

Supporting Information © Wiley-VCH 2012

69451 Weinheim, Germany

Palladium-Catalyzed Synthesis and Isolation of Functionalized Allylboronic Acids: Selective, Direct Allylboration of Ketones**

Mihai Raducan, Rauful Alam, and Kálmán J. Szabó*

anie_201207951_sm_miscellaneous_information.pdf

Contents:

General Information	2
Experimental Procedure and Spectral Data	2-12
References	13
¹ H and ¹³ C NMR spectra	14-69

General Information

Diboronic acid **1** was purified by washing with dioxane as shown below. NMR solvents used for the characterization of new compounds (CDCl₃, DMSO- d_6) were stored over molecular sieves (4Å) in an Ar filled glovebox. Molecular sieves 4Å (pellets) were activated by several microwave heating/vacuum/Ar cycles then stored in an Ar filled glovebox. All other chemicals and solvents were obtained from commercial sources and used as received. ¹H NMR, ¹³C NMR and ¹¹B NMR spectra were recorded using 400 MHz or 500 MHz spectrometers. Chemical shifts are reported using the residual solvent peak as internal standard.¹ High resolution mass data (HRMS) were obtained using ESI technique. For column chromatography, silica gel (35-70 microns) was used.

Experimental Procedures and Spectral Data

Purification of diboronic acid 1. Crude diboronic acid (1) (10 g, <90% purity) was suspended into dioxane (40 mL) and the mixture was stirred under ambient conditions for 2 hours. The product was filtered off, washed with 10 mL water and thoroughly air-dried yielding 7.1-8.4 g of pure (98% - 100%) B₂(OH)₄ (1). The content of H₃BO₃ (<2%) and excess water (<1%) was determined by ¹H NMR of DMSO-*d*₆ solutions, taking into account the self- condensation equilibrium shown below.² ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.84 (s, 4H, B₆(OH)₄), 8.61 (s, 4H, B₄(OH)₄), 7.58 (s, 4H, B₂(OH)₄), 6.50 (s, 3H, B(OH)₃), 3.32 (s, 2H, *H*₂O); ¹¹B NMR (128 MHz, DMSO-*d*₆): δ 31.9 (br s).

$$2 \xrightarrow{HO_B}OH \longrightarrow HO_BO_BOH + 2 H_2O$$

$$2 \xrightarrow{HO_B}OH \longrightarrow HO^BO_BOH + 2 H_2O$$

$$+ B_2(OH)_4 - 2H_2O$$

$$3 \xrightarrow{HO_BOH}HO^BOH \longrightarrow HO_BO^BO_BOH + 4 H_2O$$

$$HO^BOH \longrightarrow HO^BO^BO^BOH + 4 H_2O$$

Preparation of H_2PdCl_4 (2a). PdCl₂ (54 mg, 0.30 mmol) was weighed in a GC vial and then aqueous HCl 0.9 M (1 mL) was added. The vial was capped and the

mixture was stirred at r.t. overnight. The resulting aqueous H₂PdCl₄ 0.3 M solution was stored under ambient conditions and used as such.

General procedure for the synthesis of allyl boronic acids 4a-i and 4l (Table 1).

To a solution of the allylic alcohol 3 (2.0 mmol) in the solvent mixture shown in Table 1, the palladium catalyst (2a or 2b, 0.2-5 mol%) and diboronic acid (1, 1.2 equivalents) were successively added and the mixture was stirred vigorously. From time to time, aliquots from the reaction mixture were dissolved into CDCl₃ or DMSO- d_6 and analized by ¹H NMR. After the allotted times in Table 1 the conversion was 95-100%. Then (after 1-2 hours) the mixture was filtered through a HPLC Teflon filter (0.2 µm) into an Ar filled Schlenk tube containing a magnetic stir bar. The precipitant (degassed aqueous NaCl 16% solution or degassed H₂O) was added (3-4 times the initial reaction volume) and the mixture was stirred overnight. The solid was separated by filtration under Ar (see the picture of the filtration equipment below). The boronic acid was then washed with degassed H₂O (one reaction volume) and carefully dried by several vacuum/Ar plug cycles (i.e. by sudden opening of the Ar line). The washing/drying cycles were done 2-7 times. All but the last washing was also used to transfer the remaining precipitate from the Schlenk tube. Finally the product was briefly dried under vacuum and then stored in an Ar filled glove box. The water content (if any) was determined from the ¹H NMR spectrum of the product dissolved in dry DMSO- d_6 . For the determination of the H₃BO₃ content (if any), a drop of water was added to the DMSO- d_6 solution. The ¹H NMR, ¹¹B NMR and ¹³C NMR shift values reported below for the allylboronic acids correspond to NMR spectra recorded in wet DMSO- d_6 solutions. When the ¹H-NMR spectra is recorded in dry DMSO- d_6 (see below) the signals for both the allylboronic acid and the corresponding boroxine are observed (compare for example the spectra recorded for 4a in dry and wet DMSO- d_6 on pages 16 and 17, respectively).

