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SI Materials and Methods
Additional Patient Characteristics.Because the present multivariate
pattern analysis (MVPA) requires a high number of participants
and only about 2% of patients with acute left hemisphere damage
show full-blown spatial neglect (1), we thus restricted the present
investigation to only those patients with a lesion of the right
hemisphere. The sample of 140 patients, originally reported by
Karnath et al. (2), used all stroke patients with circumscribed right
hemisphere lesions consecutively admitted from a well-defined
recruitment area belonging to the University of Tübingen over
a period of 7 y. Three exclusion criteria were used: (i) patients
with diffuse or bilateral brain lesions; (ii) patients with tumors;
and (iii) patients in whom MRI or CT scans revealed no obvious
lesion. We note that hemianopia was not an exclusion criterion.
Patients were classified as neglect patients on fulfilling the crite-
rion for spatial neglect in at least two of four traditional clinical
tests for spatial neglect, namely the letter cancellation task (3), the
Bells test (4), the baking tray task (5), and/or a copying task (6).
All other patients were considered control patients. Notably, the
resulting groups of neglect and control patients had comparable
frequencies of visual field deficits (neglect patients: 23%; control
patients: 29%; χ2 = 0.67, P = 0.41), indicating that the high
classification accuracy of regions in visual cortex was not simply
due to systematic differences in visual field deficits. Full de-
mographic details can be found in table 1 of our original work (2).
Thus, although our findings may not generalize to rare cases of

left hemisphere neglect patients (1, 7), we note that our results
are generalizable to the vast majority of neglect patients—those
with right hemisphere damage (for review, see refs. 8 and 9).

Imaging Procedures.Lesion location and extent was visualized using
either MRI or CT. Lesion mapping was based on diffusion-
weighted imaging (DWI) for MRI occurring within the first 48 h
after stroke and T2-weighted fluid-attenuated inversion-recovery
(FLAIR) sequences whenMR imaging was conducted 48 h or later
after the stroke. The mean time between lesion and the MRI was
5.0 d (SD = 5.4). In those subjects who underwent the CT imaging
protocol, the mean time since lesion and the CT was 6.7 d (SD =
8.4). All lesions were marked manually (by an expert who was
blind regarding the diagnosis of spatial neglect) on axial slices of
a T1-weighted template MRI scan from the Montreal Neurolog-
ical Institute (MNI) using the MRIcro software package (10) with
a 1 × 1-mm in-plane resolution. This template is approximately
oriented to match the Talairach coordinate system and is dis-
tributed with MRIcro. Lesions were mapped onto the slices that
correspond to Z-coordinates (−40, −32, −24, −16, −8, 0, 8, 16, 24,
32, 40, and 50 mm) in MNI space by using the identical or the
closest matching axial slices of each individual. The full details
regarding imaging protocols and parameters are reported in our
previous work, which used the same population of patients (2).

Combinatoric Analyses. These analyses involved our regions of
interest (ROIs). We extended our ROI-based results by con-
structing combinations of two and threeROIs to be used as feature
spaces. Adding this analysis to our 45 ROIs yielded 990 combi-
nations of 2 ROIs and 14,190 combinations of 3 ROIs. Impor-
tantly, this approach allowed us to directly assess the contribution
of the lesion size when explicitly included as a feature. Here, the
emphasis switches to increases or decreases in cross-validation
(CV) rather than absolute prediction levels.
The combinatoric approach can reveal two different traits for

a given ROI (i) when combined with another ROI or set of ROIs

(j). For example, in a combination of three (ROI A, ROI B, and
ROI C), j would index all possible combinations of two (ROI A
and ROI B) and how a single region (ROI C) improved on the
predictive power of the combination of two (that did not include
ROI C already). Therefore, i would index how any single region
(ROI C) improved—on average—with the addition of any pos-
sible combination of two regions.
The specificmetrics to consider are the following. First, consider

that a given ROI (i) may consistently increase the predictive
power (which we measure using CV) of a classifier when combined
with other regions, indicating ROI (i) contains unique information.
This trait—unique combinatorial performance (UCP)—has been
used previously (11–13) and is defined in Eq. S1:

