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Methods S1. Elena Maslova’s estimation of transition probabilities

Introduction
We present here in detail the derivation of Elena Maslova’s estimation of transition probabilities (denoted
M in our paper), as well as some possible extensions. A more general introduction can be found in [1].
This presentation is based on [2–5] and on personal communication between Cysouw and Maslova in
2006. The technical details of Maslova’s proposals are not easily extractable from her publications, and
because there is still no detailed description from her own hand we decided to publish our rendition
of her ideas here. As is discussed in the main paper, Maslova’s approach can be seen as a simplified
formalisation of the method used in [6] (denoted D in our paper) and empirically strongly correlated to
it. Considering that Maslova’s approach is much easier to handle, as both the empirical prerequisites
(i.e. only pairs of related languages are necessary) and the mathematical calculations (i.e. only some
quadratic equations have to be solved) are simpler, we propose that Maslova’s approach can be used to
quickly obtain approximate estimates of transition probabilities.

Assumptions
Consider a typology of languages for a particular feature. To estimate the transition probabilities, we
will restrict ourselves here to features with two possible types only, A and B. Languages have to be
either of type A or of type B, nothing else is allowed (but see Section for extensions of this restriction).
This restriction to binary features immediately implies that the fraction of languages of type A is the
complement of the fraction of languages of type B. Or, stated in terms of probabilities:

P pAq ` P pBq “ 1 (1)

where P pAq and P pBq are the fraction of languages of type A and B, respectively.
Within a period of time t, ranging from t0 to t1, we attempt to estimate the probability that languages

will change from A to B, or vice versa from B to A. We do not make any assumptions concerning the causes
of such changes: they can be due to internal developments within the language or to external influences
(such as contact with another languages); from the current method’s point of view these distinctions are
irrelevant.

Let pAB be the probability that a language of type A changes to type B within the timeframe t.
Likewise, let pBA be the probability of a change from B to A. These two probabilities are independent of
each other. The complement of pAB , viz. 1 ´ pAB , can be interpreted as the probability that a language
of type A does not change to type B within the timeframe t. Likewise, the complement of pBA, viz.
1 ´ pBA, is the probability that a language of type B does not change to A.
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Of course, within the timeframe t a language might change from A to B and back to A (A Ñ B
Ñ A), in which case it would be included in the 1 ´ pAB because, at the end of t, it would still be of
type A. This applies to any odd number of changes (A Ñ B Ñ . . . Ñ B Ñ A) and shows that (i) t
must be short enough such that such reversals to the original value are not too frequent, and (ii) that
this method is unable to account for reversals, as opposed to more advanced likelihood and Bayesian
phylogenetic methods [7, 8]. The necessary assumption that the period t is short is a limiting factor on
Maslova’s approach. However, in practice there is not much accepted knowledge about deep phylogenies
in linguistics anyway, so empirically linguists will mostly work within groups of closely related languages,
or even with variation between dialectal variants.

Assuming that these transition probabilities remain the same over longer periods of time, then it is
possible to predict the stable distributions of the types A and B, i.e. the situation in which the fraction
of languages of type A and B does not change: Pt1pAq “ Pt0pAq and Pt1pBq “ Pt0pBq. Such a stable
situation does not mean that there are no changes anymore; it means that the number of changes cancel
out against each other. The crucial assumption that the transition probabilities themselves remain stable
is of course far from proven. It might very well be the case that even these probabilities have changed
over time. Still, the assumption of universal transition probabilities represents a step forward from the
common practice of linguistic typology to assume universal empirical frequencies [1].

Basic implications
Concretely, in a stable distribution PS there are equally many languages changing from A to B as there
are languages changing from B to A within a particular period of time, so:

PSpAq ¨ pAB “ PSpBq ¨ pBA (2)

Using (1) and (2), the fractions of languages of type A and type B in the stable distribution can be
predicted from the transition probabilities:

PSpAq “
pBA

pAB ` pBA

PSpBq “
pAB

pAB ` pBA
(3)

Further, the complement of the average of the transition probabilities, i.e. 1 ´
pAB`pBA

2 can be
interpreted as stability, i.e. the probability that there will be no change in a particular period. A
high value indicates that few languages will change, which means that the characteristic is very stable.
Conversely, a low average probability is indicative that a characteristic is highly unstable. However,
as discussed above, this interpretation crucially hangs on the absence of hidden reversals within the
timeframe t and thus on the careful choice of t.

Finally, the expected fraction of languages of type A and type B at the end of a period t can be
predicted from the fractions at the start of the period. Namely, the languages of type A at the end of the
period Pt1pAq will consist of those languages that were of type A at the start of the period Pt0pAq which
did not change to B, i.e. with probability of 1 ´ pAB, together with those languages that were of type
B at the start of the period Pt0pBq which did change to A, i.e. with probability pBA. The same holds
reversely for Pt1pBq.

