Supporting Information

Supporting Information Corrected January 23, 2013 Zhu et al. 10.1073/pnas.1218509110

SI Materials and Methods

SANG SANG

Cloning, expression and purification of the H17 HA proteins. The ectodomain (residues 30-527, equivalent to 11-329 of HA1 and 1-174 of HA2 in H3 numbering) of HA from bat influenza virus GU10-060 (H17N10, GenBank accession number CY103892) was expressed in a baculovirus expression system. The ectodomain coding region was inserted into a baculovirus transfer vector, pFastbacHT-A (Invitrogen) with an N-terminal gp67 signal peptide, a C-terminal thrombin cleavage site, a foldon trimerization sequence and a His₆-tag, and expressed as described previously (1). The HA HA2-A47G mutation was introduced by site-directed mutagenesis of the GU10-060 ectodomain plasmid. Briefly, the constructed plasmids were used to transform DH10bac competent bacterial cells by site-specific transposition (Tn-7 mediated) to form a recombinant bacmid with beta-galactosidase blue-white receptor selection. The purified recombinant bacmids were used to transfect Sf9 insect cells for overexpression. The HA proteins were produced by infecting suspension cultures of Hi5 cells with recombinant baculovirus at an MOI of 5-10 and incubated at 28°C shaking at 110 RPM. After 72 hours, Hi5 cells were removed by centrifugation and supernatants containing secreted, soluble HAs were concentrated and buffer-exchanged into 20 mM Tris pH 8.0, 300 mM NaCl, and further purified by metal affinity chromatography using Ni-nitrilotriacetic acid (NTA) resin (Qiagen) to be used for glycan microarray evaluation. For crystal structure determination, the HA mutant was digested with thrombin to remove the foldon domain and His₆-tag. The cleaved trimeric H17 HA mutant was

purified further by size exclusion chromatography on a Hiload 16/90 Superdex 200 column (GE healthcare) in 20 mM Tris pH 8.0, 100 mM NaCl and 0.02% (vol/vol) NaN₃.

SANG SANG

HA glycan microarray receptor binding assay. Protocols for microarray HA analysis and the glycan list (Fig. S2) were as previously described (2, 3). Briefly, for analysis with recombinant HA, HA-antibody complexes were prepared by mixing 15 µg of recombinant HA, mouse anti-His Alexa Fluor 488 (Qiagen) and goat anti-mouse IgG Alexa Fluor 488 (Invitrogen) in a molar ratio of 4:2:1, respectively, in 20 mM Tris pH 8.0, 100 mM NaCl, and 0.02% (vol/vol) NaN₃ buffer. These prepared complexes were allowed to form for 15 min on ice, and 100 µL of the complex mixture was then added directly to the surface of the array and allowed to incubate in a humidified chamber, protected from the light, for 1 hour at room temperature (~ 22 °C). Following the initial incubation, HA-antibody solution was removed by pipetting the solution and washing 3 times with 100 μ L 1x PBS + 0.05% Tween, pH 7.4, and, subsequently, by dipping 3 times in 1x PBS and then 3 times in distilled H_2O . Washed slides were dried by centrifugation and scanned on a ProScanArray Express HT (PerkinElmer) confocal slide scanner for AlexaFluor488 setting. Image data were stored as a TIFF image and signal data was collected using Imagene (BioDiscovery) imaging software. The signal data were processed to determine averaged (mean signal minus mean background) values of 4 replicate spots on the array for each unique printed glycan.

Crystal structure determination of the H17 HA mutant. Crystallization experiments were set up using the sitting drop vapor diffusion method. The GU10-060 HA mutant at 10 mg/ml in 20 mM Tris pH 8.0, 100 mM NaCl and 0.02% (vol/vol) NaN₃ was crystallized in 0.1 M sodium citrate, pH 5.5, 1 M LiCl₂, and 15% (wt/vol) polyethylene glycol (PEG) 6000. The GU10-060 HA crystals were flashed-cooled at 100 K using 20 % ethylene glycol (vol/vol) as a

2

cryoprotectant. Diffraction data were collected at beamline 08ID-1 at the Canadian Light Source (CLS) (Table 1). Data were integrated and scaled with HKL2000 (4). Data collection statistics are outlined in Table 1.

SANG SANG

The GU10-060 HA structure was determined by molecular replacement using the program Phaser (5). The HA structure was determined using the A/California/04/2009 (H1N1) H1 HA structure (PDB ID code 3UBQ). Initial rigid body refinement was performed in Refmac5 (6), and the Refmac-restrained refinement including non-crystallographic symmetry restraints and jelly-body refinement were carried out. Between rounds of refinements, model building was carried out with the program Coot (7). Final statistics for both structures are represented in Table 1. The quality of the structures was analyzed using the JCSG validation suite (www.jcsg.org). All figures were generated with Bobscript (8) except for Figs. 4, S1 and S2, as well as Figs. 3 and S3 which were generated with PyMol (www.pymol.org).

