning. This model was 
constructed by summing over input channels that differ in orientation but share the same spatial 
frequency, multiplying the resulting channels by the ROI-averaged spatial frequency tuning 
curve, and summing the results. 
 
Comparison to the retinotopy-only model 
 
Like the retinotopy-only (RO) model, the constrained versions of the GWP model help assess the 
contribution of orientation and spatial frequency tuning to identification performance. The RO 
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model serves as a simple, plausible alternative to the GWP model, and assesses the overall 
importance of orientation and spatial frequency. In contrast, the constrained versions of the GWP 
model examine the individual contributions made by orientation and spatial frequency, and 
constitute a more direct investigation of the orientation and spatial frequency information 
conveyed by the GWP model. 
 
The model that imposes flat orientation and spatial frequency tuning is similar to the RO model 
in that both models capture spatial tuning but discard orientation and spatial frequency 
information. However, the models are not equivalent: they are constructed from different image 
bases (Gabor wavelet basis vs. pixel basis) and incorporate different kinds of nonlinearities. The 
models also differ in how they handle overall luminance, so their predicted responses can 
diverge substantially at very low spatial frequencies. 
 
Technical detail on the transformation of input channels 
 
Before transformation, weights on input channels do not reflect how the model responds to 
sinusoidal gratings. This is due to the fact that the Gabor wavelets have overlapping spectra and 
the fact that there are different numbers of wavelets at different spatial frequency levels of the 
Gabor wavelet pyramid. 
 
The crux of the transformation lies in simulating the response of the model to gratings. Gratings 
are constructed at 16 equally spaced phases at each combination of orientation and spatial 
frequency used in the GWP model. This yields a total of 8 orientations × 5 spatial frequencies × 
16 phases = 640 gratings. The gratings are then used to construct a set of input channels G  
(n × q) where n = 640 is the number of gratings and q = 41 is the number of input channels. 
 
Suppose that responses evoked by the gratings were actually measured. These responses could be 
modeled as 

r = Gk + n  
where r (n × 1) is the set of grating responses, k is the kernel (q × 1), and n is a noise term  
(n × 1). Then, ordinary least-squares estimation could be used to determine the kernel that 
minimizes the squared error between the model prediction and the measured responses: 

k̂ = G
T
G( )

!1
G
T
r  

where the symbols are as defined earlier. Intuitively, k̂ can be viewed as the kernel that best 
achieves the measured grating responses r under the least-squares (LS) criterion. (In practice, 
k̂ achieves very good approximations of r—see Supplementary Fig. 6.) 
 
Now, observe that the images shown in the actual experiment can be used to construct a set of 
input channels X (p × q) where p is the number of images. Under the assumption that the kernel 
is equal to k̂, the predicted responses to the images are given by Xk̂ + c1 where c is a DC offset 
(1 × 1) and 1 is a vector of ones (p × 1). This expression can be rewritten as 

 
!Xr + c1 where 

 

!X = X G
T
G( )

!1
G
T is a set of transformed input channels (p × n). Thus, implicit here is the 

following model of the responses to the images: 
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y = !Xr + c1 + n  

where y is the set of image responses (p × 1) and n is a noise term (p × 1). 
 
The above considerations demonstrate that under the LS criterion, responses to the images shown 
in the actual experiment can be modeled using the transformed input channels 

 
!X and the set of 

weights r. Thus, the transformation of X into 
 
!X achieves the desired condition that weights on 

input channels directly reflect the response of the model to gratings. The final step is to sum over 
the input channels of 

 
!X that represent different grating phases but the same grating orientation 

and spatial frequency. This is reasonable since phase information is discarded when quadrature 
pairs of wavelets are combined. 
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Supplementary Methods 10. Visual area localization 
 
Construction of cortical surface representation 
 
High-resolution anatomical data were acquired on a 1.5 T Philips Eclipse MR scanner (Philips 
Medical Systems, N.A., Bothell, WA). A T1-weighted MPRAGE pulse sequence was used: TR 
15 ms, TE 4.47 ms, flip angle 35°, field-of-view 240 × 240 × 275.6 mm3, matrix size 256 × 256 
× 212, resolution 0.9375 × 0.9375 × 1.3 mm3. Two anatomical volumes were acquired for each 
subject. The volumes were resampled to isotropic 1 × 1 × 1 mm3 voxels, manually coregistered 
using a rigid-body transformation, and averaged together to increase the contrast-to-noise ratio. 
The SureFit BETA v4.45 software package59 was used to construct a triangulated mesh at the 
boundary between white and gray matter. The Caret v5.1 software package59 was used to flatten 
this surface representation using a cut along the calcarine sulcus. (See 
http://brainmap.wustl.edu/caret/ for more information on SureFit and Caret.) 

