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1. Stat 330/CME 362 Collaboration.The researchers in Stat 330/CME
362 Fall 2011 who ran experiments for this collaboration include
SivaramAmbikasaran, Sergio Bacallado, Dinesh Bharadia, Yuxin
Chen, Young Choi, Mainak Chowdhury, SohamChowdhury, Anil
Damle, Will Fithian, Georges Goetz, Logan Grosenick, Sam
Gross, Gage Hills, Michael Hornstein, Milinda Lakkam, Jason
Lee, Jian Li, Linxi Liu, Carlos Sing-Long, Mike Marx, Akshay
Mittal, Hatef Monajemi, Albert No, Reza Omrani, Leonid
Pekelis, Junjie Qin, Kevin S. Raines, Ernest Ryu, Andrew Saxe,
Dai Shi, Keith Siilats, David Strauss, Gary Tang, Chaojun Wang,
Zoey Zhou, and Zhen Zhu.
Also, M.G. was Teaching Assistant for Stanford course Stat

330/CME 362 in Fall of 2011 and helped organize the data and
plan the experiments.
All these participants should be considered coauthors of

this paper.

2. Named Authors. H.M., S.J., and M.G. also participated by
amalgamating the data, preparing the analysis in this paper,
framing the discussion of the final manuscript, or writing the
manuscript.
D.L.D. designed the experiment, wrote some of the software,

performed analysis, and coauthored the paper.

3. Additional Participant. Zulfikar Ahmed translated our code into
python and replicated our experiments on PiCloud/Amazon Web
Services. He should also be considered a coauthor of this col-
laboration at a level equal to the members of the Stat 330/CME
362 collaboration.

SI Appendix: Matrix Specifications
SS. The SS frame in the complex case is simply the n by 2n matrix
(Eq. S1)

A ¼ ½InFn�; [S1]

where In is the n by n identity matrix, and Fn is the n by
n unitary discrete Fourier transform matrix, with entries
Fi;j ¼ expf2π ffiffiffiffiffiffiffiffi

− 1
p

ij=ng= ffiffiffi
n

p
. In the real case, An;2n ¼ ½IRn�,

where Rn is a real orthogonal n by n matrix, and the columns
are each a normalized version of the real part or imaginary part
of some corresponding column of Fn. The frame can be defined
for any n. As noted in the text, we also considered these var-
iants of real sinusoids: Hartley transform, Discrete Cosine
Transforms (DCT) I, II, III, IV, with little change in results.

SH.The SH frame in all cases is simply the n by 2nmatrix (Eq. S2)

A ¼ ½InHn�; [S2]

where In is the n by n identity matrix, and Hn is the n by n real
orthogonal discrete Hadamard transform matrix. In principle,
a wide range of n is possible for the Hadamard transform; in
practice, we used only dyadic n, n ¼ 2j, and Hadamard matrices
defined recursively by

H ¼ 2−1=2·
�
Hn=2 Hn=2
Hn=2 −Hn=2

�
:

SN. The SN frame in the complex case is the n by 2n matrix
(Eq. S3)

A ¼ ½InWn�; [S3]

where In is the n by n identity matrix, and Wn is the n by n unitary
matrix representing the discrete Noiselet transform (1). In the real
case, Wn is replaced by an n by n real matrix Rn, and the columns
are the nonredundant and normalized versions of the real and
imaginary parts of columns of the complex matrix Wn.

PETF. The Paley frame was defined by Bandeira et al. (2) as
follows. Let p be an odd prime and N ¼ pþ 1. From the usual
orthonormal discrete Fourier transform matrix FN , number the
rows starting at zero and select only the rows corresponding to
quadratic residues mod p. This will select ðp− 1Þ=2 rows de-
terministically. Append to this matrix a row of constants.

GF.The GFs that we use are defined in ref. 14 as follows. Let n≥5
be a prime integer, and let at ¼ expf2π ffiffiffiffiffiffiffiffi

− 1
p

t3=ng be the Alltop
sequence, a quadratic-phase chirp. Let AðℓÞ denote the diagonal
matrix with the AðℓÞii ¼ ai−ℓ. Let N ¼ n·L, and let Fn denote the
usual orthonormal discrete Fourier transform matrix. Then, A is
an n×N matrix defined by concatenating together the L block
matrices AðℓÞFn (Eq. S4):

A ¼ ½Að0ÞFnjAð1ÞFnjAð2ÞFnj. . .jAðL− 1ÞFn�: [S4]

This frame is only considered for n prime and 0<L< n; it is
then equiangular.

