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SI Statistical Methods
Convergence of the Empirical Likelihood Approximation.The validation
of the empirical likelihood approximation is provided by theorem
3.4 of ref. 1, which establishes an extension ofWilk’s theorem to the
empirical likelihood ratio. (Note that n−n is the maximum of Lel.)

Theorem. Let X ;Y1; . . . ;Yn be independent random vectors with
common distribution F0. For θ∈Θ, let hðX ; θÞ∈ℝs. Let θ0 ∈Θ be
such that VarðhðYi; θ0ÞÞ is finite and has rank q> 0. If θ0 satisfies

EðhðX ; θ0ÞÞ= 0, then −2log
�
Lelðθ0jY1;...;YnÞ

n−n

�
→ χ2ðqÞ in distribution

when n→∞.
We also reproduce here an illuminating comment fromArt Owen

(ref. 1, p 41):

The interesting thing about Theorem 3.4 is what is not there. It
includes no conditions to make θ̂ a good estimate of θ0, nor even
conditions to ensure a unique value for θ0, nor even that any solution
θ0 exists. Theorem 3.4 applies in the just determined, over-determined,
and under-determined cases. When we can prove that our estimating
equations uniquely define θ0, and provide a consistent estimator θ̂ of it,
then confidence regions and tests follow almost automatically through
Theorem 3.4.

Pairwise Composite Likelihoods in Population Genetics.We detail here
the derivation of the composite likelihoods used for the version of
the Bayesian computation with empirical likelihood (BCel) algo-
rithm implemented in the case of the population genetics study.
Two genes from the same deme.First, we recall that we scale the time
axis so that a pair of genes of the same deme coalesces at
a random time with an exponential distribution with rate 1. We
now consider a given locus and two microsatellite genes from our
sample that come from the same deme. We denote their re-
spective allelic states by x1 and x2. Their most recent common
ancestor (MRCA) dates back to a time T, where T ∼ Eð1Þ. We
assume that the mutation rate, namely θ=2, does not vary along
the whole history of our populations. Therefore, conditioned on
T, the number of mutations between xi (i= 1; 2) and the MRCA
is distributed according to a Poisson distribution with mean
θT=2. Hence, conditional on T, the number N0 of mutations
between x1 and x2 is a Poisson variable with mean θT and

E
�
uN0 jT�= expfθTðu− 1Þg:

Thus,

E
�
uN0

�
=

Z∞

0

e−texpfθtðu− 1Þgdt

=
1

1+ θð1− uÞ=
1=ð1+ θÞ

1− θ=ð1+ θÞu;

i.e., N0 ∼Geðθ=ð1+ θÞÞ, the geometric distribution with positive
weight at 0. Finally, the difference between both genes is the
accumulation over the N0 mutations, i.e.,

x2 − x1 =
XN0

k=1

ek;

where the ek’s are iid Rademachers (± 1 with equal proba-
bility). Thus,

E
�
eiζðx2−x1Þ

�
=E

�
E
�
eiζðx2−x1ÞjN0

��
=E

�
∏
N0

k= 1
E½expðiζekÞ�

	

=E

h
ðcosζÞN0

i
=

X∞
n=0

ð1− pÞðpcosζÞn;

since N0 ∼GeðpÞ with p=
θ

1+ θ

=
1− p

1− p cos ζ
=

1
1+ θð1− cosζÞ

[S1]

which proves that the pairwise likelihood is

ℓ2ðx1; x2jϕÞ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2θ

p ρðθÞjx2−x1j; [S2]

with ρðθÞ= θ=ð1+ θ+
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2θ

p Þ.
Two genes from different demes. We now consider two genes that
come from two different demes that diverged from an ances-
tral deme at time τ in the past. We denote the allelic state of the
two ancestors at time τ by x01 and x02, respectively. Then,
x1 − x2 = ðx1 − x01Þ+ ðx01 − x02Þ+ ðx02 − x2Þ, where x01 − x02 follows a
distribution whose Fourier transform is given by S1, whereas
ðxj − x0j Þ, j= 1; 2 are iid, whose distribution is given by the dif-
ference of two allelic states separated by a fixed time τ. This
distribution is derived in equation 3 of ref. 2:

ℙ
�
xj − x0j = δ

�
= e−τθ=2Iδðτθ=2Þ;

where Iδ denotes the δth-order modified Bessel function of the
first kind, given by ðn≥ 0Þ

I−nðzÞ= InðzÞ=
X∞
k=0

ðz=2Þn+2k
k!ðn+ kÞ!:

Using the independence between ðx1 − x01Þ and ðx1 − x01Þ, we obtain

ℙ
�ðx1 − x01

�
+
�
x1 − x01

�
= δ

�
= e−τθIδðτθÞ: [S3]

We then retrieve this distribution by computing Fourier trans-
forms in the same vein as above. First, we note that the numberN1

of mutations between x1 and its ancestor at time τ is a Poisson
variate with parameter τθ=2. And,

E

h
eiζðx01−x1Þ

i
= E

n
E

h
eiζðx01−x1ÞjN1

io
= E


∏
N1

k= 1
Eðexp ðiζekÞÞ

�

=E

h
ðcos ζÞN1

i
=

X∞
n=0

e−τθ=2
ðτθ=2Þn

n!
ðcos ζÞn

since N1 ∼Poðτθ=2Þ
= expfτθðcos ζ− 1Þ=2g:

[S4]

Finally, the distribution of x2 − x1 is a (discrete) convolution
product between the distributions given by S2 and S3, which yields
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ℓ2ðx1; x2jϕÞ= e−τθffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2θ

p
X+∞
k=−∞

ρðθÞjkjIjx1−x2j−kðτθÞ:

Quantile Estimation. Examples of quantile distributions are the
three-, four-, and five-parameter Tukey’s lambda distributions
and their generalizations and the Burr family of distributions;
particular examples include the g-and-h and g-and-k distributions
(3–5, 7).
Proposed methods for estimation of quantile distributions

include maximum likelihood estimation using numerical ap-
proximations to the likelihood (7–9), moment matching (10, 11),
location- and scale-free shape functionals (12), percentile match-
ing (6), quantile matching (13), and, more recently, approximate
Bayesian computation (ABC) (14–16). Sequential Monte Carlo
approaches for multivariate extensions of the g-and-k have also
been proposed (17).
There has been a number of ABC approaches proposed for this

problem. For example, ref. 15 adopted the ABC-MCMC (Mar-
kov chain Monte Carlo) algorithm of ref. 18, in which draws of
θ are based on a Metropolis algorithm with a Gaussian pro-
posal distribution, and are accepted based on the rule ρðSðDÞ;
SðD′ÞÞ< «Þ, where D is the entire set of order statistics, ρ is the
Euclidean norm, and e is heuristically chosen after inspection of
a histogram of ρðS; S′Þ obtained from a preliminary run using
a very large value of «. This approach has recently been im-
proved by ref. 16 through more sophisticated MCMC ap-
proaches, the use of regression summary statistics for D based on
percentiles and their powers, and more automated choices of «.
However, they still maintain a form of distance-based measure
ρðS; S′Þ in accepting θ.

SI Results
Normal Estimation. Figs. S1–S3 evaluate the impact on the pos-
terior distribution approximation of increasing the number of
constraints in the empirical likelihood definition. Because this is
a formal example, the true posterior distribution is available.

Quantile Estimation. The BCel experiment involved evaluation of
Algorithm 1 for estimation of the parameters of the g-and-k
distribution using the two values of θ= ðA;B; g; kÞ, namely
θN = ð0; 1; 0; 0Þ, which corresponds to the standard normal dis-
tribution, and θA = ð3; 2; 1; 0:5Þ, which was chosen by ref. 15 as
‘an interesting, far-from-normal distribution. The simulation
experiment comprised multiple repetitions of BCel using differ-
ent combinations of sample size, n= ð100; 500Þ, number of iter-
ations, M = ð1; 000; 5; 000; 10; 000Þ, and number of constraints
(p= 3; 4; 4; 5; 9), corresponding to percentile sets ð0:2; 0:5; 0:8Þ,
ð0:2; 0:4; 0:6; 0:8Þ, ð0:1; 0:4; 0:6; 0:9Þ, ð0:1; 0:25; 0:5; 0:75; 0:9Þ, and
ð0:1; 0:2; . . . ; 0:9Þ. Two sets of priors were considered for
ðA;B; g; kÞ: U½0; 5�4 (denoted as P1) and Uð−5; 5Þ:Uð0; 5Þ;
Uð−5; 5Þ; ð−0:1; 1Þ (denoted as P2). Although the priors were set
independently for each element of θ, the four elements were
drawn together at each iteration of the algorithm, so that the
same importance weight ωi was attached to the values AðiÞ;
BðiÞ; gðiÞ; kðiÞ drawn in the ith iteration. The experiment was rep-
licated 10 times with different draws of samples of size n. Posterior
means and SDs were computed for each parameter, and the
overall goodness of fit to the true curve was assessed by com-
paring the true quantiles at ð0:05; 0:10; . . . ; 0:95Þ with two
measures: the estimated mean at each quantile [denoted by re-

sidual sum of squares for the mean (RSSm)] and the average of
the estimated quantile for each importance sample [residual sum
of squares for the quantile (RSSt)].
Boxplots of the posterior means and SDs are shown in Figs. S4

and S5, respectively, for the four parameters, based on θA, prior
P2 and the 20 replicates for M = ð5; 000; 10; 000Þ, for 10 of the
trials: p= 3; 4; 4; 5; 9 for n= 100 (trials 1–5) and n= 500 (trials 6–
10). Boxplots for the corresponding overall goodness of fit
measures (RSSm, RSSt) are given in Fig. S6.