Equipment used for the inert (Ar) filtration of allylboronic acids 4a-i and 4l.

Ph B(OH)₂ Cinnamylboronic acid (4a) was prepared according to the general procedure from 3a (2.0 mmol), 2a (0.3 M, 33 μL) and 1 (2.4 mmol) in MeOH (2 mL) using aqueous NaCl 16% as the precipitant (6 mL) and washing with H₂O (2x2 mL). The product was obtained as a white solid (198 mg, 61% yield, 99% purity), containing a trace amount of H₃BO₃ (1%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.69 (s, 2H), 7.32-7.24 (m, 4H), 7.16-7.12 (m, 1H), 6.37 (dt, *J* = 15.6, 7.8 Hz, 1H), 6.23 (d, *J* = 15.8 Hz, 1H), 1.70 (dd, *J* = 7.7, 1.1 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 138.1 (C), 129.3 (CH), 128.5 (CH), 128.2 (CH), 126.3 (CH), 125.4 (CH), 21.8 (br s, CH₂); ¹¹B NMR (128 MHz, DMSO-*d*₆): δ 31.1 (br s).

B(OH)₂ (E)-3-(4-Methoxyphenyl)allylboronic acid (4b) was prepared according to the general procedure from 3b (2.0 mmol), 2a (0.3 M, 33 μL) and 1 (2.4 mmol) in MeOH (2 mL) using aqueous NaCl 16% as the precipitant (8 mL) and washing with H₂O (7x2 mL). The product was obtained as a white solid (321 mg, 80% yield, 96% purity), containing a trace amount of H₂O (4%). ¹H NMR (400 MHz, DMSO- d_6): δ 7.64 (s, 2H), 7.25-7.22 (m, 2H), 6.86-6.83 (m, 2H), 6.24-6.13 (m, 2H), 3.72 (s, 3H), 1.65 (d, J = 6.2 Hz, 2H); ¹³C NMR (101 MHz, DMSO- d_6): δ 157.9 (C), 130.9 (C), 127.7 (CH), 126.7 (CH), 126.5 (CH), 113.9 (CH), 55.1 (CH₃), 21.6 (br s, CH₂); ¹¹B NMR (128 MHz, DMSO- d_{δ}): δ 30.8 (br s).

^B_{Br} OH (E)-(3-(4-Bromophenyl)allyl)boronic acid (4c) was prepared according to the general procedure from 3c (2.0 mmol), 2a (0.3 M, 13 µL) and 1 (2.4 mmol) in MeOH (2 mL) using aqueous NaCl 16% as the precipitant (8 mL) and washing with H₂O (3x2 mL). The product was obtained as a light yellow solid (350 mg, 71% yield, >99% purity). ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.74 (s, 2H), 7.49 (d, *J* = 8.4, 1H), 7.32 (d, *J* = 8.4, 1H), 6.49-6.42 (m, 1H), 6.25 (d, *J* = 15.7 Hz, 1H), 1.73 (d, *J* = 7.7 Hz, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆): δ 137.4 (Ar C), 131.3 (Ar CH), 130.7 (CH), 127.4 (Ar CH), 127.0 (CH), 118.9 (Ar C), 21.9 (br s, CH₂); ¹¹B NMR (128 MHz, DMSO-*d*₆): δ 31.4 (br s).