UCPi ≡

XN

j= 1
CVij −CVj

N
: [S1]

In contrast, it may be the case that whenever ROI (j) is added
to another ROI (i), the resulting predictive power of that clas-
sifier is improved, indicating that ROI (i) is missing information
relevant to predicting the presence or absence of neglect. This
trait—average combinatorial improvement (ACI)—has been
used previously (11) and is defined in Eq. S2:

ACIi ≡

XN

j= 1
CVij −CVi

N
: [S2]

Monte Carlo Permutation-Based Statistical Testing.Our hypothesis is
that the MVPA of brain injury can accurately predict spatial
neglect, whereas the null hypothesis is that we cannot reliably
distinguish this disorder. Our aim was to validate whether our
classification significantly outperforms chance performance. To
evaluate these tests, we used Monte Carlo permutation-based
statistical testing, where each of our analyses was permuted 1,000
times with randomized labels for neglect and control patients
(14). This process allowed us to construct null distributions that
were used to examine whether a given CV percentage (or change
in CV percentage) was significant at an α of P = 0.05 (i.e., test
value >95th percentile for a one-tailed test; test value <2.5
percentile or test value >97.5 percentile for a two-tailed test).
Except where noted, we emphasize that permutation-based test-
ing afforded us an opportunity to control for multiple compar-
isons in our ROI-based analyses, where hundreds of separate (but
nonindependent) analyses were conducted (14).
Similar methods were used for statistical inference on our

combinatoric analyses. These analyses quantify two pieces of
information regarding the interplay between a given ROI (or
feature) and other ROIs. First, we can examine how a specific
ROI changes the predictive power, on average, of other ROIs
when added to those ROIs (Eq. S1). Second, we can examine
how a particular ROI’s predictive power changes, on average,
when other ROIs are added to it (Eq. S2). This method provides
a mechanism to both assess if a particular ROI is consistently
able to improve predictions, and if an ROI can consistently be
missing predictive information. To assess the statistical signifi-
cance of these two types of changes, we computed, for each ROI,
a one-sample t test against a null hypothesis of an average CV
change of zero; the resulting P values were then Bonferroni
corrected for multiple comparisons.
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SI Results
In addition to our primary analyses on ROIs, we examined several
additional multivariate feature spaces. We also performed nu-
merous control analyses to quantify and control for the effects of
lesion size.

Additional Multivariate Feature Spaces. Two-dimensional feature
spaces. Given the importance of the lesion size, we first re-
peated all single voxel classifications with lesion size included as
its own feature, forming a 2D (i.e., multivariate) feature space for
each classification. Importantly, voxels in the superior temporal
gyrus (STG) were least affected by the inclusion of lesion size
information, suggesting that lesion size does not provide in-
dependent information when combined with the STG and ad-
jacent perisylvian regions (Fig. S1B). In contrast, we also found
several voxels whose performance improved as a result of in-
cluding of lesion size information, with a peak voxel falling within
visual cortex (MNI(x,y,z) = 14,−96,−10; CV = 82.28%, Pperm <
0.0001).
We next examined whether the best-performing voxel in this

analysis—a single voxel within visual cortex with lesion size in-
cluded as its own feature (CV = 82.28%)—outperformed the
two best univariate predictors: lesion size (CV = 78.14%) and
a voxel within STG (CV = 73.57%). Although our analysis in-
dicated that the gain over the lesion size was only trending toward
significance (CVincrease = 4.14, Pperm = 0.0779), the gain over the
best-performing voxel in STG was significant (CVincrease = 8.71,
Pperm < 0.0001), indicating a substantial increase in predictive
power with the addition of a single piece of information.
Whole-brain feature spaces. As single voxels are unlikely to carry
maximal predictive power for spatial neglect—even when in-
cluding additional information such as lesion size—our next
analyses examined multiple voxels across the whole brain si-
multaneously. We conducted this analysis with and without the
lesion size feature included in the model. We also compared
these results across two types of masks, which either included any
voxel damaged across the 140 patients or included only voxels
damaged in at least 5% of patients (Fig. 1B). Across all of these
tests, the CVs were significantly above chance, ranging from
81.71% to 83.00% (permutation tests, all P < 0.00001). We did
not observe any differences between these tests (permutation
tests, all P > 0.45).
We additionally tested whether these whole-brain classi-