#

Pt1pAq “ Pt0pAq ¨ p1 ´ pABq ` Pt0pBq ¨ pBA

Pt1pBq “ Pt0pAq ¨ pAB ` Pt0pBq ¨ p1 ´ pBAq
(4)

Using (1), these equations can be inverted to expressions of the fractions at the beginning of the period
in terms of the fractions at the end of the period (we will need this in the next section for the estimation
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of the transition probabilities), e.g. for type A:

Pt1pAq “ Pt0pAq ¨ p1 ´ pABq ` Pt0pBq ¨ pBA

Pt1pAq “ Pt0pAq ¨ p1 ´ pABq ` r1 ´ Pt0pAqs ¨ pBA

Pt1pAq “ Pt0pAqp1 ´ pAB ´ pBAq ` pBA

Pt1pAq ´ pBA

1 ´ pAB ´ pBA
“ Pt0pAq (5)

Doing this likewise for type B results in:
#

Pt0pAq “
Pt1 pAq´pBA

1´pAB´pBA

Pt0pBq “
Pt1 pBq´pAB

1´pAB´pBA

(6)

Estimating transition probabilities
Linguists are often highly confident that certain languages are related, without necessarily being able to
reach agreement on the details of the internal subgrouping of such a genealogical unit. Taking advantage
of this empirical situation, we will only assume that (see also the discussion above):

1. there is a distinction between pairs of related vs. non-related languages (i.e. there are no detailed
genealogical trees assumed)

2. the time-depth of split-up of related languages is relatively small, so that it is likely that there has
maximally been one single change of type per language in that period (no reversals) and that there
is a low probability that all related languages have changed.

3. all pairs of related languages have approximately the same time depth. In practice we used the
genus-level as described in WALS as the maximum divergence time depth.

Given a sample of pairs of such related languages we can estimate the transition probabilities and
the stability of the concerned features (see Section ) – the method we applied in this paper, and which
amounts to the original proposal from Maslova. However, two interesting extensions are also possible: (a)
we could look at groups of three of such related languages (see Section ) and (b) we could add to the sample
of related pairs a third, non-related language but which is geographically close, allowing us to estimate
the transition probabilities including borrowing events into the model (see Section ). Interestingly, the
resulting formulas to estimate the transition probabilities in these cases only differ by a constant factor.

Using genealogically closely related pairs
Given a pair of closely related languages, the method assumes that they both shared the same type at
the start t0 of the period t. Either both languages are of type A, with probability Pt0pAq, or both are
of type B, with probability Pt0pBq. Some changes might happen (or not) during the period t, resulting
in a particular probability that both languages are still identical at the end t1 of the period t. This
probability is called Pt1pidenticalq. This probability is the sum of four possible histories: either both
languages started off as type A and both did not change (AAt0 Ñ AAt1); or both started off as type
A and both changed to B (AAt0 Ñ BBt1); or both started off as type B and both did not change
(BBt0 Ñ BBt1); or, finally, both started of as type B and both changed to A (BBt0 Ñ AAt1). Note
that the assumption of a short time-span t leads to the further assumption that the number of pairs that
did not change (AAt0 Ñ AAt1 and BBt0 Ñ BBt1) will be larger than the number of pairs that changed
completely (AAt0 Ñ BBt1 and BBt0 Ñ AAt1). This assumption will become important in the solving of
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the equations (see Section ). Thus, the probability of pairs of languages being identical in a synchronic
empirical collection of pairs can be expressed as:

Pt1pidenticalq “ Pt1pIq “ Pt0pAq ¨ p1 ´ pABq2 ` Pt0pAq ¨ p2AB

` Pt0pBq ¨ p1 ´ pBAq2 ` Pt0pBq ¨ p2BA (7)

Using (1), this can be reformulated as an equation relating the fraction of identical pairs at the end
of the period Pt1pIq and the fraction of languages of type A at the beginning of the period Pt0pAq:

Pt1pIq “ Pt0pAq ¨
“

p1 ´ pABq2 ` p2AB

‰

` p1 ´ Pt0pAqq ¨
“

p1 ´ pBAq2 ` p2BA

‰

“ Pt0pAq ¨
“

p1 ´ pABq2 ` p2AB ´ p1 ´ pBAq2 ´ p2BA

‰

` p1 ´ pBAq2 ` p2BA

Using (6), the fraction of type A at the beginning of the period can be expressed in terms of the
fraction of type A at the end of the period. Thus, both P pIq and P pAq in the equation are expressed at
the same point in time, reducing the necessity for a subscript for time:

P pIq “
P pAq ´ pBA

1 ´ pAB ´ pBA
¨
“

p1 ´ pABq2 ` p2AB ´ p1 ´ pBAq2 ´ p2BA

‰

` p1 ´ pBAq2 ` p2BA

This simplifies to
P pIq “ P pAq ¨ 2ppBA ´ pABq ´ 2pBAp1 ´ pABq ` 1

or, by defining P pDq as the complement of P pIq, i.e. P pDq “ 1 ´ P pIq, this becomes

P pDq “ 1 ´ P pIq “ P pAq ¨ 2ppAB ´ pBAq ` 2pBAp1 ´ pABq (8)

P pDq is the frequency with which the languages within the pair are different. So, there should
be a linear dependency between the frequency of pairs of languages being different, P pDq, and the
frequency of languages of type A, P pAq, of the form P pDq “ 2α ¨ P pAq ` 2β, with α “ pAB ´ pBA and
β “ pBAp1 ´ pABq. By empirically measuring P pDq and P pAq and by estimating the coefficients α and
β of the linear dependency, it is possible to estimate the transition probabilities (see Section for the
practical details).