(**3-Phenylbut-2-en-1-yl)boronic acid** (**4d**) was prepared according to the general procedure from **3d** (2 mmol), **2a** (0.3 M, 13 μL) and **1** (2.4 mmol) in DMSO/H₂O (1.2 mL/0.8 mL)

using aqueous NaCl 16% as the precipitant (8 mL) and washing with H₂O (3x2 mL), then the solid with H₂O (2x2 mL). The product was obtained as a white solid (196 mg, 55% yield, 97% purity) containing a trace amount of boric acid (3%). ¹H NMR for *E* isomer (400 MHz, CDCl₃): δ 7.61 (s, 2H), 7.37-7.15 (m, 5H), 5.98 (dt, *J* = 8.2, 1.2 Hz, 1H), 1.94 (s, 3H), 1.66 (d, *J* = 8.2 Hz, 2H); ¹³C NMR for *E* isomer (101 MHz, CDCl₃): δ 143.7 (C), 131.8 (C), 128.2 (CH), 126.1 (C), 126.0 (CH), 125.2 (CH), 18.0 (br s, CH₂), 15.3 (CH₃); ¹H NMR for *Z* isomer_Selected Peaks (400 MHz, CDCl₃): δ 7.52 (s, 2H), 5.61 (t, *J* = 8.2 Hz, 1H), 1.96 (s, 3H), 1.44 (d, *J* = 7.5 Hz, 2H); ¹³C NMR for *Z* isomer (101 MHz, CDCl₃): δ 7.52 (s, 2H), 5.61 (t, *J* = 8.2 Hz, 1H), 1.96 (s, 3H), 1.44 (d, *J* = 7.5 Hz, 2H); ¹³C NMR for *Z* isomer (101 MHz, CDCl₃): δ 1.28.9, 126.3, 124.9, 25.4; ¹¹B NMR (128 MHz, DMSO-*d*₆): δ 30.9 (br s).

(3,3-Diphenylallyl)boronic acid (4e) was prepared according to the general procedure from 3e (2 mmol), 2a (0.3 H M, 128 μ L) and 1 (2.4 mmol) in DMSO/H₂O (1.6 mL/0.4 mL mL) using aqueous NaCl 16% as the precipitant (8 mL) and washing with H₂O (3x2 mL), then the solid with H₂O (2x2 mL). The product was obtained as a white solid (340 mg, 71% yield, >99% purity). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.65 (s, 2H), 7.41-7.12 (m, 10H), 6.30 (t, *J* = 8.4, 1H), 1.58 (d, *J* = 8.4, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆): δ 143.4 (C), 140.5 (C), 139.1 (C), 130.3 (Ar CH), 128.8 (Ar CH), 128.6 (Ar CH), 128.5 (Ar CH), 127.2 (CH), 127.1 (Ar CH), 126.8 (Ar CH), 19.5 (br s, CH₂); ¹¹B NMR (128 MHz, DMSO-*d*₆): δ 31.3 (br s).

^{Bu} $B(OH)_2$ (E)-Oct-2-enylboronic acid (4f) was prepared according to the general procedure from 3f (2.0 mmol), 2a (0.3 M, 13 µL) and 1 (2.4 mmol) in MeOH (2 mL) using H₂O as the precipitant (8 mL) and washing with H₂O (2 mL). The product was obtained as a white solid (186 mg, 51% yield, 85% purity), containing a trace amount of H₃BO₃ (1%) and H₂O (14%). On prolonged drying (>15 minutes) the product turned into an oil that could not be recovered from the frit. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.48 (s, 2H), 5.44 (dtt, *J* = 15.0, 7.5, 1.3 Hz, 1H), 5.21 (dtt, *J* = 15.0, 6.8, 1.4 Hz, 1H), 1.90 (q, *J* = 6.7 Hz, 2H), 1.44-1.42 (m, 2H), 1.32-1.17 (m, 6H), 0.85 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 128.4 (CH), 127.5 (CH), 32.2 (CH₂), 30.9 (CH₂), 29.0 (CH₂), 22.0 (CH₂), 20.9 (br s, CH₂), 14.0 (CH₃); ¹¹B NMR (128 MHz, DMSO-*d*₆): δ 31.0 (br s).