fications were better than our two best univariate predictors:
lesion size and a single voxel with STG. We found that all four
whole-brain CVs were significantly higher than the voxel within
STG (CV increases: 9.14, 9.00, 8.42, 9.42; all P < 0.001). In a par-
allel comparison against lesion size, we failed to find evidence for
a significant gain in performance with the addition of other voxels
throughout the brain (all CV increases < 4.85; all P > 0.189).
Perisylvian ROIs with lesion size included as its own feature. For
a baseline comparison, we examined the results of each ROI
analysis performed independently and with lesion size included as
its own feature (Fig. S2). After adding lesion size as a feature,
several classifiers trained on particular regions improved per-
formance, although this gain was significant only in the inferior
frontal gyrus pars orbitalis. Inclusion of lesion size reduced

performance for both the supramarginal gyrus and insula, but
neither decrease was statistically significant.

Controlling for Lesion Size. Adjusting cross-validation rates using a
regression model. We reasoned that the performance of each
ROI (or ROI combination) could be influenced by the overall size
of a given ROI/combination and the difference in average damage
(within that ROI/combination) between neglect and control
patients. Consistent with a prior fMRI study controlling for ROI
size (12), we computed size- and lesion-adjusted CVs. These
adjustments were made using a regression model including ROI
size and difference in lesion damage between groups (Table S4).
After estimating the linear effect of ROI size on CV percentage,
we computed, for each permutation, the predicted performance of
each ROI and then subtracted that from the observed perfor-
mance. Thus, this procedure effectively regresses out the contri-
bution of between-group lesion size disparity and ROI size.
Using these adjusted CV percentages, we examined the ro-