Note that it might seem to be even more interesting to consider a less constrained model, starting
with two languages of any pair of types, AA, AB, BA, or BB. This would result in the following equation
for P pIq:

Pt1pIq “ Pt0pAq2
“

p1 ´ pABq2 ` p2AB

‰

` Pt0pBq2
“

p1 ´ pBAq2 ` p2BA

‰

` 2 ¨ Pt0pAq ¨ Pt0pBq rpABp1 ´ pBAq ` pBAp1 ´ pABs

However, after performing the same algebra as above, all transition probabilities factor out, leaving just
the evidently true, but useless, equation

P pIq “ 2 ¨ P pAq2 ´ 2 ¨ P pAq ` 1 “ P pAq2 ` P pBq2

Using genealogically closely related triples
There are various different setting that can be used to estimate the transition probabilities. However,
most of them quickly become rather complex. The algebra of the following two settings also nicely
reduces to a manageable model, being only slightly different from the previous one. These settings were
not considered by Maslova herself, but added by the present authors.
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Instead of looking at pairs of languages, one might also look at groups of three closely related languages.
In that case the probability that all three languages are identical consists of four different possible histories
(AAAt0 Ñ AAAt1 , AAAt0 Ñ BBBt1 , BBBt0 Ñ BBBt1 and BBBt0 Ñ AAAt1). This results in an
equation very similar to (7):

Pt1pIq “ Pt0pAq ¨ p1 ´ pABq3 ` Pt0pAq ¨ p3AB

` Pt0pBq ¨ p1 ´ pBAq3 ` Pt0pBq ¨ p3BA

Performing the same algebra as in the previous section, this leads to:

P pDq “ P pAq ¨ 3ppAB ´ pBAq ` 3pBAp1 ´ pABq (9)

i.e. exactly the same formula as in (8), though with a constant 3 instead of 2. Note that this does not
generalize to larger groups, i.e. for groups with five languages it does not work to replace the constant
with a 5. All groups higher than three languages lead to much more complex algebra and thus are not
usable as a quick approximation (which is the goal of the present method).

Using geographically close, but genealogically unrelated pairs
In this extension of Maslova’s approach we again consider two closely related languages, but now we
add a third non-related language that is geographically close to one (and only one) of the two related
languages. We are interested in situations where the two related languages are of a different type, but
the two non-related yet geographically close languages are of the same type. Such a situation is typically
interpreted as the result of contact-induced change in one of the geographically close languages. However,
there are various histories possible that lead to this setting.

We assume, as before, that at the start t0 of the period t the two related languages are of the same
type, so either both are of type A, with probability Pt0pAq, or both are of type B, with probability
Pt0pBq. The non-related third language can also be of either type (with the same probabilities), so there
are four possible start settings: AA-A, AA-B, BB-A, and BB-B (the non-related, but geographically close
language is shown separated by a dash). We are interested in end situations in which the two related
languages are of different types, but the two geographically close language are of the same type: AB-B
and BA-A. The probability for any of these situations to occur will be denoted P pCq, where the ‘C’
mnemonically stands for ‘convergence’.

From each starting situation it is possible to arrive at both end situations, given the right changes.
For example, to get from AA-A to AB-B requires two languages to change from A to B and one language
to not change from type A. Writing out all eight such possibilities gives the following unwieldy formula:

Pt1pCq “ Pt0pAq2
“

p1 ´ pABq2pAB ` p1 ´ pABqp2AB

‰

` Pt0pBq2
“

p1 ´ pBAq2pBA ` p1 ´ pBAqp2BA

‰

` Pt0pAq ¨ Pt0pBq rpABpBAp1 ´ pABq ` pBAp1 ´ pABqp1 ´ pBAqs

` Pt0pAq ¨ Pt0pBq rpABpBAp1 ´ pBAq ` pABp1 ´ pABqp1 ´ pBAqs

However, this immediately reduces to

Pt1pCq “ Pt0pAq2 rp1 ´ pABqpABs

` Pt0pBq2 rp1 ´ pBAqpBAs

` Pt0pAq ¨ Pt0pBq rp1 ´ pABqpABs

` Pt0pAq ¨ Pt0pBq rp1 ´ pBAqpBAs



SOI “Some Structural Aspects of Language are More Stable than Others” 6

Combining terms, and using the complementarity of P pAq and P pBq, this reduces to

Pt1pCq “ Pt0pAq rp1 ´ pABqpAB ´ p1 ´ pBAqpBAs ` p1 ´ pBAqpBA

Using (6), the probability Pt0pAq can be expressed by using only the probability Pt1pAq, so the time-
subscripts are identical and can thus be left out:

P pCq “
P pAq ´ pBA

1 ´ pAB ´ pBA
¨ rp1 ´ pABqpAB ´ p1 ´ pBAqpBAs ` p1 ´ pBAqpBA

which reduces nicely to
P pCq “ P pAq ¨ ppAB ´ pBAq ` pBAp1 ´ pBAq (10)

So, again there is the same linear dependency between the probability that the two unrelated languages
are identical while the two related languages are different, P pCq, and the empirical probability of languages
being of type A, P pAq. The only difference between (10) and the earlier results in (8) and (9) is the
constant. By estimating the coefficients, it is possible to estimate the transition probabilities, and from
that the stable distribution and the stability of the feature.