Bn B(OH)₂ (E)-5-Phenylpent-2-enylboronic acid (4g) was prepared according to the general procedure from 3g (2.0 mmol), 2a (0.3 M, 20 μL) and 1 (2.4 mmol) in MeOH (2 mL) using H₂O the precipitant (8 mL) and washing with H₂O (4x2 mL). The product was obtained as a grey solid (192 mg, 50% yield, 99% purity), containing a trace amount of H₃BO₃ (1%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.50 (s, 2H), 7.28-7.24 (m, 2H), 7.19-7.13 (m, 3H), 5.50 (dtt, *J* = 15.1, 7.6, 1.3 Hz, 1H), 5.27 (dtt, *J* = 15.0, 6.7, 1.5 Hz, 1H), 2.61-2.57 (m, 2H), 2.24-2.18 (m, 2H), 1.44-1.42 (m, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 142.0 (C), 128.4 (CH), 128.3 (CH), 128.1 (CH), 127.7 (CH), 125.7 (CH), 35.7 (CH₂), 34.3 (CH₂), 20.9 (br s, CH₂); ¹¹B NMR (128 MHz, DMSO-*d*₆): δ 31.2 (br s).

B(OH)₂ 2-Cyclohexylideneethylboronic acid (4h) was prepared according to the general procedure from 3h (2.0 mmol), 2a (0.3 M, 33 μL) and 1 (2.4 mmol) in DMSO/H₂O (1.5 mL/0.5 mL) using aqueous NaCl 16% as the precipitant (8 mL) and washing with H₂O (5x2 mL). The product was obtained as a grey solid (211 mg, 68% yield, >99% purity), containing a trace amount of H₃BO₃ (<1%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.43 (s, 2H), 5.15 (t, J

= 7.9 Hz, 1H), 2.06-1.97 (m, 4H), 1.50-1.37 (m, 8H); ¹³C NMR (101 MHz, DMSO d_6): δ 136.3 (C), 118.2 (CH), 36.8 (CH₂), 28.3 (CH₂), 28.0 (CH₂), 27.2 (CH₂), 26.6 (CH₂), 15.6 (br s, CH₂); ¹¹B NMR (128 MHz, DMSO- d_6): δ 30.9 (br s).

(S)-(4-(Prop-1-en-2-yl)cyclohex-1-enyl)methylboronic acid (4i) was prepared according to the general procedure from 3i (2.0 mmol), 2b (0.1 mmol) and 1 (2.4 mmol) in

DMSO/H₂O (4.5 mL/0.5 mL) using aqueous NaCl 16% as the precipitant (20 mL) and washing with H₂O (3x5 mL). The product was obtained as an off white fluffy solid (241 mg, 67% yield, >99% purity). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.43 (s, 2H), 5.24-5.23 (m, 1H), 4.68 (s, 2H), 2.05-1.80 (m, 5H), 1.72-1.69 (m, overlapped, 1H), 1.69 (s, overlapped, 3H), 1.45-1.31 (m, overlapped, 1H), 1.41 (s, overlapped, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 149.7 (C), 135.6 (C), 118.4 (CH), 108.6 (CH₂), 40.6 (CH), 30.49 (CH₂), 30.45 (CH₂), 27.7 (CH₂), 26.2 (br s, CH₂), 20.7 (CH₃); ¹¹B NMR (128 MHz, DMSO-*d*₆): δ 31.1 (br s).

B(OH)₂ Cyclohex-2-enylboronic acid (4l) was prepared according to the general procedure from 3l (2.0 mmol), 2b (0.1 mmol) and 1 (2.4 mmol) in DMSO/H₂O (1.8 mL/0.2 mL) using aqueous NaCl 16% as the precipitant (8 mL) and washing with H₂O (2x2 mL). The product was obtained as a white fluffy solid (64 mg, 25% yield, 97% purity), containing a trace amount of H₃BO₃ (1%), H₂O (1%) and DMSO (1%). ¹H NMR (400 MHz, DMSO-d₆): δ 7.42 (s, 2H), 5.74-5.71 (m, 1H), 5.52-5.47 (m, 1H), 1.90 (br s, 2H), 1.67-1.53 (m, 4H), 1.50-1.39 (m, 1H); ¹³C NMR (101 MHz, DMSO-d₆): δ 130.0 (CH), 124.0 (CH), 25.2 (br s, CH), 24.7 (CH₂), 24.1 (CH₂), 22.3 (CH₂); ¹¹B NMR (128 MHz, DMSO-d₆): δ 31.2 (br s).

