Proline Kink Angle Distributions for GWALP23 in Lipid Bilayers of Different Thickness

Johanna M. Froyd-Rankenberg¹, Vitaly V. Vostrikov¹, Christopher D. DuVall¹,

Denise V. Greathouse¹, Roger E. Koeppe II^{1*}, Christopher V. Grant² and Stanley J. Opella²

¹Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701,

and ²Department of Chemistry and Biochemistry,

University of California, San Diego; La Jolla, CA 92093

Supporting Information.

- **Figure S1.** MALDI mass spectra of a synthetic GWALP23-P12 peptide with two labeled alanines (Ala-d4) at different isotope abundance levels.
- Figure S2. Reversed-phase HPLC chromatogram of a synthetic GWALP23-P12 peptide.
- **Figure S3.** Representative ³¹P NMR spectra of DOPC bilayers, with GWALP23-P12 incorporated.
- **Figure S4**. ²H NMR spectra for labeled Ala methyl groups C-terminal to the proline in GWALP23-P12, in oriented bilayers of DLPC, DMPC and DOPC. Sample orientation is $\beta = 0^{\circ}$.
- **Figure S5**. ²H NMR spectra for labeled Ala methyl groups N-terminal to the proline in GWALP23-P12, in oriented bilayers of (left to right) DLPC, DMPC and DOPC. Sample orientation is $\beta = 0^{\circ}$.
- Figure S6. Segmental tilt distributions in DLPC and DOPC.

Figure S7. Distributions of proline-induced helix unwinding ("swivel") angles for GWALP23-P12 in (A) DLPC, (B) DMPC and (C) DOPC.

Figure S1. MALDI mass spectra of a synthetic GWALP23-P12 peptide with two labeled alanines (Ala-d4) at different isotope abundance levels.

Figure S2. Reversed-phase HPLC chromatogram of a synthetic GWALP23-P12 peptide with ²H-labeled alanines in two sequence positions.

Figure S3. Representative ³¹P NMR spectra of DOPC bilayers, with GWALP23-P12 incorporated, at $\beta=0^{\circ}$ (left) and $\beta=90^{\circ}$ (right) sample orientations.

Figure S4. ²H NMR spectra for labeled Ala methyl groups C-terminal to the proline in GWALP23-P12, in oriented bilayers of DLPC, DMPC and DOPC. Sample orientation is $\beta = 0^{\circ}$. Deuterium isotope levels in the labeled alanines are: A. 100% Ala¹⁷, 50% Ala²¹. B. 100% Ala¹⁵, 50% Ala¹³. C. 100% Ala¹⁶, 50% Ala¹⁵.

Figure S5. ²H NMR spectra for labeled Ala methyl groups N-terminal to the proline in GWALP23-P12, in oriented bilayers of (left to right) DLPC, DMPC and DOPC. Sample orientation is $\beta = 0^{\circ}$. The deuterium isotope abundance is 100% in Ala⁷ and 50% in Ala⁹.

Figure S6. Segmental tilt in DLPC and DOPC. RMSD plots for the tilt of the N-terminal (black) and C-terminal (red) helical segments of GWALP23 P12 in oriented bilayers of (A) DLPC, and (B) DOPC. RMSD is plotted at contour levels of 1, 2 and 3 kHz, as a function of τ and ρ values for the optimum S_{zz} in semi-static calculations.

Figure S7. Distributions of proline-induced helix unwinding ("swivel") angles, calculated from rmsd (τ , ρ) analysis of the N- and C-terminal segments of GWALP23-P12 in (A) DLPC, (B) DMPC and (C) DOPC.