Protease susceptibility assay. Protocols for trypsin susceptibility analysis were as previously described (9). For GU10-060 HA2-47G HA, each reaction contained ~5.0 μg of the HA0 and 1% (wt/vol) dodecylmaltoside (to prevent aggregation of the post-fusion HA). 100 mM sodium acetate buffer used for pH 4.9 and pH 4.0, and 20 mM Tris buffer was used for pH 8.0. Reactions were thoroughly mixed, centrifuged at >12,000 g for 30 seconds and allowed to incubate at 37 °C for one hour. After incubation, reactions were equilibrated to room temperature (~22 °C) and the pH was neutralized by addition of 200 mM Tris, pH 8.4. Trypsin was added to all samples except controls, at a final ratio of 1:10 (wt/wt) of trypsin to the HA. Samples were digested overnight (~16 hours) at 22°C. Reactions were quenched by addition of reducing SDS buffer and were boiled for ~2 min. Samples were then analyzed by SDS-PAGE.

3

Group	Subtype	Strain name	PDB code	HA1	HA2	Monomer	RBS subdomain ^b
1	H1	A/California/04/2009	3UBQ	$2.2^{\rm c} (300)^{\rm d}$	0.9 (157)	2.1 (450)	1.3 (145)
1	H2	A/Japan/ 305/1957	3KU6	2.1 (304)	1.2 (157)	2.2 (455)	1.6 (145)
1	Н5	A/Vietnam/1203/2004	2FK0	2.2 (293)	1.0 (164)	2.0 (449)	1.3 (146)
1	H9	A/swine/Hong Kong/9/98	1JSD	1.9 (298)	1.2 (144)	1.8 (444)	1.5 (136)
2	H3	A/HongKong/19/1968	2HMG	2.3 (293)	1.4 (161)	2.4 (452)	1.5 (141)
2	H7	A/turkey/Italy/8458/2002	1TI8	2.3 (290)	1.4 (157)	2.5 (432)	1.4 (138)
2	H14	A/mallard/Astrakhan/263/1982	3EYJ	2.4 (298)	1.4 (160)	2.4 (454)	1.7 (140)
	B/HA	B/Hong Kong/8/73	3BT6	3.0 (257)	2.8 (140)	4.0 (390)	2.5 (141)

Table S1. Comparison of GU10-060 HA2-G47 HA with other influenza virus HAs^a.

^a To analyze differences in the overall structure, rmsd values (Å) of C_{α} atoms were calculated between domains of different HAs superimposed by structural alignment onto the equivalent domain of GU10-060 HA2-G47 HA.

^b Receptor binding subdomain (RBS subdomain) of HA, corresponding to residues 117-265 of HA1 (H3 numbering).

^c rmsd values for the pairwise comparison of C_{α} positions (Å).

AS PNAS PNAS

^dNumbers in parentheses represent number of residues that were included in the comparisons.

Table S2. Sequence comparison after sequence and structural alignment of HA1 (top) and HA2 (bottom) of GU10-060 HA with GU09-164 HA or other HAs^a.