General procedure for the synthesis of allyl boronic acids 4j-k (Table 1). To a solution of the allylic alcohol in the solvent mixture shown in Table 1, the palladium catalyst (2a, 5 mol%) and diboronic acid (1, 1.2 equivalents) were successively added and the mixture was stirred vigorously. From time to time aliquots from the reaction mixture were dissolved into CDCl₃ or DMSO- d_6 and analized by ¹H NMR. After the allotted times in Table 1 the conversion was 95-100%. Then (after 1-2 hours) the mixture was filtered through a HPLC Teflon filter (0.2 µm) into an Ar filled Schlenk tube containing a magnetic stir bar. Subsequently, degassed CHCl₃

(two times the reaction volume) was added, then the mixture was vigorously stirred with degassed NaCl 16% aq. solution (two times the reaction volume) and the aqueous layer was carefully removed. The washing was done five times. Finally a precisely weighed amount of naphtalene (10-20 mg) was added (as internal standard) and a 0.02 mL aliquot was taken into CDCl₃ (0.5 mL) for the determination of the yield. The boronic acid solution was used immediately for allylation of ketones.

B(OH)₂ (E)-3,7-Dimethylocta-2,6-dienylboronic acid (4j) was prepared according to the general procedure from 3j (1.0 mmol), 2a (170 μL) and 1 (1.2 mmol) in DMSO/H₂O (1.6

mL/0.4 mL) using CHCl₃ (4 mL) and washing with aqueous NaCl 16% (5x4 mL); yield: 78%. If <u>non</u>-degassed solvents were used the yield of **4j** was decreased from 78% to 55%. Accordingly, when in a separate experiment **4j** was prepared according to the general procedure from **3j** (2.0 mmol), **2a** (330 µL) and **1** (2.4 mmol) in DMSO/H₂O (3.2 mL/0.8 mL) using *non-degassed* CHCl₃ (8 mL) and washing with *non-degassed* aqueous NaCl 16% (5x8 mL) *under air*; yield: 55%. ¹H NMR (500 MHz, CHCl₃/CDCl₃): δ 5.26 (triple hexuplet, J = 8.0, 1.3 Hz, 1H), 5.06 (triple heptuplet, J = 6.8, 1.4 Hz, 1H), 4.48 (s, B(OH)₂), 2.15-2.11 (m, 2H), 2.09-2.06 (m, 2H), 1.70 (m, 3H), 1.67 (d, J = 8.3 Hz, 2H), 1.61 (m, 3H), 1.56 (m, 3H); ¹³C NMR (126 MHz, CHCl₃/CDCl₃): δ 136.6 (C), 132.5 (C), 124.4 (CH), 120.6 (CH), 39.7 (CH₂), 26.5 (CH₂), 25.9 (CH₃), 17.8 (CH₃), 15.7 (CH₃); the signal for CH₂B(OH)₂ could not be observed.

(Z)-3,7-Dimethylocta-2,6-dienylboronic acid (4k) was prepared according to the general procedure from 3k (1.0 mmol), 2a (170 μ L) and 1 (1.2 mmol) in DMSO/H₂O (1.6

mL/0.4 mL) using CHCl₃ (4 mL) and washing with aqueous NaCl 16% (5x4 mL); yield: 79%. ¹H NMR (500 MHz, CHCl₃/CDCl₃): δ 5.27-5.24 (m, 1H), 5.10 (triple heptuplet, *J* = 6.9, 1.4 Hz, 1H), 4.39 (s, B(O*H*)₂), 2.10-2.05 (m, 2H), 2.04-2.01 (m, 2H), 1.73 (q, *J* = 1.2 Hz, 3H), 1.69-1.68 (m, overlapped, 3H), 1.67 (d, overlapped, *J* = 8.4 Hz, 2H), 1.61 (m, 3H); ¹³C NMR (126 MHz, CHCl₃/CDCl₃): δ 136.8 (C), 132.4 (C), 124.1 (CH), 120.4 (CH), 31.7 (CH₂), 26.3 (CH₂), 25.9 (CH₃), 23.5 (CH₃), 17.8 (CH₃); the signal for *C*H₂B(OH)₂ could not be observed. General procedure for the synthesis of homoallylic alcohols (6a-d) using isolated boronic acids (Table 2). Allylboronic acid 4a was dissolved in THF under Ar and then the corresponding ketone was added. The reaction mixture was stirred at the given temperatures, for the reaction times mentioned in Table 2. After the completion of the reaction water was added and then this mixture was extracted with TBME and the organic phase was dried over MgSO₄. The solvent was evaporated and the product was purified by flash chromatography.