 
Registration of functional volumes 
 
In the main experiment, an in-plane anatomical volume was acquired in the spatial reference 
frame to which all functional volumes for a given subject were registered. This in-plane 
anatomical volume was manually registered to the high-resolution anatomical volume (described 
above) using a rigid-body transformation. The parameters for this transformation were then used 
as an initial guess for the registration of the functional volumes to the high-resolution anatomical 
volume. This registration was subsequently improved by manually adjusting scaling and 
translation along the in-plane image dimensions. This resulted in an affine transformation that 
described the registration of the functional volumes to the cortical surface representation. 
 
Localization of visual areas 
 
In separate scan sessions fMRI data were collected using the multifocal retinotopic mapping 
technique17,31 (see Supplementary Methods 11). These data were used to generate flattened maps 
of receptive field angle and eccentricity. Visual areas V1, V2, and V3 were selected on these 
surface maps, and were represented as mutually disjoint sets of vertices. For assignment of 
voxels to visual areas, only voxels within 4 mm of surface vertices were considered. Each voxel 
was assigned to the visual area associated with the vertex closest to the voxel. Voxels outside of 
areas V1, V2, and V3 were discarded and not used in this study. 
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Supplementary Methods 11. Multifocal retinotopic mapping 
 
The multifocal retinotopic mapping technique17,31 was used to localize visual areas and to 
validate retinotopic information derived from the Gabor wavelet pyramid model. Estimates of 
retinotopic tuning provided by the multifocal technique have been shown to be similar to those 
provided by the more conventional phase-encoded technique31,60,61. 
 
Stimulus 
 
The stimulus size was 20° × 20° (500 px × 500 px). A central white square served as the fixation 
point, and its size was 0.2° × 0.2° (4 px × 4 px). The stimulus was composed of 33 spatial 
components: a central circle and surrounding sectors defined by the intersections of 8 wedges 
and 4 rings. The boundaries of the wedges were positioned at angles of 0°, 45°, 90°, ..., and 315°, 
and the boundaries of the rings were positioned at eccentricities of 0.5°, 1.3°, 2.8°, 5.4°, and 10°. 
Each spatial component had one of two states. In the ON state, the spatial component was filled 
with a grayscale texture composed of non-Cartesian gratings32. The texture switched to different 
random configurations at a rate of 4 Hz. In the OFF state, the spatial component was filled with 
the gray background. The luminance of the gray background was set to the mean luminance of 
the texture. 
 
The ON-OFF patterns for the spatial components were determined by an m-sequence52 of level 5, 
order 4, and length 54 − 1 = 624. Code for m-sequence generation was provided by T. Liu 
(http://fmriserver.ucsd.edu/ttliu/mttfmri_toolbox.html). One level of the m-sequence was 
associated with the ON state, and the other levels were associated with the OFF state. The m-
sequence was repeatedly cyclically shifted by four elements to produce the ON-OFF pattern for 
each spatial component. Each element was assigned a duration of 4 s, and the total stimulus 
duration was 624 elements × 4 s = 41.6 min. For the purposes of data collection, the stimulus 
was divided into three consecutive segments (13.9 min each). 
 
Data collection 
 
Retinotopic mapping data were collected in one scan session from each subject. The same 
stimulus presentation setup and MRI parameters were used as in the main experiment. Each scan 
session consisted of three runs (13.9 min each), corresponding to the three segments of the 
stimulus. 

 
Data analysis 
 
Functional brain volumes were reconstructed and coregistered as in the main experiment. The 
time-series data for each voxel were then analyzed using the basis-restricted separable model 
(see Supplementary Methods 4). A set of basis functions was used to characterize the shape of 
the response timecourse, and a free parameter was used to characterize the amplitude of the 
response to each spatial component. Note that this model assumes linear spatial summation17 in 
the sense that the response of a voxel to a combination of spatial components is assumed to equal 
the sum of the responses of the voxel to each individual spatial component. 
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For each voxel the estimated response amplitudes to each spatial component were used to 
calculate estimates of the angle and eccentricity of the voxel's receptive field. For angle, a vector 
summation procedure32 was used: 

A = arg ai
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where A is the estimated receptive field angle, i ranges over each spatial component except the 
central circle, ai is the estimated response amplitude to spatial component i, + represents 
positive half-wave rectification, and θi is the mean angle of spatial component i. For eccentricity, 
a center-of-mass weighting procedure32 was used: 
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where E is the estimated receptive field eccentricity, i ranges over each spatial component, ki is 
the mean eccentricity of spatial component i, and other symbols are as defined earlier. 
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