PNAS PNAS

	·	1	10	20	30	40	50 54
GUI0-060[H17N10]		LLNPYTFVL	GDRICIC	YQANQNNQ'	VNTLLEQNVP	/-TGAQEILET	'NHNGKLCSL
G009-164[H1/N10]	MELIVLLI	LLNPYTFVL	GDRICIC	JYUANQNNQ'	TVNTLLEQNVP	/-TGAQEILET	NHNGKLCSL
CAU4[HIN1]	MEADIN		ADTLCIC	JIHANNSTD	VDTVLEKNVT	/ THSVNLLED	CHNGKLCKL
President		LLCAPAAIN	NDNSTATICI		VETTERNVI		SHNGALCAL
D/UK72		CM		TTCCNCDU			DOSIGNICNN K
B/HK/3	MAIIVLLMVV1		PO	00	100	110 110	120
GU10-060[H17N10]		CWLLCNDNC	OU DNLLEAFFWS	90 ZTKTNE <mark>N</mark> adi			CVONET-KV
GU09-164[H17N10]	NGVPPLDLOSCTLA	GWILGNPNC	DSLLEASEWS	TKINESAPI	DLCEPG-NF-I	NLODILLEMS	GVONFT-KV
CA04[H1N1]	RGVAPLHIGKCNTA	GWILGNPEC	ESI.STASSWS	TVETPSSDI	IGTCYPG-DF-	INTEELBEOLS	SVSSFE-BF
SC18 [H1N1]	KGTAPLOLGKCNTA	GWLLGNPEC	DLLLTASSWS	TVETSNSEN	IGTC <mark>Y</mark> PG-DF-	DYEELREOLS	SVSSFE-KF
HK68[H3N2]	P-HRILDGTDCTL	DALLGDPHC	DVFON-ETWDI	FVERSKAFS	N-CYPY-DV-1	PDYASLRSLVA	SSGTLE-FT
в/нк73	G-TOTRGKLCPNCLNCTDI	DVALGRPKC	MG-TIPSAKAS	SILHEVKPV	SGCEPIMHDR	KIROLPNLLR	GYENIRLSA
1:	22 130	140	150	160	170	180	189
GU10-060[H17N10]	KLFN-POSMTGVTTN-N	VDOTCPFE-	GKPSFYRNLN	IOGNSG	P-FNIEIKNP	CSNPLLLLW	GI <mark>H</mark> NTKDAA
GU09-164[H17N10]	KLFN-POSMTGVTTN-N	VDOTCPFE-	GKPSFYRNLN	IOGNSGI	P-FNIEIKNP	SNPLLLLW	GI <mark>H</mark> NTKDAA
CA04[H1N1]	EIFPKTSSWPNHDSNK	VTAACPHA-	GAKSFYKNLI	LVKKGNSYI	-LSKSYIND	GKEVLVLW	GI <mark>H</mark> HPSTSA
SC18 [H1N1]	EIFPKTSSWPNHETTKC	VTAACSYA-	GASSFYRNLL	LTKKGSSYI	-LSKSYVNN	GKEVLVLW	GVHHPPTGT
HK68[H3N2]	TEGFTWTGVTON-	GSNACKRG-	PGNGFFSRLN	LTKSGSTY	V-LNVTMPNNI	NFDKLYIW	GV <mark>H</mark> HPSTNO
в/нк73	RNVTNAETAPGGPYIVG	TSGSCPNVT	NGNGFFATMA	AVPKNKTAT	NPLTVEVPYIC	TKGEDQITVW	IGF <mark>H</mark> SD-DET
1	90 200	210	220	230	240	250	260
GU10-060[H17N10]	QQRNLYGNDY-SYTIFNFG	EKSEEFRPD	IGQ-RDE	K <mark>A-H</mark> QDRII	YYWGSLPAQS	LRIESTGNLI	APEYGFYYK
GU09-164[H17N10]	QRNLYGNDY-SYTIFNFG	EKSEEFRP <mark>E</mark>	IGQ-RDE	7K <mark>A-HQD</mark> RII	YYWGSLPAQS	LRIESTGNLI	APEYGFYYK
CA04[H1N1]	DOOSLYONAD-TYVFVGSS	RYSKKFKPE	IAI-RPKV		YYWTLVEPGDI	XITFEATGNLV	VPRYAFAME
SC18 [H1N1]	DQQSLYQNAD-AYVSVGSS	KYNRRFTPE	IAA-RPKV	7R <mark>D</mark> - <mark>Q</mark> A <mark>G</mark> RMI	YYWTLLEPGD	TITFEATGNLI	APWYAFALN
HK68[H3N2]	EQTSLYVQES-GRVTVSTF	RSQQSIIPN	IGS-RPWV	7R <mark>G-Q</mark> S <mark>S</mark> RIS	SIYWTIVKPGDV	/LVINSNGNLI	APRGYFKMR
в/нк73	QMVK <mark>LY</mark> GDSKPQKFTSSAN	IGVTTHYVSQ	IGGFPNQAEDI	EG <mark>L</mark> P <mark>Q</mark> S <mark>G</mark> RIN	VDYMVQKPGK	GTIAYQRGVL	LPQKVWCAS
2	62 270 2	280	290	300	310	320	329
GU10-060[H17N10]	RKEGKGGLMKSKLPISDCS	TKCQTP-LG	ALNSTL-PFQ1	VHQQTIGNO	PKYVKATSLMI	LATGLRNNP	QMEGR
GU09-164[H17N10]	RKEGKGGLMKSKLPISDCS	TKCQTP-LG	ALNSTL-PFQ1	VHQQTIGNO	PKYVKATSLMI	LATGLRNNP	QMEGR
CA04[H1N1]	RN-AGSGIIISDTPVHDCN	ITTCQTP-KG	AINTSL-PFQ1	VIHPITIGKO	PKYVKSTKLRI	LATGLRNIP	SIQSR
SC18 [H1N1]	RG-SGSGIITSDAPVHDCN	ITKCQTP-HG	AINSSL-PFQ1	VIHPVTIGEC	PKYVRSTKLR	ATGLRNIP	SIQSR
HK68[H3N2]	TG-K-SSIMSSDAPIDTCI	SECITP-NG	SIPNDK-PFQ1	WNKITYGAG	PKYVKQNTLKI	LATGMRNVP	EKQTR
в/нк73	GR-S-KVIKGSLPLIG-EA	D-CLHEKYG	GLNKSKPYYT	GEHAKAIGNO	CPIWVKTPLI	LANGTKYRPP	AKLLKER
	<u>1 10 2</u>	20	30 4	40	50 0	50 7	0 78
GU10-060[H17N10]	GLFGAIAGFIEGGWQGMID	<mark>GWYGYH</mark> HEN	QEGSGYAADKI	EATQKAVDAI	TNKVNSIIDK	INSQFESNIKE	FNRLELRIQ
GU09-164[H17N10]	GLFGAIAGFIEGGWQGMID	GWYGYHHEN	QEGSGYAADKI	EATQKAVDAI	TNKVNSIIDK	INSQFESNIKE	FNRLELRIQ
CA04[H1N1]	GLFGAIAGFIEGGWTGMVD	GWYGYHHQN	EQGSGYAADLI	KSTQNAIDEI	TNKVNSVIEK	ÍNTQFTAVGKE	FNHLEKRIE
SC18 [H1N1]	GLFGAIAGFIEGGWTGMID	GWYGYHHQN	EQGSGYAADQI	KSTQNAIDGI	TNKVNSVIEKN	INTQFTAVGKE	FNNLERRIE
HK68[H3N2]	GLFGAIAGFIENGWEGMID	GWYGFRHQN	SEGTGQAADLI	KSTQAAIDQI	INGKLNRVIEK	NEKFHQIEKE	FSEVEGRIQ
в/нк73	GFFGAIAGFLEGGWEGMIA	GWHGYTSHG	AHGVAVAADLI	KSTQEAINKI	TKNLNSLSEL	VKNLQRLSGA	MDELHNEIL
	80 90	100	110	120	130	140	150 156
GU10-060[H17N10]	HLSDRVDDALLDIWSYNTE	LLVLLENER	TLDFHDANVKI	NLFEKVKAQI	KDNAIDEGNG	FLLLHKCNNS	CMDDIKNGT
GU09-164[H17N10]	HLSDRVDDALLDIWSYNTE	LLVLLENER	TLDFHDANVK	NLFEKVKAQI	KDNAIDEGNG	FLLLHKCNNS	CMDDIKNGT
CA04[H1N1]	NLNKKVDDGFLDIWTYNAE	LLVLLENER	TLDYHDSNVK	NLYEKVRSQI	LKNNAKEIGNGO	FEFYHKCDNT	CMESVKNGT
SC18 [H1N1]	NLNKKVDDGFLDIWTYNAE	LLVLLENER	TLDFHDSNVR	NLYEKVKSQI	LKNNAKEIGNGO	FEFYHKCDDA	CMESVRNGT
HK68[H3N2]	DLEKYVEDTKIDLWSYNAE	LLVALENQH	TIDLTDSEMN	KLFEKTRRQI	RENAEDMGNG	FKIYHKCDNA	CIESIRNGT
B/HK73	ELDEKVDDLRADTISSQIE	LAVLLSNEG	IINSEDEHLL2	ALERKLKKMI	GPSAVDIGNG	FETKHKCNQT	CLDRIAAGT
		5					
GUIU-UGU[HI/NIU]	INIMDIREESHIEK-QKID						
G009-104[H1/N10]	INIMDIREESHIEK-QKID						
CAU4[HIN1]	IDIPRISEAKLNK-EEID						
SCIQ [HIN1]	IDIPRISESKLNK-EEID						
nroo[njn2] p/ur72	IDADVIKULALNNK-FQLK						
D/ III / J	ENAGEFSLETFDSLNITAA	12					

