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1 Proofs for the Main PIP Properties

In this section, we prove Theorem 1 and Proposition 2. We begin by stating
and proving two lemmas.

Lemma 1 Let U ∼ Unif(0, t) and W ∼ Exp(µ) be independent for fixed t, µ >
0. Then

P(W + U > t) =
1− exp(−tµ)

tµ
.

Proof: By conditioning:

P(W + U > t) = E
[
P(W + U > t|U)

]
=

∫ t

0

exp(−xµ)

t
dx

=
1− exp(−tµ)

tµ
.

Lemma 2 Let τ0 denote a degenerate topology consisting of a root Ω connected
to a single leaf v0 by an edge of length t. Let Hi be a homology path as defined
in the main paper, with τ = τ0. For all x ∈ τ , define I(x) = {i : Hi(x) 6= ε, 1 ≤
i ≤ I} and:

N = |I(Ω)|
N ′ = |I(v0)|.

Then N ∼ Poi(λ/µ) implies N ′ ∼ Poi(λ/µ).
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Proof: To prove the result, we decompose N and N ′ as follows (see Fig-
ure S.1):

N1 = |I(Ω)\I(v0)|
N2 = |I(Ω) ∩ I(v0)|
N3 = |I(v0)\I(Ω)|
N4 = |I\I(Ω)\I(v0)|
N = N1 +N2

N ′ = N2 +N3.

By the Coloring Theorem [1],

N2 ∼ Poi (ν({Ω})P(W > t)) ,

where W is a rate µ exponential random variable, and ν is as in the condition
of Theorem 1. Therefore N2 ∼ Poi(λ exp(−tµ)/µ). Similarly,

N3 ∼ Poi (ν(τ\{Ω})P(W + U > t)) ,

where U ∼ Unif(0, t), and therefore from Lemma 1, N3 ∼ Poi(λ(1−exp(−tµ))/µ).
It follows that:

N ′ = N2 +N3

∼ Poi

(
λ

µ
e−µ +

λ

µ

(
1− e−µ

))
= Poi

(
λ

µ

)
,

which concludes the proof of the lemma.
We can now prove Theorem 1:

Proof: In order to establish the equivalence, it is enough to show that for all
edges e = (v → v′) in the tree, the following two properties hold:

1. The distribution of the string length at the ancestral endpoint, |Y (v)|, is
identical in the local and global descriptions: a Poisson distribution with
rate λ/µ.

2. The distribution of the number and locations of mutations that fall on
e\{v, v′} are also identical in the local and global descriptions.

We will enumerate the edges in the tree in preorder, using induction to establish
these two hypotheses on this list of edges.

In the base case, hypothesis 1 is satisfied by construction: the local descrip-
tion is initialized with a Poi(λ/µ)-distributed number of characters, and in the
global description, the intensity measure ν of the Poisson process X assigns a
point mass λ/µ to v = Ω.
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Figure S.1: Notation used in the appendix. The horizontal lines denote the
times where each character is present in the sequence. The vertical line on the
left denotes the sequence at Ω, and the vertical line on the right, the sequence
at v0. The sites are decomposed depending on whether they are present at each
of two points Ω, v0 in τ0.

To establish hypothesis 1 in the inductive case, let e′ = (v′′ → v) denote the
parent edge. By hypothesis 1 on e′, |Y (v′′)| ∼ Poi(λ/µ), therefore by Lemma 2
and hypothesis 2 on e′, hypothesis 1 is satisfied on e as well.

To establish hypothesis 2, it is enough to show that for all x ∈ e\{v, v′} the
waiting time for each type of mutation given Y (x) is exponential, with rates:

(a) λ for insertion,

(b) µ · |Y (x)| for deletion, and

(c)
∑
σ 6=ε θσ,σ′ |Y (x)|σ for substitutions to σ′ 6= ε, where |s|σ denotes the num-

ber of characters of type σ ∈ Σ in the string s ∈ Σ∗.

Item (a) follows from the Poisson Interval Theorem [1]. Items (b) and (c)
follow from the standard Doob-Gillespie characterization of CTMCs: if Xt is
a CTMC with rate matrix Q = (qi,j) and Zi,j are independent exponential
random variables with rate qi,j , then

(∆, J)|(X0 = i)
d
= (min

j 6=i
Zi,j , argmin

j 6=i
Zi,j),

where ∆ = inf{t : Xt 6= i}, J = X∆.
We now turn to Proposition 2 and establish reversibility.