Empirically estimating the transition probabilities using WALS

In the main part of this paper, we applied the method described in Section to the data of the World
Atlas of Language Structures (WALS) [9] in order to obtain estimates of the stability of the structural
features of language covered in this database. The actual R code (released under a GPL v3 license) is
given below.

For any given feature in WALS, F with n ě 2 values V1, . . . Vn, we estimated separately the transition
probabilities for each of its values, Vi such that with the previous notations A is Vi and B represents all
other values except for Vi. Thus, for each value Vi we estimated the transition probabilities from Vi to
any other possible value, pABi.

The basic idea is the following. For a specific value A we select pairs of languages of the same genus
from WALS. All those pairs are separated into two different samples, for convenience called sample 1 and
sample 2 here. For each of these samples, we count how many pairs are not identical (so, one of the two
languages has value A, the other has not value A). The proportions of different pairs for the two samples
are P pD1q and P pD2q. Further, for both samples we count the number of languages that have value A.
The proportions of value for the two samples are P pA1q and P pA2q. From equation (8) we then have:

#

P pD1q “ 2αP pA1q ` 2β

P pD2q “ 2αP pA2q ` 2β
with

#

α “ pAB ´ pBA

β “ pBAp1 ´ pABq
(11)

From the first two equations in (11) we can derive:

α “
1

2
¨
P pD1q ´ P pD2q

P pA1q ´ P pA2q

β “
1

2
¨
P pA1qP pD2q ´ P pA2qP pD1q

P pA1q ´ P pA2q

And from the second two equations in (11) we can derive:

pAB “
1 ` α ˘

a

p1 ´ αq2 ´ 4β

2

pBA “
1 ´ α ˘

a

p1 ´ αq2 ´ 4β

2
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By filling in the four empirical estimates for P pD1q, P pD2q, P pA1q and P pA2q we can thus directly
derive estimates for pAB and pBA. However, note that there are actually two solutions for pAB and pBA,
one with lower transition probabilies (the ‘minus’ variant) and one with higher transition probabilities
(the ‘plus’ variant), with p´

AB “ 1 ´ p`
BA and vice versa. The interpretation of these two solutions can

be understood from looking back at equation (7). The ‘minus’ solution represents the situation that the
number of pairs that did not change (AAt0 Ñ AAt1 and BBt0 Ñ BBt1) is larger than the number of
pairs that changed completely (AAt0 Ñ BBt1 and BBt0 Ñ AAt1). As was discussed in Section , this
is the fitting interpretation to the assumption that the time period t is small. We will therfore use the
‘minus’ solution here.

Instead of using just two samples of pairs, as illustrated above, it is also possible to select many
different samples. In fact, in order to estimate α and β we used multiple sets of P pAq and P pDq for the
same value. Our way of obtaining these multiple sets is by randomly subsampling the set of all available
genera. For example, using WALS for feature 10 (Vowel Nasalization) and its value 1 (“Contrast present”),
we have a total of 26 genera with enough data for this feature1 We created 50 random subsets of 13 genera
and for each such subset we computed the P pDq and P pAq, as exemplified in Table 1.

Table 1. Example P pAq and P pDq for feature 10 (Vowel Nasalization) in WALS. Each subset shown is
composed of 13 random genera (here given by their alphabetical index, thus 1 represents
Adamawa-Ubangian). As an example, we only show the first 10 subsets generated in one particular run.

Subset P pAq P pDq

9, 11, 13, 18, 26, 10, 5, 23, 17, 7, 20, 25, 15 0.23 0.15
17, 2, 7, 8, 5, 26, 20, 22, 18, 23, 4, 25, 1 0.27 0.23

18, 19, 14, 11, 6, 25, 13, 17, 2, 22, 3, 12, 10 0.31 0.15
4, 5, 26, 2, 16, 24, 14, 10, 12, 25, 3, 1, 20 0.35 0.23
12, 9, 20, 11, 5, 24, 23, 22, 7, 1, 17, 6, 25 0.46 0.31

19, 8, 11, 14, 22, 21, 17, 6, 26, 16, 25, 2, 15 0.31 0.31
5, 1, 16, 6, 18, 25, 15, 8, 19, 13, 9, 23, 2 0.12 0.08