^a Abbreviations: GU10-060, A/little yellow-shouldered bat/Guatemala/060/2010 (H17N10); GU09-164, A/little yellowshouldered bat/Guatemala/164/2009 (H17N10); CA04, A/California/04/2009 (H1N1); SC18, A/South Carolina/1/18 (H1N1); HK68, A/Hong Kong/68 (H3N2); B/HK73, B/Hong Kong/8/73. Green indicates important residues around the receptor-binding site in all flu A HAs (10). Sequence differences between GU10-060 and GU09-164 HAs are highlighted in cyan. The putative fusion peptide in GU10-060 HA is colored red and highly conserved with all other HAs.

Amino						Residu	ie numbe	er				
acıd	98	134	136	153	155	183	190	194	195	225	226	228
Ala	0	1	11	0	4	0	367	0	0	4	2	5
Cys	4	0	0	2	0	0	0	0	1	1	0	0
Asp	1	0	2	0	0	1	6,497	0	0	4514	0	2
Glu	0	0	0	0	1	0	5,577	0	0	210	0	2
Phe	12	0	0	0	0	0	0	3	1	0	0	0
Gly	0	13,265	2	0	4	0	19	0	0	7,362	0	10,482
His	2	0	0	0	878	12,788	1	0	5	1	4	0
Ile	0	0	1	0	2,696	0	2	301	0	0	1,185	0
Lys	0	0	0	0	1	0	2	0	0	5	2	0
Leu	0	0	0	0	542	10	7	12,922	0	0	922	0
Met	0	0	0	1	0	0	3	0	0	0	5	0
Asn	0	2	0	0	0	464	309	0	1	968	0	0
Pro	0	0	3	0	1	2	0	16	0	0	3	0
Gln	0	0	0	0	2	1	5	0	0	0	10,029	0
Arg	0	1	1	3	0	3	0	1	0	3	60	9
Ser	0	1	8,104	1	4	0	1	0	1	6	0	2,646
Thr	0	0	5,150	0	5,124	0	121	1	0	3	0	0
Val	0	2	0	0	3,698	0	231	22	0	1	919	1
Trp	0	2	0	13,267	0	0	0	0	0	0	0	1
Tyr	13,256	0	0	0	264	0	2	0	13,260	0	0	0
H17 ^b	Phe ^d	Asn ^c	Asp ^c	Trp	Gln ^c	His	Gln ^d	Leu	Tyr	Ala ^d	His ^d	Asp ^c