OH

Ρh

Ρh

1-(1-Phenylallyl)cyclohexanol (6a) was prepared according to the general procedure from **4a** (0.2 mmol) and **5a** (0.22 mmol) in THF (0.4 mL) followed by flash chromatography (DCM). The product

was obtained as colorless oil (37 mg, 86% yield). The NMR data are in agreement with literature values.³ ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.21 (m, 5H), 6.31(dt, *J* = 17.0, 9.9 Hz, 1H), 5.16 (dd, *J* = 10.2, 1.8 Hz, 1H), 5.14-5.09 (m, 1H), 3.25 (d, *J* = 9.6, 1H), 1.68-1.13 (m, 11H); ¹³C NMR (101 MHz, CDCl₃): δ 141.1, 137.8, 129.4, 128.4, 126.7, 117.5, 72.8, 61.2, 36.0, 35.7, 25.8, 22.0; HRMS-ESI m/z: Calcd. For C₁₅H₂₀ONa [M+Na]⁺ 239.1406. Found 239.1397.

 $\begin{array}{c} (2S^*, 3R^*) - 2, 3 - diphenylpent - 4 - en - 2 - ol (6b) \mbox{ was prepared according to the general procedure from 4a (0.24 mmol) and 5b (0.2 mmol) in THF (0.4 mL) followed by flash chromatography (pentane/Et_2O = 100:10). The product was obtained as colorless oil (45 mg, 89% yield). The NMR data are in agreement with literature values.^{4,5} ¹H NMR (400 MHz, CDCl_3): <math>\delta$ 7.37-7.22 (m, 8H), 7.16-7.13 (m, 2H), 6.14 (ddd, J = 18.0, 9.4, 7.7 Hz, 1H), 5.07 (ddd, J = 10.3, 1.7, 0.8 Hz, 1H), 4.95 (ddd, J = 17.1, 1.7, 1.2 Hz, 1H), 3.65 (d, J = 8.6 Hz, 1H), 1.99 (br s, 1H, OH), 1.46 (s, 3H); ¹³C NMR (101 MHz, CDCl_3): δ 146.6, 140.3, 137.5, 129.8, 128.2, 127.9, 127.0, 126.7, 125.7, 118.2, 76.4, 62.0, 28.7; HRMS-ESI m/z: Calcd for C₁₇H₁₈ONa [M+Na]⁺ 261.1250. Found 261.1247.

(2*S**,3*R**)-2-(4-Bromophenyl)-3-phenylpent-4-en-2-ol (6c) was prepared according to the general procedure from 4a (.024 mmol) and 5c (0.2 mmol) in THF (0.4 mL) followed by flash

chromatography (pentane/Et₂O = 100:10). The product was obtained as colorless oil (58 mg, 91% yield). The NMR data are in agreement with literature values.⁴ ¹H

NMR (500 MHz, CDCl₃): δ 7.43-7.40 (m, 2H), 7.30-7.19 (m, 5H), 7.13-7.11 (m, 2H), 6.11 (ddd, J = 18.1, 9.3, 7.8 Hz, 1H), 5.07 (ddd, J = 10.3, 1.7, 0.8 Hz, 1H), 4.96 (ddd, J = 17.1, 1.7, 1.1 Hz, 1H), 3.57 (d, J = 8.8 Hz, 1H), 1.98 (br s, 1H, OH), 1.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 145.6, 139.9, 137.1, 131.0, 129.7, 128.4, 127.7, 127.1, 120.8, 118.6, 76.2, 62.0, 28.5; HRMS-ESI m/z: Calcd for C₁₇H₁₇BrONa [M+Na]⁺ 339.0355. Found 339.0348.