bustness of our claim regarding the gain in performance when
adding brain regions to a classifier. We first compared the average
CV percentages of all single ROIs, combinations of two ROIs,
and combinations of three ROIs (Fig. S3A). As the underlying
distribution corresponding to changes in average adjusted CV
percentage is unknown, we constructed null distributions using
Monte Carlo permutation-based testing (see histograms in Fig.
S3 B and C), which entailed running all analyses 1,000 times with
permuted neglect and control labels. For each permutation, we
computed the change in average adjusted CV percentage for
both comparisons (i.e., 2 ROIs – 1 ROI; and 3 ROIs – 2 ROIs).
Our results showed that the average adjusted CV for combina-
tions of two ROIs was significantly higher compared with single
ROIs (CVincrease = 8.9, P < 0.001; Fig. S3B). Additionally, we
found that the average adjusted CV percentage was significantly
higher for combinations of three ROIs compared with combi-
nations of two ROIs (CVincrease = 4.9, P < 0.005; Fig. S3C).
Nonindependence across features. Larger lesions could be associated
with correlated patterns of damage in specific areas, producing
nonindependence across features. We note that the issue of
nonindependence—i.e., spatial correlation—does not generally
affect performance measures for the support vector machine
(SVM) classifiers used in our work (15–17). Nonindependence
would, however, affect the feature weights in a given classifica-
tion. Specifically, in a linear SVM, feature weights on correlated
features (i.e., regions that are affected together) would be shrunk
proportionally to the number of correlated voxels (18). Fur-
thermore, we note that SVMs do not have assumptions regarding
independence between features (unlike, for example, a naïve
Bayes classifier). Indeed, nearly all MVPA studies—particularly
those using searchlights—have highly correlated features (11, 19,
20). Thus, even though there is some correlation between our
features (Fig. S4A; mean: 0.16) and a scant amount of re-
dundancy (Fig. S4B; mean: 0.005%), classifiers constructed using
SVM algorithms should be expected to work well with lesion
data. Importantly, we also note that the majority of our features
(67%) were unique, and all ROIs were able to contribute unique
features (range: 11–100%) to each classification. Within the 12
perisylvian regions, we observed similar proportions of unique
features (mean: 67%; range: 23–84%).
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Fig. S1. Performance of individual voxels in predicting neglect. (A) Using both linear and nonlinear [radial basis function kernel (RBF)] SVM classifiers, we
found that voxels within the STG were significantly above chance performance (maximum CV = 75.00%, P < 0.05, Bonferroni correction across all voxels). To
reveal the spatial extent of these findings, the maps are thresholded at P < 0.001 uncorrected (axial slice at Z = 0 in MNI space). (B) We additionally examined
how each voxel changed when modeling lesion size explicitly as its own feature. We found several voxels within visual frontal cortices whose performance was
worse without lesion size modeled as its own feature. Importantly, perisylvian regions, including the STG, were least affected by the inclusion of lesion size,
indicating that the predictive power within these regions is not enhanced by lesion size. Axial slice numbers are provided in terms of MNI space.
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Fig. S2. Effects of including lesion size as a feature in single ROI classifications. For a baseline comparison, we also show the results of each ROI analysis
performed independently and with lesion size included as its own feature. The STG was the strongest predictor of neglect before adding the lesion size feature
(gray bars; solid color denotes statistical significance at P < 0.05 corrected). After including lesion size as its own feature, several regions improved perfor-
mance, although this gain was significant only in the inferior frontal gyrus pars orbitalis (IF Orb; green bars; solid color denotes statistical significance at P <
0.05 corrected). Inclusion of lesion size reduced performance for both the supramarginal gyrus and insula (red bars), but neither decrease was statistically
significant.

Fig. S3. Additional brain regions improve predictive power. (A) Modeling multiple brain regions is a key advance of our multivariate lesion-mapping ap-
proach; however, this benefit could be explained by ROI size and/or lesion size. We therefore computed ROI size– and lesion size–adjusted CVs based on
a regression model (Table S4). Here we show the average adjusted CV percentages across all single ROIs (n = 45), all combinations of two ROIs (n = 990), and all
combinations of three ROIs (n = 14,190). As the underlying distribution corresponding to changes in average adjusted CV percentage is unknown, we con-
structed null distributions (histograms shown) by running all analyses 1,000 times with permuted neglect and control labels. For each permutation, we
computed the change in average adjusted CV percentage for both comparisons (i.e., 2 ROIs – 1 ROI; and 3 ROIs – 2 ROIs). (B) We found that the average
adjusted CV increased when adding one ROI to another ROI (CVincrease = 8.9, P < 0.001; red line). (C) Additionally, we found that the average adjusted CV
increased when adding one ROI to two ROIs (CVincrease = 4.9, P < 0.005; red line). Data in histograms are partitioned into 50 equally spaced bins on the x-axis.
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Fig. S4. Feature correlations. (A) On average, we found that most features exhibited a small degree of correlation with other features. This finding highlights
the importance of using classifiers that do not assume independence between features. (B) We also examined whether any features were redundant with
other features. Although we found an exceedingly small amount of redundancy across our features, we note that these heavily redundant features were
outside of perisylvian regions. For clarity, the redundancy map here was thresholded using the 95th percentile of the distribution of feature redundancy. The
numerical range shown on the map is therefore 0.002 (0.2%) to 0.0056 (0.56%), which translates to 26–72 features.
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Table S1. ROIs