Table S3. Conservation of key residues in the receptor-binding site of influenza A HAs^a.

^a The incidence of an amino acid occurring at certain position is shown. A total of 13,282 full-length, nonredundant HA sequences from all influenza A viruses were available in the Influenza A Virus Resource at the NCBI in September 4, 2012.

^b The consensus putative receptor-binding site amino acids of two bat GU09-164 and GU10-060 H17 HAs are shown in red numbers in the table. Clearly, sequences at certain positions are unique to bat HAs.

^c Only present in two bat GU09-164 and GU10-060 H17s.

PNAS PNAS

^d Present in two bat H17 HAs and only a few other flu A virus HAs.

Supplementary References

PNAS PNAS

- 1. Stevens J, *et al.* (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. *Science* 303:1866-1870.
- 2. Blixt O, *et al.* (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. *Proc Natl Acad Sci USA* 101:17033-17038.
- 3. Zhu X, *et al.* (2012) Influenza virus neuraminidase with reduced enzymatic activity that avidly bind sialic acid receptors. *J Virol* 109:18903-18908.
- 4. Otwinowski Z & Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. *Meth Enzymol* 276:307-326.
- 5. McCoy AJ, Grosse-Kunstleve RW, Storoni LC, & Read RJ (2005) Likelihood-enhanced fast translation functions. *Acta Crystallogr D Biol Crystallogr* 61:458-464.
- 6. Murshudov GN, Vagin AA, & Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. *Acta Crystallogr D Biol Crystallogr* 53:240-255.
- Emsley P, Lohkamp B, Scott WG, & Cowtan K (2010) Features and development of Coot. *Acta* Crystallogr D Biol Crystallogr 66:486-501.
- 8. Esnouf RM (1997) An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. *J Mol Graph Model* 15:132-134, 112-133.
- 9. Ekiert DC, *et al.* (2009) Antibody recognition of a highly conserved influenza virus epitope. *Science* 324:246-251.
- 10. Skehel JJ & Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. *Annu Rev Biochem* 69:531-569.
- 11. Xu R, *et al.* (2012) Functional balance of the hemagglutinin and neuraminidase activities accompanies the emergence of the 2009 H1N1 influenza pandemic. *J Virol* 86:9221-9232.
- 12. Baker NA, Sept D, Joseph S, Holst MJ, & McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. *Proc Natl Acad Sci USA* 98:10037-10041.

Fig. S1. Receptor binding was investigated against printed glycans on a microarray (Fig. S2) for GU10-060 HA (A) and its HA2 A47G mutant (B). The normal starting HA concentration of 15 μ g/ml was applied. To observe some background noise, a reduced scale of 1,000 for Y axis (fluorescence signal) was used to make the figure (the typical average non-saturated HA binding signals range from approximately 10,000 to 40,000) (3, 11). Binding signals are shown in filled bars by sialic acid linkages using the same color scheme in Fig. S2. GU10-060 HA and its HA2 A47G mutant exhibit no binding to sialoside glycans on the array.

Fig. S2.	List of	glycans	on the	microarray
----------	---------	---------	--------	------------