 $(3S^*,4S^*)-2,3-Dimethyl-4-phenylhex-5-en-3-ol (6d) was prepared$ according to the general procedure from 4a (0.24 mmol) and 5d(0.20 mmol) in THF (0.4 mL) followed by flash chromatography(pentane/Et₂O = 100:10). The product was obtained as colorless oil (37 mg, 90%yield). The NMR data are in agreement with literature values.⁶ ¹H NMR (400 MHz, $CDCl₃): <math>\delta$ 7.32-7.20 (m, 5H), 6.35 (dt, *J* = 17.1, 9.9 Hz, 1H), 5.15 (dd, *J* = 10.2, 1.8 Hz, 1H), 5.10 (dd, *J* = 17.1, 1.4 Hz, 1H), 3.43 (d, *J* = 9.6 Hz, 1H), 1.96 (hetp, *J* = 8.6 Hz, 1H), 1.46 (br s, 1H, OH), 0.98 (d, *J* = 6.8 Hz, 3H), 0.92 (d, *J* = 6.8 Hz, 3H), 0.88 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 142.0, 138.0, 129.5, 128.4, 126.6, 117.0, 76.2, 57.8, 34.2, 20.3, 17.7, 17.0; HRMS-ESI m/z: Calcd for C₁₄H₂₀ONa [M+Na]⁺ 227,1406. Found 227.1396.

General procedure for the synthesis of homoallylic alcohols (6e-g) using CHCl₃ solutions of boronic acids 4j-k (Table 2). Over a solution of the boronic acid in CHCl₃ (prepared as shown above), the ketone and MS 4Å (approx. 25% v/v) were sequentially added. Solids (including MS 4Å) were added using an Ar countercurrent. The mixture was stirred at r.t. for 18 hours, when complete conversion of the ketone was observed by ¹H NMR. The solution was separated from the molecular sieves which were washed with Et₂O three times. The combined organic solutions were concentrated over Celite and the product was purified by flash chromatography.

1-(3,7-Dimethylocta-1,6-dien-3-yl)cyclohexanol (6e) was prepared according to the general procedure from **5a** (0.55 mmol), **4j** (1.1 mmol)/CHCl₃ (approx. 8 mL) and MS 4Å (approx. 2 mL) followed by flash chromatography

(pentane/Et₂O = 100:6). The product was obtained as a clear oil (125 mg, 96%)

yield). The NMR data are in agreement with literature values.⁷ ¹H NMR (400 MHz, CDCl₃): δ 5.86 (dd, J = 17.7, 10.9 Hz, 1H), 5.21 (dd, J = 10.9, 1.6 Hz, 1H), 5.10 (triple heptuplet, J = 7.0, 1.4 Hz, 1H), 5.02 (dd, J = 17.7, 6.7 Hz, 1H), 1.90-1.76 (m, 2H), 1.67 (m, overlapped, 3H), 1.67-1.33 (m, overlapped, 12 H), 1.58 (m, overlapped, 3H), 1.12-1.01 (m, overlapped, 1H), 1.01 (m, overlapped, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 144.0 (CH), 131.3 (C), 125.3 (CH), 115.5 (CH₂), 75.0 (C-OH), 47.8 (C), 34.9 (CH₂), 31.9 (CH₂), 31.2 (CH₂), 26.0 (CH₂), 25.8 (CH₃), 23.6 (CH₂), 22.2 (CH₂), 22.0 (CH₂), 17.7 (CH₃), 16.3 (CH₃).