Proof: Let h(n1, n2, n3, n4) = P(Ni = ni, i ∈ {1, 2, 3, 4}). Using reversibility
of θ, it is enough to show that h is invariant under the permutation (1 3); i.e.,
h(n1, n2, n3, n4) = h(n3, n2, n1, n4).
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We have that h(n1, n2, n3, n4) is equal to:

P
(
Ni = ni,

∑
i

Ni =
∑
i

ni, N1 +N2 = n1 + n2, N3 +N4 = n3 + n4

)
= P

(∑
i

Ni =
∑
i

ni

)
×

P
(
N1 +N2 = n1 + n2, N3 +N4 = n3 + n4

∣∣∣∑
i

Ni =
∑
i

ni

)
×

P(N1 = n1, N2 = n2|N1 +N2 = n1 + n2)×
P(N3 = n3, N4 = n4|N3 +N4 = n3 + n4)

= f1(n1 + n2 + n3 + n4)×(
1/µ

1/µ+ t

)n1+n2
(

t

1/µ+ t

)n3+n4

×(
1− e−µt

)n1 f2(n2)×(
1− e−µt

tµ

)n3

f3(n4),

where only the dependencies of the functions f1, f2 and f3 is important in this
argument, not their exact form. By inspection, it is clear that h is invariant
under the permutation (1 3).

2 Proofs for the Likelihood Computation

First, we show how the function ϕ, defined in the main paper, simplifies the
computation of pτ (m):

pτ (m) = E
[
P(M = m||X|)

]
=

∞∑
n=|m|

P(|X| = n) ·
(
n

|m|

)
· (p(c∅))n−|m|

∏
c∈m

p(c)

=
e‖ν‖

∏
c∈m p(c)

|m|!(p(c∅))|m|
∞∑

n=|m|

(‖ν‖p(c∅))
n

(n− |m|)!

=
e‖ν‖ (‖ν‖p(c∅))

|m|∏
c∈m p(c)

|m|!(p(c∅))|m|
∞∑
k=0

(‖ν‖p(c∅))
k

k!

=
e‖ν‖ (‖ν‖p(c∅))

|m|∏
c∈m p(c)

|m|!(p(c∅))|m|
exp (‖ν‖p(c∅))

= ϕ(p(c∅), |m|)
∏
c∈m

p(c).

Next, we show how to compute fv = P(C = c|V = v) for all v ∈ V . The
recursions for fv are similar to those found in stochastic Dollo models [2]. Note
first that fv can be zero for some vertices. To see where and why, consider the
subset of leaves S that that have an extant nucleotide in the current column
c, S = {v ∈ L : H(v) 6= ε}. Then fv will be non-zero only for the vertices
ancestral to all the leaves in S. Let us call this set of vertices A (see Figure S.2).
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Figure S.2: Given a set S of leaves v with H(v) 6= ε, we define the set A of
vertices with nonzero modified Felsenstein peeling weight to be those ancestral
to the leaves in S. In this example, A contains three vertices.

To compute fv on the remaining vertices, we introduce an intermediate
variable, f̃v = P(C = c|V = v,H(v) 6= ε). This variable can be computed using
the standard Felsenstein peeling recursion (dynamic programming) as follows:

f̃v(σ) =

{
1(c(v) = σ) if v ∈ L∑
σ′∈Σε

exp(b(v)Q)σ,σ′
∏
w∈child(v) f̃w(σ

′) o.w.
(1)

f̃v =
∑
σ∈Σ

πσ f̃v(σ). (2)

From Lemma 1, we have an expression for the survival probability at v given
an insertion on the edge (pa(v)→ v):

β(v) = P(H(v) 6= ε|V = v)

=
1

b(v)

1

µ

(
1− e−µb(v)

)
. (3)

Finally, for c 6= c∅, we have:

fv = P(C = c|V = v)

= E[P(C = c|V = v,H(v))]

=

{
f̃v if v = Ω

1[v ∈ A]β(v)f̃v o.w.,
(4)

and for c = c∅:

fv =

{
f̃v if v = Ω

1 + β(v)(f̃v − 1) o.w.
(5)
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3 Proposal distributions

To perform full joint inference over trees and alignments using Markov chain
Monte Carlo, several objects need to be resampled: the tree topology, the branch
lengths, the MSA, and the parameters.

For trees and branch lengths, we use standard proposal mechanisms [3]. Our
MSA proposal is inspired by the proposal of [4], avoiding the mixing problems
of auxiliary variables [5, 6, 7]. Our proposal distribution consists of two steps.
First, we partition the leaves into two sets A,B. Given a current MSA m0,
the support of the proposal is the set S of MSAs m satisfying the following
constraints:

1. If e has both endpoints in A (or both in B), then e ∈ m⇐⇒ e ∈ m0.

2. If e, e′ have both endpoints in A (or both in B), then e ≺m e′ ⇐⇒ e ≺m0

e′.

The notation ≺m is based on the concept of posets over the columns (and edges)
of an MSA [8].

We propose an element m∗ ∈ S with probability proportional to
∏
c∈m∗ p(c).

The set S has exponential size, but can be sampled efficiently using standard
pairwise alignment dynamic programming. A Metropolis-Hastings ratio is then
computed to correct for ϕ. Note that the proposal induces an irreducible chain:
one possible outcome of the move is to remove all links between two groups of
sequences. The chain can therefore move to the empty MSA and then construct
any MSA incrementally.

For the parameters, we used multiplicative proposals in the (λ, µ) parame-
terization [3].