Name Size (full mask) Size (restricted mask) Tissue type

Precentral 481 434 GM
Frontal_Sup 588 14 GM
Frontal_Sup_Orb 105 * GM
Frontal_Mid 911 442 GM
Frontal_Mid_Orb 169 49 GM
Frontal_Inf_Oper 360 354 GM
Frontal_Inf_Tri 506 496 GM
Frontal_Inf_Orb 348 267 GM
Rolandic_Oper 347 347 GM
Supp_Motor_Area 196 * GM
Olfactory 14 3 GM
Frontal_Sup_Medial 270 * GM
Frontal_Mid_Orb 195 * GM
Rectus 74 * GM
Insula 485 484 GM
Cingulum_Ant 245 * GM
Cingulum_Mid 320 * GM
Cingulum_Post 18 * GM
Hippocampus 198 39 GM
ParaHippocampal 224 9 GM
Amygdala 55 41 GM
Calcarine 431 414 GM
Cuneus 314 138 GM
Lingual 626 432 GM
Occipital_Sup 301 172 GM
Occipital_Mid 486 460 GM
Occipital_Inf 247 224 GM
Fusiform 562 117 GM
Postcentral 566 554 GM
Parietal_Sup 311 161 GM
Parietal_Inf 261 246 GM
SupraMarginal 338 338 GM
Angular 370 363 GM
Precuneus 488 39 GM
Paracentral_Lobule 68 * GM
Caudate 228 171 GM
Putamen 266 238 GM
Pallidum 70 63 GM
Thalamus 184 26 GM
Heschl 92 92 GM
Temporal_Sup 818 818 GM
Temporal_Pole_Sup 281 224 GM
Temporal_Mid 1,061 1,061 GM
Temporal_Pole_Mid 313 197 GM
Temporal_Inf 790 399 GM
Acoustic_radiation 7 7 WM
Callosal_Body 662 333 WM
Cingulum 3 * WM
Corticospinal_tract 363 330 WM
Fornix 2 * WM
Inferior_occipito-frontal_fascicle 43 43 WM
Optic_radiation 416 402 WM
Superior_longitudinal_fascicle 55 55 WM
Superior_occipito-frontal_fascicle 13 13 WM
Uncinate_fascicle 9 9 WM
semiovale_WM 605 384 WM

From the Automated Anatomical Labeling (AAL) and Juelich atlases, we identified 56 ROIs to use in our
classifications. The number of voxels in each ROI is presented for both the full mask (i.e., union of all lesions) and
the restricted mask (i.e., damaged in at least 5% of patients). Regions in bold (n = 12) represent critical
perisylvian regions that have previously been associated with spatial neglect in the literature. Ant, anterior;
GM, gray matter; Inf, inferior; Mid, middle; Oper, operculum; Orb, orbital; Post, posterior; Sup, superior; Tri,
triangularis; WM, white matter; *, regions that did not exist after restricting the mask.
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Table S2. Single ROIs performing significantly above chance

ROI CV% Corrected P value

Corticospinal_tract 75.85 <0.0001
Semiovale_WM 75.14 <0.0001
Temporal_Sup 73.14 <0.0001
Heschl 72.00 <0.0001
Temporal_Pole_Sup 71.28 <0.0001
Postcentral 70.71 <0.0001
Superior_longitudinal_fascicle 70.57 <0.0001
Rolandic_Oper 69.85 <0.0001
Temporal_Mid 69.57 <0.0001
Inferior_occipito-frontal_fascicle 68.00 <0.001
Optic_radiation 68.00 <0.001
Callosal_Body 67.57 <0.001
Insula 67.42 <0.001
Precentral 67.28 <0.01
Putamen 66.57 <0.01
Temporal_Pole_Mid 64.85 <0.05
Caudate 64.71 <0.05
SupraMarginal 64.14 <0.05
Frontal_Inf_Oper 63.71 <0.05
Superior_occipito-frontal_fascicle 63.42 <0.05

We found several regions whose CV rates were significantly above
chance, even after correcting for multiple comparisons across all 45 regions
of interest. Gray matter terminology follows the AAL atlas. White matter
terminology follows Juelich atlas. Brain matter not contained in either atlas
is identified as semiovale white matter (semiovale_WM). Ant, anterior; Inf,
inferior; Mid, middle; Oper, operculum; Orb, orbital; Post, posterior; Sup,
superior; Tri, triangularis.