Chart#	Structure	Name
1	β 4	Gal β (1-4)-GlcNAc β -ethyl-NH ₂
2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-3)-[Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-6)]-Manβ(1-4)- GlcNAcβ(1-4)-GlcNAcβ-Asn-NH₂
3	$ \begin{array}{c} 6S \\ \bullet \alpha & 3 \\ \hline \beta & 4 \end{array} $	NeuAca(2-3)-Gal β (1-4)-6-O-sulfo-GlcNAc β -propyl-NH $_2$
4	$ \begin{array}{c} 6S \\ & \alpha & 3 \\ & \alpha$	NeuAca(2-3)-Gal β (1-4)-[Fuca(1-3)]-6-O-sulfo-GlcNAc β -propyl-NH $_2$
5	$6S$ $\alpha 3 \beta 4$	NeuAca(2-3)-6-O-sulfo-Gal β (1-4)-GlcNAc β -ethyl-NH $_2$
6	$ \begin{array}{c} 6S \\ & & \\$	NeuAca(2-3)-6-O-sulfo-Gal β (1-4)-[Fuca(1-3)]-GlcNAc β -propyl-NH ₂
7	$ \begin{array}{c} 6S \\ \bullet \alpha 3 \\ \hline \beta 3 \end{array} $	NeuAca(2-3)-Gal β (1-3)-6-O-sulfo-GlcNAc β -propyl-NH ₂
8	α 3 β 4	NeuAca(2-3)-Gal β (1-4)-Glc β -ethyl-NH ₂
9	α_3 β_4	NeuAca(2-3)-Gal β (1-4)-GlcNAc β -ethyl-NH ₂
10	α 3 β 4 β 3 β 4	NeuAca(2-3)-Gal β (1-4)-GlcNAc β (1-3)-Gal β (1-4)-GlcNAc β -ethyl-NH ₂

11		NeuAc α (2-3)-Gal β (1-4)-GlcNAc β (1-3)-Gal β (1-4)-GlcNAc β (1-3)-Gal β (1-4)-GlcNAc β -ethyl-NH $_2$
12	α 3 β 4	NeuAca(2-3)-GalNAc β (1-4)-GlcNAc β -ethyl-NH ₂
13	α_3 β_3	NeuAc α (2-3)-Gal β (1-3)-GlcNAc β -ethyl-NH $_2$
14		NeuAc α (2-3)-Gal β (1-3)-GlcNAc β (1-3)-Gal β (1-4)-GlcNAc β -ethyl-NH $_2$
15		NeuAc α (2-3)-Gal β (1-3)-GlcNAc β (1-3)-Gal β (1-3)-GlcNAc β -ethyl-NH $_2$
16		NeuAc α (2-3)-Gal β (1-3)-GalNAc β (1-3)-Gala(1-4)-Gal β (1-4)-Glc β -ethyl-NH $_2$
17	$ a 3 \beta 3 \alpha $	NeuAca(2-3)-Gal β (1-3)-GalNAca-Thr-NH ₂
18	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\$	NeuAca(2-3)-Gal β (1-3)-[GlcNAc β (1-6)]-GalNAca-Thr-NH ₂
19	$\begin{array}{c} \bullet \alpha 3 \\ \bullet \beta 4 \\ \bullet \beta 3 \\ \bullet \beta 3 \\ \end{array} \\ \begin{array}{c} \bullet \beta \\ \alpha \end{array} \\ \begin{array}{c} \bullet \\ \end{array} \\ \begin{array}{c} \bullet \\ \alpha \end{array} \\ \begin{array}{c} \bullet \\ \end{array} \\ \begin{array}{c} \bullet \\ \alpha \end{array} \\ \begin{array}{c} \bullet \\ \end{array} \\ \end{array} \\ \begin{array}{c} \bullet \\ \end{array} \\ \begin{array}{c} \bullet \\ \end{array} \\ \begin{array}{c} \bullet \\ \end{array} \\ \end{array} \\ \begin{array}{c} \bullet \\ \end{array} \\ \begin{array}{c} \bullet \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \bullet \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \bullet \\ \end{array} \\$	NeuAca(2-3)-Gal β (1-4)-GlcNAc β (1-6)-[Gal β (1-3)]-GalNAca-Thr-NH ₂
20	$ \begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & $	NeuAc α (2-3)-Gal β (1-4)-GlcNAc β (1-3)-Gal β (1-4)-GlcNAc β (1-6)-[Gal β (1-3)]-GalNAc α -Thr-NH $_2$
21	$ \mathbf{a}_{\alpha} \mathbf{a}_{\beta} \mathbf{a}_{\beta} \mathbf{a}_{\alpha} \mathbf{a}_{\beta} $	NeuAca(2-3)-Gal β (1-4)-GlcNAc β (1-3)-GalNAca-Thr-NH ₂