24, 14, 9, 1, 4, 11, 6, 16, 23, 10, 18, 20, 19 0.38 0.15
18, 26, 6, 4, 14, 12, 1, 13, 11, 8, 25, 20, 24 0.38 0.31
13, 25, 22, 3, 8, 14, 12, 4, 9, 21, 20, 2, 16 0.27 0.38

If we then regress P pDq to P pAq we obtain estimates of α and β as the coefficients of this regression.
In this example α “ 0.08 (std. error 0.17) and β “ 0.17 (std. error 0.05). The error values show that
these estimates are not completely random, though it should be noted that the errors are substantial.
The estimates are thus to be interpreted with care. Still, proceeding with these estimated parameters
we can estimate pAB “ 0.33 and pBA “ 0.25. Using the formula in (3) this implies that the stable
distribution of PSpAq “ 0.43. Note that the actual frequency of vowel nasalization in WALS is only 26%,
indicating that the current distribution is not in its stable state, and that there probably is influence
from historical coincidences on the current world-wide distribution of vowel nasalisation. The stability
of this characteristic is rather high, so languages do not seem to change too often, making it even more
probable that the current distribution shows signs of historical events.

Further, we computed the stability of the feature F by taking the weighted average of the stability of
each of its values Vi (defined as 1 ´ pABi), where the weights are represented by the relative frequencies

1The 26 genera are: Adamawa-Ubangian, Algonquian, Athapaskan, Bantoid, Biu-Mandara, Bodic, Bongo-Bagirmi,
Cariban, Eskimo-Aleut, Germanic, Gur, Kam-Tai, Kuki-Chin-Naga, Kwa, Madang, Northern Atlantic, Nupoid, Oceanic,
Pama-Nyungan, Romance, Semitic, Southern Atlantic, Sundic, Tupi-Guaraní, Western Mande, and Yuman.
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of the feature values:

SpF q “
1

n

n
ÿ

i“1

p1 ´ pABiqPi (12)

where Pi is the frequency of value Vi relative to all the possible values of feature F . Thus, the stability of
more frequent values have a bigger influence on estimating the frequency of the whole feature’s stability
SpF q.

The R code
This section contains the R code (released under GPL v3 and also reproduced in Script S1) implementing
the estimation of stability (used in this paper) based on Elena Maslova’s method (as described above).
Please note that depending on the version of the WALS database used results might differ slightly
from the ones reported here, but for maximum reproductibility we also included the version of the
WALS dataset we used as Dataset S1 (released under an Attribution-NonCommercial-NoDerivs 2.0
Germany (CC BY-NC-ND 2.0) license [http://creativecommons.org/licenses/by-nc-nd/2.0/de/deed.en];
see the included ReadMe.txt for more details). Also, estimating the transition probabilities (lines 207-
212) is very CPU-intensive. The symbols Œ and ë mark the points where a long line breaks to fit the
page.

1 ###############################################################################
# Estimate and g en e r a l i z e Elena Maslova ’ s " t r a n s i t i o n p r o b a b i l i t i e s "

3 #
# Copyright (C) 2008´2012 Michael Cysouw & Dan Dediu

5 #
# This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/or modify

7 # i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by
# the Free Software Foundation , e i t h e r ver s ion 3 o f the License , or

9 # ( at your opt ion ) any l a t e r ver s ion .
#

11 # This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,
# but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f

13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Pub l i c License f o r more d e t a i l s .

15 #
# You shou ld have rece i v ed a copy o f the GNU General Pub l i c License

17 # along with t h i s program . I f not , see <h t t p ://www. gnu . org/ l i c e n s e s/>.
#

19 ###############################################################################

21 # The working path :
working .path <́ " . /" ;

23

# Load the o r i g i n a l WALS data as used in Dediu , D. & Cysouw , M. Some S t ru c t u ra l Œ

ë Aspects o f Language are More S ta b l e than Others : A Comparison o f Seven Methods . ( Œ

ë p l ea s e make sure you have ex t r a c t ed i t here ) :
25 source ( paste ( working .path , "/WALS_R/wals . r " , sep="" ) , chd i r=TRUE) ;

## Please note t ha t cu r r en t l y the WALS data i s r e l e a s ed in a s l i g h t l y d i f f e r e n t format Œ

ë ( see h t t p ://wals . i n f o/expor t ) and in order to import i t you need to use in s t ead Œ

ë something o f the form :
27 ## but we did not t e s t the s c r i p t with t h i s new format and i t might r e qu i r e some Œ

ë tweaking .
#langs <́ read . t a b l e (" languages . tab " , sep="\t " , header=T)

29 #mat <́ read . t a b l e (" da tapo in t s . tab " , sep="\t " , header=T, row . names=1)

31

33 # Se l e c t genera t ha t have more than one language coded fo r a f e a t u r e
# For example , " l eng t h ( ge tgenera (83) )" g i v e s "197"
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35 # Constrain by macroarea ( i f != NA) and/or fami ly ( i f != NA) :
getgenera <́ function ( f ea ture , macroarea=NA, l g f am i l y=NA )

37 {
# Se l e c t those languages in the g iven macroarea ( i f any ) :