OH (2S*,3S*)-2-(4-Bromophenyl)-3,7-dimethyl-3vinyloct-6-en-2-ol (6f) was prepared according to the general procedure from 5c (0.39 mmol), 4j (0.77 mmol)/CHCl₃ (approx. 4 mL) and MS 4Å (approx. 1

mL) followed by flash chromatography (pentane/Et₂O = 100:4 to 100:10). The product was obtained as a clear oil (124 mg, 94% yield, d.r. = 98:2). ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.40 (m, 2H), 7.32-7.28 (m, 2H), 5.85 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.28 (dd, *J* = 10.9, 1.4 Hz, 1H), 5.08 (dd, *J* = 17.6, 1.5 Hz, 1H), 5.02 (triple heptuplet, *J* = 7.1, 1.4 Hz, 1H), 1.94 (br s, 1H), 1.80-1.67 (m, 2H), 1.65 (m, 3H), 1.55 (s, 3H), 1.53 (m, 3H), 1.45-1.33 (m, 2H), 0.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 144.2 (C), 143.3 (CH), 131.4 (C), 130.3 (CH), 129.4 (CH), 124.9 (CH), 120.8 (C), 116.7 (CH₂), 77.7 (C-OH), 48.0 (C), 35.7 (CH₂), 25.8 (CH₃), 25.7 (CH₃), 23.5 (CH₂), 17.8 (CH₃), 16.7 (CH₃); HRMS-ESI m/z: Calcd for C₁₈H₂₅BrNaO⁺ [M+Na]⁺ 359.0981. Found, 359.0966.

(2S*,3R*)-2-(4-Bromophenyl)-3,7-dimethyl-3vinyloct-6-en-2-ol (6g) was prepared according to the general procedure from 5c (0.40 mmol), 4k (0.79 mmol)/CHCl₃ (approx. 4 mL) and MS 4Å (approx. 1

mL) followed by flash chromatography (pentane/Et₂O = 100:10). The chromatography had to be done 4 times in order to remove an impurity eluting close to the product. The product was obtained as a clear oil (103 mg, 76% yield, d.r. = 99:1). ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.40 (m, 2H), 7.27-7.24 (m, 2H), 5.72 (dd, *J* = 17.7, 10.9 Hz, 1H), 5.25 (dd, *J* = 10.9, 1.4 Hz, 1H), 5.02 (dd, overlapped, *J*

= 17.7, 1.4 Hz, 1H), 5.01 (triple heptuplet, overlapped, J = 6.9, 1.4 Hz, 1H), 1.97 (br s, 1H), 1.80-1.67 (m, 2H), 1.65 (m, 3H), 1.54 (s, 3H), 1.52 (s, 3H), 1.50-1.43 (m, 1H), 1.30-1.22 (m, 1H), 1.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 144.8 (C), 143.0 (CH), 131.4 (C), 130.3 (CH), 129.3 (CH), 125.0 (CH), 120.7 (C), 116.3 (CH₂), 77.9 (C-OH), 47.9 (C), 35.0 (CH₂), 25.8 (CH₃), 25.3 (CH₃), 23.4 (CH₂), 17.8 (CH₃), 17.2 (CH₃).

References:

(1) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics* **2010**, *29*, 2176.

(2) Baber, R. A.; Norman, N. C.; Orpen, A. G.; Rossi, J. New J. Chem. 2003, 27, 773.

(3) Selander, N.; Kipke, A.; Sebelius, S.; Szabó, K. J. J. Am. Chem. Soc. 2007, 129, 13723.

(4) Yasuda, M.; Hirata, K.; Nishino, M.; Yamamoto, A.; Baba, A. J. Am. Chem. Soc. **2002**, *124*, 13442.

(5) Fandrick, K. R.; Fandrick, D. R.; Gao, J. J.; Reeves, J. T.; Tan, Z.; Li, W.; Song,

J. J.; Lu, B.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2010, 12, 3748.

(6) Ren, H.; Dunet, G.; Mayer, P.; Knochel, P. J. Am. Chem. Soc. 2007, 129, 5376.

(7) Araki, S.; Hatano, M.; Ito, H.; Butsugan, Y. *J Organomet. Chem.* **1987**, *333*, 329.

¹H NMR of **1** (99.5%) in DMSO- d_6 (blue), **1** (99.5%) in wet DMSO- d_6 (red), **1** (commercial grade) in DMSO- d_6 (green), **1** (commercial grade) in wet DMSO- d_6 (violet)

																1		1					
210	200	1 90	180	170	160	1 50	140	130	120	110	100	90	80	70	60	5	04	0	30	20	10	0	ppm

40	Р	a	g	е
----	---	---	---	---

¹H NMR of 4j (red) versus 4k (blue) in wet DMSO/DMSO- d_6 (as observed at the end of the reaction)