22		NeuAca(2-3)-Gal β (1-4)-GlcNAc β (1-3)-Gal β (1-4)-GlcNAc β (1-3)-GalNAca-Thr-NH ₂
23	$\begin{array}{c} & & & \\ & & \alpha & 3 \end{array} \xrightarrow{\beta & 4} \xrightarrow{\beta & \beta} \xrightarrow{\beta & \beta} \xrightarrow{\beta & \alpha} \xrightarrow{\beta & \beta} \xrightarrow{\alpha & \beta} \xrightarrow{\beta & \beta} \xrightarrow{\beta & \beta} \xrightarrow{\alpha & \beta} \xrightarrow{\beta & \beta} \beta$	NeuAcα(2-3)-Galβ(1-4)-GlcNAcβ(1-3)-[NeuAcα(2-3)-Galβ(1-4)-GlcNAcβ(1-6)]-GalNAcα-Thr- NH ₂
24	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NeuAcα(2-3)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-3)-[NeuAcα(2-3)-Galβ(1-4)- GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-6)]-GalNAcα-Thr-NH ₂
25	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NeuAcα(2-3)-Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-3)-[NeuAcα(2-3)-Galβ(1-4)-GlcNAcβ(1-2)- Manα(1-6)]-Manβ(1-4)-GlcNAcβ(1-4)-GlcNAcβ-Asn-NH ₂
26	$ \begin{array}{c} \bullet \alpha 3 \\ \bullet \alpha 3 \\ \bullet \alpha 3 \\ \bullet \alpha 3 \\ \bullet \beta 4 \\ \bullet \beta $	NeuAcα(2-3)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-3)-[NeuAcα(2-3)- Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-6)]-Manβ(1-4)-GlcNAcβ(1-4)- GlcNAcβ-Asn-NH ₂
27		NeuAcα(2-3)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-2)- Manα(1-3)-[NeuAcα(2-3)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)- GlcNAcβ(1-2)-Manα(1-6)]-Manβ(1-4)-GlcNAcβ(1-4)-GlcNAcβ-Asn-NH ₂
28	$\beta 4$ $\beta 4$	NeuAcα(2-3)-[GalNAcβ(1-4)]-Galβ(1-4)-GlcNAcβ-ethyl-NH ₂
29	$\beta 4$ $\beta 4$ $\beta 4$	NeuAc α (2-3)-[GalNAc β (1-4)]-Gal β (1-4)-Glc β -ethyl-NH ₂
30	β β β β β β 4	Gal β (1-3)-GalNAc β (1-4)-[NeuAc α (2-3)]-Gal β (1-4)-Glc β -ethyl-NH ₂
31	α 3 β 4 3 α	NeuAc α (2-3)-Gal β (1-4)-[Fuc α (1-3)]-GlcNAc β -propyl-NH $_2$
32	$\begin{array}{c} \alpha \\ 4 \\ \hline \alpha \\ 3 \\ \hline \beta \\ 4 \\ \hline 3 \\ \alpha \\ \hline \end{array}$	NeuAcα(2-3)-Galβ(1-3)-[Fucα(1-4)]-GlcNAcβ(1-3)-Galβ(1-4)-[Fucα(1-3)]-GlcNAcβ-ethyl-NH ₂

33	α 3 β 4 β 3 β 4 β 3 α α α	NeuAca(2-3)-Gal β (1-4)-[Fuca(1-3)]-GlcNAc β (1-3)-Gal β (1-4)-[Fuca(1-3)]-GlcNAc β -ethyl-NH $_2$
34	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NeuAcα(2-3)-Galβ(1-4)-[Fucα(1-3)]-GlcNAcβ(1-3)-Galβ(1-4)-[Fucα(1-3)]-GlcNAcβ(1-3)-Galβ(1- 4)-[Fucα(1-3)]-GlcNAcβ-ethyl-NH ₂
35	α_{3} β_{4}	NeuGc α (2-3)-Gal β (1-4)-GlcNAc β -ethyl-NH $_2$
36		NeuAca(2-6)-Gal β (1-4)-6-O-sulfo-GlcNAc β -propyl-NH $_2$
37	$\mathbf{a} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} b$	NeuAca(2-6)-Gal β (1-4)-Glc β -ethyl-NH ₂
38	α 6 β 4	NeuAca(2-6)-Gal β (1-4)-GlcNAc β -ethyl-NH $_2$
39		NeuAca(2-6)-Gal β (1-4)-GlcNAc β (1-3)-Gal β (1-4)-GlcNAc β -ethyl-NH ₂
40	α 6 β 4 β 3 β 4 β 3 β 4	$NeuAc\alpha(2-6)-Gal\beta(1-4)-GlcNAc\beta(1-3)-Gal\beta(1-4)-GlcNAc\beta(1-3)-Gal\beta(1-4)-GlcNAc\beta-ethyl-NH_2$
41	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	NeuAca(2-6)-Gal β (1-4)-GlcNAc β (1-3)-[NeuAca(2-6)]-Gal β (1-4)-GlcNAc β -ethyl-NH ₂
42	α 6 β 4	NeuAc α (2-6)-GalNAc β (1-4)-GlcNAc β -ethyl-NH $_2$
43	α β α β	NeuAca(2-6)-[Gal β (1-3)]-GalNAca-Thr-NH ₂