Superposition of Point Processes. An alternative to ABC is dis-
cussed in ref. 19 using fractional design and linear interpolation.
Although their purpose is the non-Bayesian processing of models
with intractable likelihood functions, they propose as their main
example a model consisting of the superposition of N renewal
processes with waiting times τijði= 1; . . . ;MÞ; j= 1; . . .Þ distributed
as Gðα; βÞ variables, when N is unknown. The renewal processes
are thus

ζi1 = τi1; ζi2 = ζi1 + τi2; . . . ;

and the observations are made of the first n values of the ζij’s,

z1 = min
�
ζij
�
; z2 = min

�
ζij; ζij > z1

�
; . . . ;

ending with

zn = min
�
ζij; ζij > zn−1

�
:

This model offers an interesting testing ground for BCel in that
the data points zt are neither iid nor Markov. It is however
possible to recover and exploit an iid structure in this case by
first simulating a pseudodataset, ðz⋆1 ; . . . ; z⋆nÞ, as in ABC settings,
and then deriving a sequence of renewal processes indicators
ðν1; . . . ; νnÞ, as

z⋆1 = ζν11; z
⋆
2 = ζν2 j2 ; . . . ; z

⋆
n = ζνnjn :

These indicators are thus distributed from the prior distribution
on the νt’s and an iid sample of Gðα; βÞ variables can be derived
from those indicators and the genuine data, leading to an asso-
ciated empirical likelihood. As shown in Fig. S7, when applied to
a simulated dataset (as in ref. 19), the empirical likelihood ap-
proximation produces a better approximation than the corre-
sponding ABC solution based on the same statistics as ref. 19
(for exactly the same computational cost).

Time Gains in Population Genetic Models. Both population genetic
experiments conducted in this paper analyze datasets with a large
number of loci (100). Thus, ABC, which requires simulations of
all loci to produce a simulated dataset, is quite time-consuming
and particularly so when the evolutionary scenario is more
complex than the one in the first experiment. We compare here the
computing times required by our implementation of the BCel–AMIS
sampler and by DIYABC (20) on an Intel Xeon W3680 Plate-
form with GNU/Linux. Both methods were parallelized over
five among the six cores of this central processing unit with the
OpenMP application program interface. Table S1 exhibits com-
putation time averages on 10 replicates of the estimation.
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Fig. S1. Comparison of the true posterior on the normal mean (solid lines) with the empirical distribution of weighted simulations resulting from Algorithm
BCel. The normal sample sizes are 25 (column 1), 50 (column 2), and 75 (column 3), the number of simulated θ’s is 103, and the effective sample size (ESS) MESS

are given on top of each histogram. The constraint is on the first moment of the dataset.
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Fig. S2. Comparison of the true posterior on the normal mean (solid lines) with the empirical distribution of weighted simulations resulting from Algorithm
BCel. The normal sample sizes are 25 (column 1), 50 (column 2), and 75 (column 3), the number of simulated θ’s is 103, and the ESSMESS are given on top of each
histogram. The constraint is on the first two moments of the dataset.
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Fig. S3. Comparison of the true posterior on the normal mean (solid lines) with the empirical distribution of weighted simulations resulting from Algorithm
BCel. The normal sample sizes are 25 (column 1), 50 (column 2), and 75 (column 3), the number of simulated θ’s is 103, and the ESSMESS are given on top of each
histogram. The constraint is on the first three moments of the dataset.
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Fig. S5. Same graph as Fig. S4 for the SDs.
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Fig. S6. Goodness-of-fit measures (RSSm, RSSt) for the same experiment as in Fig. S4.
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Table S1. Computing times for DIYABC and BCel in both
population genetics experiments

ABC BCel

Experiment DIYABC software BCel–AMIS code

1 21 min 24 s
2 16 h 55 s
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Fig. S7. Approximate posterior distributions of the parameters (α, β, N) for the superposition gamma process model, using a simulated dataset of 90 ob-
servations, with α = 0.5, β = 0.8, and n = 5. (Upper) BCel output; (Lower) ABC output.
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