39 l angs <́ names( na . omit ( mat [ , f e a t u r e ] ) ) ;
i f ( ! i s .na( macroarea ) )

41 {
langs <́ l angs [ l g s$macroarea [ rownames( l g s ) %in% langs ] == macroarea ] ;

43 }
i f ( ! i s .na( l g f am i l y ) )

45 {
langs <́ l angs [ l g s$family [ rownames( l g s ) %in% langs ] == lg f am i l y ] ;

47 }

49 g <́ l i s tGene ra ( codes=langs ) # l i s t a l l genera
i f ( ! i s .na( macroarea ) & ! i s .na( l g f am i l y ) ) # both con s t r a i n t s

51 {
count <́ sapply ( g , function ( x ) { length ( na . omit ( mat [ rownames( l g s [ l g s$genus==x Œ

ë & l g s$macroarea == macroarea & l g s$family == lg fami ly , ] ) , f e a t u r e ] ) ) Œ

ë } ) # ge t genera t ha t are coded more than once
53 } else i f ( ! i s .na( macroarea ) ) # only macroarea cons t r a in t

{
55 count <́ sapply ( g , function ( x ) { length ( na . omit ( mat [ rownames( l g s [ l g s$genus==x Œ

ë & l g s$macroarea == macroarea , ] ) , f e a t u r e ] ) ) } ) # ge t genera t ha t Œ

ë are coded more than once
} else i f ( ! i s .na( l g f am i l y ) ) # only fa imly cons t r a in t

57 {
count <́ sapply ( g , function ( x ) { length ( na . omit ( mat [ rownames( l g s [ l g s$genus==x Œ

ë & l g s$family == lg fami ly , ] ) , f e a t u r e ] ) ) } ) # ge t genera t ha t are Œ

ë coded more than once
59 } else # no con s t r a i n t s at a l l :

{
61 count<́ sapply ( g , function ( x ) { length (na . omit (mat [rownames( l g s [ l g s$genus==x , ] ) , Œ

ë f e a t u r e ] ) ) }) # ge t genera t ha t are coded more than once
}

63 return ( g [ count>1 ] )
}

65

# Get es t imate s f o r P(D) and P(A) fo r a s e t o f genera g .
67 # Firs t , s e l e c t a pa i r o f languages from each genus , then compute P(D) and P(A) .

# The va lue can con s i s t e i t h e r o f a s i n g l e va lue (A) , in which case a l l the o ther s are Œ

ë cons idered as (non Á) ; a l i s t o f va lue s (A) and a l l the o ther s are cons idered (non Œ

ë Á) ; or as a l i s t o f va lue s (A) and the non . va lue s conta ins the l i s t o f non Á Œ

ë va lues , wi th a l l the o ther s ignored [ not ye t implemented ]
69 getprobs <́ function ( g , f ea ture , value , macroarea=NA, l g f am i l y=NA, non . va lue=NA )

{
71 # Get a random pair o f languages from the same genus , f o r each genus :

i f ( ! i s .na( macroarea ) & ! i s .na( l g f am i l y ) ) # Both con s t r a i n t s :
73 {

pairs <́ lapply ( g , function ( x ) { sample ( na . omit ( mat [ rownames( l g s [ l g s$genus==x Œ

ë & l g s$macroarea==macroarea & l g s$family==lg fami ly , ] ) , f e a t u r e ] ) , 2 ) } Œ

ë )
75 } else i f ( ! i s .na( macroarea ) ) # only macorarea cons t r a in t :

{
77 pairs <́ lapply ( g , function ( x ) { sample ( na . omit ( mat [ rownames( l g s [ l g s$genus==x Œ

ë & l g s$macroarea==macroarea , ] ) , f e a t u r e ] ) , 2 ) } )
} else i f ( ! i s .na( l g f am i l y ) ) # only fa imly cons t r a in t :

79 {
pairs <́ lapply ( g , function ( x ) { sample ( na . omit ( mat [ rownames( l g s [ l g s$genus==x Œ

ë & l g s$family==lg fami ly , ] ) , f e a t u r e ] ) , 2 ) } )
81 } else # no con t ra in t s :

{
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83 pairs <́ lapply ( g , function ( x ) { sample ( na . omit ( mat [ rownames( l g s [ l g s$genus==x Œ

ë , ] ) , f e a t u r e ] ) , 2 ) } )
}

85

# The pA and pD p r o b a b i l i t i e s :
87 pA <́ NA;

pD <́ NA;
89

# Compute pD & pA for the se pa i r s :
91 i f ( i s .na( non . va lue ) )

{
93 pD <́ 1 ´ ( sum( as .numeric ( lapply ( pairs , function ( x ) { ( ( x [ 1 ] %in% value ) Œ

ë & ( x [ 2 ] %in% value ) ) | ( ! ( x [ 1 ] %in% value ) & ! ( x [ 2 ] %in% value ) ) Œ

ë } ) ) ) / length ( pairs ) ) ;
pA <́ sum( as .matrix ( as . data . frame ( lapply ( pairs , function ( x ) { x %in% value } ) Œ