PNAS

PNAS

44	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & &$	NeuAca(2-6)-Gal β (1-4)-GlcNAc β (1-6)-[Gal β (1-3)]-GalNAca-Thr-NH ₂
45	$\begin{array}{c} \bullet \alpha 6 \\ \bullet \beta 4 \\ \bullet \beta 3 \\$	$NeuAc\alpha(2-6)-Gal\beta(1-4)-GlcNAc\beta(1-3)-Gal\beta(1-4)-GlcNAc\beta(1-6)-[Gal\beta(1-3)]-GalNAc\alpha-Thr-NH_2$
46	$\mathbf{a}_{6} \mathbf{\beta}_{\mathbf{\beta}} \mathbf{\beta}_{\mathbf{\beta}} \mathbf{\alpha}_{\mathbf{\beta}}$	NeuAca(2-6)-Gal β (1-4)-GlcNAc β (1-3)-GalNAca-Thr-NH $_2$
47		NeuAca(2-6)-Gal β (1-4)-GlcNAc β (1-3)-Gal β (1-4)-GlcNAc β (1-3)-GalNAca-Thr-NH ₂
48	$ \begin{array}{c} & & & \\ & & \alpha & 6 \\ & & & \beta & 4 \\ & & & \alpha & 6 \\ & & & & \beta & 4 \\ & & & & \beta & 3 \end{array} $	NeuAcα(2-6)-Galβ(1-4)-GlcNAcβ(1-3)-[NeuAcα(2-6)-Galβ(1-4)-GlcNAcβ(1-6)]-GalNAcα-Thr- NH ₂
49	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NeuAcα(2-6)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-3)-[NeuAcα(2-6)-Galβ(1-4)- GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-6)]-GalNAcα-Thr-NH ₂
50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-3)-[NeuAcα(2-6)-Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-6)]-Manβ(1- 4)-GlcNAcβ(1-4)-GlcNAcβ-Asn-NH ₂
51	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NeuAcα(2-6)-Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-3)-[Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-6)]-Manβ(1- 4)-GlcNAcβ(1-4)-GlcNAcβ-Asn-NH ₂
52	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GlcNAcβ(1-2)-Manα(1-3)-[NeuAcα(2-6)-Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-6)]-Manβ(1-4)- GlcNAcβ(1-4)-GlcNAcβ-Asn-NH ₂
53	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NeuAc α (2-6)-Gal β (1-4)-GlcNAc β (1-2)-Man α (1-3)-[NeuAc α (2-6)-Gal β (1-4)-GlcNAc β (1-2)-Man α (1-6)]-Man β (1-4)-GlcNAc β (1-4)-GlcNAc β -Asn-NH ₂
54	$ \begin{array}{c} \bullet \\ \alpha 6 \end{array} \\ 6 \bigg) \\ \\ 6 \bigg) \\ 6 \bigg) \\ \\ 6 \bigg) \\ 6 \bigg) \\ \\ \\ 6 \bigg) \\ \\ \\ 6 \bigg) \\ \\ 6 \bigg) \\ \\ 6 \bigg) \\ \\ 6 \bigg) \\ \\ \\ \\ 6 \bigg) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	NeuAcα(2-6)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-3)-[NeuAcα(2-6)- Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-6)]-Manβ(1-4)-GlcNAcβ(1-4)- GlcNAcβ-Asn-NH ₂

PNAS

PNAS

55	$ \begin{array}{c} \bullet \\ \alpha 6 \\ \bullet \\ \beta 4 \\ \bullet \\ \delta 4 $	NeuAcα(2-6)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-2)- Manα(1-3)-[NeuAcα(2-6)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)-GlcNAcβ(1-3)-Galβ(1-4)- GlcNAcβ(1-2)-Manα(1-6)]-Manβ(1-4)-GlcNAcβ(1-4)-GlcNAcβ-Asn-NH ₂
56		NeuGc α (2-6)-Gal β (1-4)-GlcNAc β -ethyl-NH $_2$
57	$\begin{array}{c} & & & \\ & \alpha & 6 \\ & & & & \\ & & & & \\ & & & & \\ &$	NeuAcα(2-3)-Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-3)-[NeuAcα(2-6)-Galβ(1-4)-GlcNAcβ(1-2)- Manα(1-6)]-Manβ(1-4)-GlcNAcβ(1-4)-GlcNAcβ-Asn-NH ₂
58	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NeuAcα(2-6)-Galβ(1-4)-GlcNAcβ(1-2)-Manα(1-3)-[NeuAcα(2-3)-Galβ(1-4)-GlcNAcβ(1-2)- Manα(1-6)]-Manβ(1-4)-GlcNAcβ(1-4)-GlcNAcβ-Asn-NH ₂

PNAS

PNAS

Fig. S3. Electrostatic potential surface of the ectodomain trimers of all known influenza virus HAs. Electrostatic surface potentials were calculated using the APBS program (12). Negatively charged regions are red, positively charged regions are blue, and neutral regions are white (-10 to $10 K_b T/e_c$ potential range). The HA coordinates used in this figure are: flu A group 1 HAs: H17, GU10-060 HA2-47G HA; H1 (PDB ID code 3UBQ), H2 (3KU6), H5 (2FK0), H9 (1JSD); flu A group 2 HAs: H3 (2HMG), H7 (1TI8), H14 (3EYJ) and flu B HA (3BT6). The surface of the H17 HA trimer is unusually acidic.