LC.The LCmatrix that we use was defined in ref. 3. Let n be prime,
and let cℓt ¼ expf2π ffiffiffiffiffiffiffiffi

− 1
p

ℓt2=ng be the linear Chirp sequence with
chirp rate ℓ. Let CðℓÞ denote the diagonal matrix with CðℓÞtt ¼ cℓt.
Let N ¼ n·L, and let Fn denote the usual orthonormal discrete
Fourier transform matrix. Then, A is an n×N matrix defined by
concatenating together the L block matrices CðℓÞFn (Eq. S5):

A ¼ ½Cð0ÞFnjCð1ÞFnjCð2ÞFnj. . .jCðL− 1ÞFn�: [S5]

This frame is only considered for n prime and 1<L< n; it is then
tight and equiangular.

DG. The DG frames that we use are defined in refs. 4 and 5 and
called DGðm; 0Þ or Kerdock frames. Let m be an odd integer, let
n ¼ 2m be dyadic, and let dℓt ¼ ð ffiffiffiffiffiffi

−1
p ÞiðtÞ′Pℓ iðtÞ be the binary chirp

based on the m by m binary symmetric matrix Pℓ in the DGðm; 0Þ
set, where iðtÞ is the binary m-tuple bit vector encoding the value
of t∈f0; . . . ; n− 1g. Let DðℓÞ denote the diagonal matrix with
DðℓÞtt ¼ dℓt. Let N ¼ n·L, and let Hn denote the usual orthonor-
mal discrete Hadamard transform matrix. Then, the complex-
valued DG frame A is an n×N matrix defined by concatenating
together the L block matrices DðℓÞHn (Eq. S6):

A ¼ ½Dð0ÞHnjDð1ÞHnjDð2ÞHnj. . .jDðL− 1ÞHn�: [S6]

The real-valued DG frames are also defined in ref. 4. These are
2n by 2N matrices that are obtained by applying the Gray map to
the corresponding complex-valued DG frames. Both real and
complex DG frames are only considered for odd integer m,
and 1<L< n. They are equiangular tight frames.

AC. Let n ¼ p2, where p is prime, and consider the affine plane
Z2
p, with affine lines La;b ¼ fði; jÞ: j ¼ aþ bi mod pg for a; b∈Zp,

with line indicators χa;bði; jÞ. Let aℓði; jÞ ¼ exp
n
2π

ffiffiffiffiffiffi
− 1

p
p lij

o
denote
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a spatially chirping sinusoid. Let Ln denote the n by n− 1 matrix,
and the columns are all of the distinct vecðχa;bÞ excluding
a ¼ b ¼ 0; let AðℓÞ denote the n by n diagonal matrix with vecðaℓÞ
along the diagonal. Construct A by (Eq. S7)

A ¼ ½Að0ÞLnjAð1ÞLnjAð2ÞLnj. . .jAðL− 1ÞLn�: [S7]

This frame is neither tight nor equiangular. It has sparse columns
and rows, with only p ¼ ffiffiffi

n
p

nonzeros in each and coherence
n−1=4, asymptotically much larger than the optimal value n−1=2.
We made this construction independently, but perhaps, the work
in ref. 6 constructs this frame as well; we are not able to decipher
the discussion in ref. 6.
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Fig. S1. Fitted success probabilities π̂ðρ jAn;N ;RÞ for various matrices and problem sizes, all at undersampling ratio δ ¼ 1=2. In each panel, color encodes problem
size. Green, smallest; blue, midmost; black, largest. Problem sizes: Gaussian (256, 512, 1,024); SS (514, 802, 1,202); SH (256, 1,024, 2,048); SN (256, 512, 1,024); PETF
(258, 510, 1,022); GF (388, 1,028, 2,036); DG (512, 2,048, 8,192); LC (194, 514, 1,018); AC (484, 2,116, 3,364). The vertical dashed line locates the asymptotic phase
transition for Gaussian ensembles. The horizontal dashed line locates the 50% success probability. In all cases, the tendency is for the curves associated with larger
problem sizes to cross the 50% probability line near the theoretical phase transition for Gaussian matrices and the steepness of the transition to increase with N.
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Fig. S2. Offset from asymptotic Gaussian phase transition, offset ¼ ρ̂
�
n;N;M;R

�
− ρ*

�
1
2jR

�
, as a function of problem size N for coefficient set X ¼ R and

δ ¼ n=N ¼ 1=2: The x axis shows 1=N, and the y axis shows offset ± 2S  EðoffsetÞ. In each case, as N increases, we see that the interval gets closer to the as-
ymptotic result indicated by the dashed line. Note that the label USE indicates behavior with initially Gaussian random matrices, which are then normalized so
that all column norms are one; by mathematical theorems, results must agree in the N→∞ limit with the dashed line, and in finite problem sizes, there are
empirical differences. The sizes of those empirical differences are consistent with empirical differences seen in all other cases.
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Fig. S3. Empirical phase transition curve for DG and GF: (A) GF (R), (B) GF (C), (C) DG (R), and (D) DG (C). In each panel, for certain δ, the location of 50%
probability of success is denoted by circles. Asymptotic Gaussian phase transition ρ*ðδjXÞ is indicated by the dashed curve in each panel for X∈fR;Cg.
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