ë ) ) ) / ( 2 ∗ length ( pairs ) ) ;
95 } else

{
97 stop ( "No␣ yet ␣ implemented ! \n" ) ;

}
99 return ( data . frame ( "pA"=pA, "pD"=pD ) ) ;

}
101

# Get es t imate s f o r P(D) and P(A) mu l t i p l e times , and put the r e s u l t s in a t a b l e :
103 getcounts <́ function ( f ea ture , value , c a s e s =50, sample s i z e =.5 , macroarea=NA, l g f am i l y Œ

ë =NA, non . va lue=NA )
{

105 r e s u l t <́ data . frame ( "pA"=numeric ( ca s e s ) , "pD"=numeric ( ca s e s ) ) ;
g <́ getgenera ( f ea ture , macroarea , l g f am i l y ) ;

107

for ( i in 1 : c a s e s )
109 {

s <́ sample ( length ( g ) , f loor ( sample s i z e∗length ( g ) ) ) ;
111 r e s u l t [ i , ] <́ getprobs ( g [ s ] , f ea ture , value , macroarea , l g f ami ly , non . va lue ) ;

}
113 return ( r e s u l t ) ;

}
115

# Compute the t r a n s i t i o n p r o b a b i l i t i e s from the output o f " ge t count s " , i e . from the Œ

ë t a b l e with the va lue s o f P(D) and P(A) :
117 e s t imate s <́ function ( t e s t , no . s imu la t i on s =1000 , return . summaries=TRUE )

{
119 # Regress pD an pA:

l <́ lm( pD ~ pA, data=t e s t ) ; # The reg r e s s i on goodness was t e s t e d be f o r e us ing Œ

ë Pearson ’ s r , so don ’ t do i t again here !
121

# Get the es t imated r e g r e s s i on c o e f f i c i e n t s : they have a mean and a standard Œ

ë d i s t r i b u t i o n :
123 l .summary <́ summary( l ) ;

i f ( nrow( l .summary$coef f ic ients ) < 2 )
125 {

a . e s t imate <́ NA;
127 a . sd <́ NA;

b . e s t imate <́ NA;
129 b . sd <́ NA;

} else
131 {

a . e s t imate <́ as .numeric ( l .summary$coef f ic ients [ 2 , 1 ] ) ;
133 a . sd <́ as .numeric ( l .summary$coef f ic ients [ 2 , 2 ] ) ;

b . e s t imate <́ as .numeric ( l .summary$coef f ic ients [ 1 , 1 ] ) ;
135 b . sd <́ as .numeric ( l .summary$coef f ic ients [ 1 , 2 ] ) ;

}
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137

# Given the complex i ty o f the formaulas f o r pAB and pBA, I cannot de r i v e a formula Œ

ë f o r t h e i r sd , so s imu la te i t :
139 a . s imulated <́ rnorm( no . s imu lat ions , mean=a . est imate , sd=a . sd ) / 2 ;

b . s imulated <́ rnorm( no . s imu lat ions , mean=b . est imate , sd=b . sd ) / 2 ;
141

# And compute the p r o b a b i l i t i e s :
143 pAB. s imulated <́ (1 + a . s imulated ´ sqrt ( (1 ´ a . s imulated )^2 ´ 4∗b . s imulated ) )/ 2 ;

pBA. s imulated <́ (1 ´ a . s imulated ´ sqrt ( (1 ´ a . s imulated )^2 ´ 4∗b . s imulated ) )/ 2 ;
145 stableA . s imulated <́ pBA. s imulated / (pAB. s imulated + pBA. s imulated ) ;

s t a b i l i t y . s imulated <́ 1 ´ ( (pAB. s imulated + pBA. s imulated )/2) ;
147

# ge t c o r r e l a t i o n s f o r e s t imate s
149 c o r r e l a t i o n <́ cor . t e s t ( t e s t [ , 1 ] , t e s t [ , 2 ] )

151 # Return the r e s u l t s :
i f ( return . summaries == TRUE )

153 {
return ( l i s t (

155 pApD. cor = as .numeric ( c o r r e l a t i o n $ es t imate ) ,
pApD. s i g = c o r r e l a t i o n$p . value ,

157 pAB.mean = mean( pAB. simulated , na .rm=TRUE ) ,
pBA.mean = mean( pBA. simulated , na .rm=TRUE ) ,

159 stableA .mean = mean( stableA . s imulated , na .rm=TRUE ) ,
s t a b i l i t y .mean = mean( s t a b i l i t y . s imulated , na .rm=TRUE ) ,

161 pAB. sd = i f e l s e ( sum( ! i s .na( pAB. s imulated ) ) <= 1 , NA, sd ( pAB Œ

ë . s imulated , na .rm=TRUE ) ) ,
pBA. sd = i f e l s e ( sum( ! i s .na( pBA. s imulated ) ) <= 1 , NA, sd ( pBA Œ

ë . s imulated , na .rm=TRUE ) ) ,
163 stableA . sd = i f e l s e ( sum( ! i s .na( stableA . s imulated ) ) <= 1 , NA Œ