Table S3. Single ROIs whose performance changes when including lesion size as its own feature

ROI CV%: ROI CV%: ROI + lesion size feature Increase in CV% Corrected P value

Frontal_Mid_Orb 45.14 76.14 31.00 <0.01
Calcarine 50.00 78.71 28.71 <0.01
Lingual 51.00 78.57 27.57 <0.01
ParaHippocampal 52.71 79.57 26.85 <0.01
Occipital_Inf 50.85 76.28 25.42 <0.01
Thalamus 55.28 79.42 24.14 <0.01
Parietal_Sup 54.42 78.28 23.85 <0.01
Frontal_Mid 54.14 77.42 23.28 <0.05
Olfactory 55.71 79.00 23.28 <0.05
Cuneus 56.00 78.85 22.85 <0.05
Occipital_Sup 56.28 78.85 22.57 <0.05
Precuneus 52.85 75.14 22.28 <0.05
Uncinate_fascicle 56.00 77.14 21.14 <0.05
Frontal_Sup 55.57 76.57 21.00 <0.05
Fusiform 57.71 78.00 20.28 <0.05
Frontal_Inf_Orb 52.14 72.28 20.14 <0.05

We identified several ROIs whose performance changed significantly when including lesion size as its own
feature. These results therefore highlight regions that depend on information regarding lesion size. Gray matter
terminology follows the AAL atlas (1). White matter terminology follows Juelich atlas (2). Brain matter not
contained in either atlas is identified as semiovale white matter (semiovale_WM). Ant, anterior; Inf, inferior;
Mid, middle; Oper, operculum; Orb, orbital; Post, posterior; Sup, superior; Tri, triangularis.
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Table S4. Effects of ROI size and lesion size

ROI set Lesion size effect ROI size effect Constant Adjusted R2

Without including lesion size as its own feature
Single ROI β = 0.0101 β = 77.66 52.83 0.34

t(42) = 2.43, P < 0.05 t(42) = 3.78, P < 0.01
Two ROIs β = 0.0052 β = 46.91 61.83 0.19

t(987) = 9.13, P < 0.001 t(987) = 10.54, P < 0.001
Three ROIs β = 0.0032 β = 26.81 66.77 0.12

t(14,987) = 31.743, P < 0.001 t(14,987) = 25.04, P < 0.001
With including lesion size as its own feature
Single ROI β = −0.0096 β = −12.06 76.83 0.21*

t(43) = −3.34, P < 0.01 t(43) = -0.86, NS
Two ROIs β = −0.0023 β = 13.52 71.74 0.04*

t(1,032) = −5.59, P < 0.001 t(1,032) = 4.22, P < 0.001
Three ROIs β = 0.0011 β = 18.71 69.93 0.05*

t(15,177) = 13.86, P < 0.001 t(15,177) = 21.91, P < 0.001

In our ROI-based analyses, we examined the relationship between performance (CV%) of each ROI (or ROI
combination) and two variables: ROI size and absolute difference lesion size (i.e., proportion of ROI or ROI
combination damaged) between neglect and control patients. Before including lesion size as its own feature, we
observed, for each ROI set, a strong positive relationship between ROI performance and both lesion and ROI size.
Specifically, as ROI size and the disparity in ROI damage between neglect and control patients increased, CV%
increased. Using these estimates, we regressed out the influence of ROI size and lesion size for each ROI set where
lesion size was not modeled as its own feature. Notably, a parallel relationship was not observed in the ROI sets
where lesion size was included as its own feature, suggesting that the inclusion of lesion size as a feature partially
accounts for its influence on ROI performance. Consistent with this idea, we also note that the adjusted R2 for
each of these regressions was significantly lower (*Pperm < 0.001) than the regressions where lesion size was not
included as its own feature. NS, not significant.
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