4 Computational Aspects

In this section, we provide a brief discussion of the role that the marginal like-
lihood plays in both frequentist and Bayesian inference methods.

4.1 Maximum likelihood

In the case of maximum likelihood, the overall inference problem involves opti-
mizing over the marginal likelihood:

sup
τ∈T (L ),m∈M(y)

log pτ (m),

where τ ranges over phylogenies on the leaves L , and m ranges over the align-
ments consistent with the observed sequences y. This optimization problem
can be approached using simulated annealing, where a candidate phylogeny
and MSA pair (τ ′,m′) is proposed at each step i, and is accepted (mean-
ing that it replaces the previous candidate (τ,m)) according to a sequence of
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acceptance functions f (i)(p, p′) depending only on the marginal probabilities
p = pτ (m), p′ = pτ ′(m

′). Provided limi→∞ f (i)(p, p′) = 1[p′ > p] sufficiently
slowly, this algorithm converges to the maximum likelihood phylogeny and MSA
[9].

4.2 Bayes estimators

In order to define a Bayes estimator, one typically specifies a decision space D
(for example the space of MSAs, or the space of multifurcating tree topologies,
or both), a projection into this space, (τ,m) 7→ ρ(τ,m) ∈ D, and a loss function
l : D → [0,∞) on D (for example, for tree topologies, the symmetric clade
difference, or partition metric [10]; and for alignments, 1− the edge recall or
Sum-of-Pairs (SP) score [11]).

Given these objects, the optimal decision in the Bayesian framework (also
known as the consensus tree or alignment), is obtained by minimizing over
d ∈ D the risk E[l(d, ρ(T,M))|Y]. This expectation is intractable, so it is usually
approximated with the empirical distribution of the output (τ (i),m(i)) of an
Markov chain Monte Carlo (MCMC) algorithm. Producing MCMC samples
boils down to computing acceptance ratios of the form:

p(τ ′)pτ ′(m
′)

p(τ)pτ (m)
·
q(τ ′,m′)(τ,m)

q(τ,m)(τ ′,m′)
,

for some proposal having density q with respect to a shared reference measure on
T (L )×M(y). We thus see that for both maximum likelihood and joint Bayesian
inference of the MSA and phylogeny the key problem is that of computing the
marginal likelihood pτ (m).

5 Pseudocode and Example

In this section, we summarize the likelihood computation. We also give a con-
crete numerical example to illustrate the calculation.

1. Inputs:

(a) PIP parameter values (λ, µ), substitution matrix θ over Σ.
Example: (λ, µ) = (2.0, 1.0),Σ = {a}

(b) Rooted phylogenetic tree τ
Example: τ = ((v2 : 1.0, v3 : 1.0)v0 : 1.0, v4 : 2.0)v1;

(c) Multiple sequence alignment m
Example: m =

v_2|-a

v_3|aa

v_4|a-

2. Computing modified Felsenstein recursion:
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(a) For each site, compute f̃v(σ) in post-order using Equation (1), and
from each f̃v(σ), compute f̃v using Equation (2)
Example:
for site 1, (f̃v2 , f̃v3 , f̃v0 , f̃v4 , f̃v1) = (0.0, 1.0, 0.23, 1.0, 0.012);
for site 2, (f̃v2 , f̃v3 , f̃v0 , f̃v4 , f̃v1) = (1.0, 1.0, 0.14, 0.0, 0.043);

(b) Do the same for an artificial site or column c∅ where all leaves have
a gap
Example:
for site 3, (f̃v2 , f̃v3 , f̃v0 , f̃v4 , f̃v1) = (0.0, 0.0, 0.40, 0.0, 0.67);

3. For each node v in the tree, compute the survival probability β(v) using
Equation (3) (setting it to 1 at the root for convenience)
Example:
(β(v2), β(v3), β(v0), β(v4), β(v1)) = (0.63, 0.63, 0.63, 0.43, 1.0)

4. For each site, compute the set of nodes A ancestral to all extant characters,
as described in the caption of Figure S.2
Example:
for site 1, A = {v1}
for site 2, A = {v0, v1}

5. Computing fv:

(a) For each site, compute fv using Equation (4)
Example:
for site 1, (fv2 , fv3 , fv0 , fv4 , fv1) = (0.0, 0.0, 0.0, 0.0, 0.012);
for site 2, (fv2 , fv3 , fv0 , fv4 , fv1) = (0.0, 0.0, 0.086, 0.0, 0.043);

(b) For c∅, use Equation (5)
Example:
for site 3, (fv2 , fv3 , fv0 , fv4 , fv1) = (0.37, 0.37, 0.62, 0.57, 0.67);

6. For each node v in the tree, compute ιv = P(V = v) as shown in Section 3
of the main paper
Example:
(ι(v2), ι(v3), ι(v0), ι(v4), ι(v1)) = (0.17, 0.17, 0.17, 0.33, 0.17)

7. Compute pτ (m) from the ιv’s, fv’s as shown in Section 3 of the main paper
Example: log pτ (m) = −11
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