ë , sd ( stableA . s imulated , na .rm=TRUE ) ) ,
s t a b i l i t y . sd = i f e l s e ( sum( ! i s .na( s t a b i l i t y . s imulated ) ) <= 1 , Œ

ë NA, sd ( s t a b i l i t y . s imulated , na .rm=TRUE ) )
165 ) ) ;

} else
167 {

return ( data . frame ( pAB=pAB. simulated , pBA=pBA. simulated , stableA=stableA . Œ

ë s imulated , s t a b i l i t y=s t a b i l i t y . s imulated ) ) ;
169 }

}
171

# Compute the observed frequency o f the fea ture ’ s va lue in the g iven macroarea and Œ

ë language fami ly :
173 observed . f r e q <́ function ( f ea ture , value , macroarea=NA, l g f am i l y=NA, non . va lue=NA )

{
175 # Se l e c t those languages in the g iven macroarea ( i f any ) :

l angs <́ names( na . omit ( mat [ , f e a t u r e ] ) ) ;
177 i f ( ! i s .na( macroarea ) )

{
179 l angs <́ l angs [ l g s$macroarea [ rownames( l g s ) %in% langs ] == macroarea ] ;

}
181 i f ( ! i s .na( l g f am i l y ) )

{
183 l angs <́ l angs [ l g s$family [ rownames( l g s ) %in% langs ] == lg f am i l y ] ;

}
185

va lue s <́ na . omit ( mat [ rownames( l g s ) %in% langs , f e a t u r e ] ) ;
187 obs . f r e q <́ sum( va lue s %in% value ) / length ( va lue s ) ;

obs . f r e q ;
189 }

191 #####################################################################################
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#
193 # Compute the s t a b i l i t i e s o f WALS f e a t u r e s us ing the above es t imat ion techn i ques

#
195 #####################################################################################

197 # Features above 138 don ’ t work :
f e a t u r e . s e l e c t i o n <́ 1 :138

199 value . s e l e c t i o n <́ unlist ( sapply ( f e a t u r e . s e l e c t i o n , function ( x ) { which( Œ

ë f ea tVa lue s [ , " f e a t " ] == x ) } ) )

201 # Get the s t a t i s t i c s f o r a l l f ea ture s , us ing 200 samples . The l i s t ’ r e s u l t s ’ i s a l i s t Œ

ë f o r a l l 653 va lue s o f the f e a t u r e s 1 to 138:
r e s u l t s <́ l i s t ( )

203 for ( i in va lue . s e l e c t i o n )
{

205 r e s u l t s [ [ i ] ] <́ getcounts ( f ea tVa lue s [ i , 1 ] , f ea tVa lue s [ i , 2 ] , 200 )
}

207

# Get the e s t imate s f o r a l l r e s u l t s :
209 a l l . e s t imate s <́ l i s t ( )

for ( i in va lue . s e l e c t i o n )
211 {

a l l . e s t imate s [ [ i ] ] <́ e s t imate s ( r e s u l t s [ [ i ] ] )
213 }

215 # Extrac t the l i s t o f pAB t r an s i t i o n p r o b a b i l i t i e s :
pAB <́ unlist ( sapply ( a l l . e s t imates , function ( x ) { x [ 3 ] } ) )

217

# Get the f r a c t i on o f occurence o f a l l va l ue s per f e a t u r e : to be used in computing a Œ

ë weighted average o f the s t a b i l i t i e s o f each va lue .
219 # This a l s o n i c e l y g e t s r i d o f the nasty problem of va lue s t ha t are only found in very Œ

ë few languages : Maslova ’ s approach cannot es t imate such groups .
# However , because such groups are smal l , they are g e t t i n g a very low weight anyway Œ

ë now , so we don ’ t have to worry about t h e i r i n f l u enc e :
221 propor t ion <́ c ( )

for ( i in f e a t u r e . s e l e c t i o n )
223 {

t <́ table (mat [ , i ] )
225 propor t ion <́ c ( proport ion , t/sum( t ) )

}
227

# Then we de f ine the s t a b i l i t y o f a ∗va lue∗ as 1´pAB ( i . e . the p r o b a b i l i t y t ha t a Œ

ë va lue to ∗not∗ change ) .
229 # To der i v e the s t a b i l i t y o f a ∗ f e a t u r e∗ we take the weighted average over the se value Œ

ë ´s t a b i l i t i e s : f r e quen t va lue s count more than those with low f r e quenc i e s :
s t a b i l i t y <́ xtabs ( ( (1´pAB) ∗ propor t ion ) ~ f ea tVa lue s [ va lue . s e l e c t i o n , 1 ] )

231

# Save t h i s l i s t o f f e a t u r e s t a v i l i t i e s to f i l e f o r l a t e r use :
233 write . table ( data . frame ( "Feat"=as . character ( names( s t a b i l i t y ) ) , " S t a b i l i t y "=as . Œ

ë numeric ( s t a b i l i t y ) ) , "Maslova´s t a b i l i t i e s . csv " , sep="\ t " , quote=FALSE, row .names Œ

ë =FALSE ) ;
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