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1 The local postsynaptic potential

In the main text we pursue the hypothesis that synapses undergoing STP estimate the somatic
membrane potential of the presynaptic cell, with a quantity we called ’the local postsynaptic
potential’ representing the results of this estimation process. In this section we define the local
postsynaptic potential formally. We also explain how experimental data, and in particular those
recorded in STP experiments, pertain to it, and how it relates to single neuron computations.

1.1 Biophysical definition

Consider isolating the ith synaptic compartment from the rest of the dendritic tree. If we also
ignore any non-synaptic currents, the dynamics of its potential would follow the simple differential
equation:

Cm
dv(i)

dt
=
vrest − v(i)

Rm
+ I(i)

syn(t) (S1)

where vrest is the resting membrane potential, Cm and Rm are the membrane capacitance and
resistance, respectively, and I(i)

syn(t) describes the current entering through synaptic channels. We
call v(i) the ‘local postsynaptic potential’.

1.2 Experimental measurement

Of course, v(i) is an idealization that will not be expressed in either the dendritic or the somatic
membrane potential under normal conditions, for at least two reasons. First, the true membrane
potential of the local dendritic compartment, v∗(i), follows a different equation:

Cm
dv∗(i)

dt
=
vrest − v∗(i)

Rm
+ I(i)

syn(t) + I
(i)
other(t) (S2)

where I(i)
other(t) includes other current contributions that are not the leak current, nor the synap-

tic current. This includes currents propagated from other parts of the dendritic tree, and active
currents generated within the same compartment. Second, v(i) is not expressed in the somatic
membrane potential of the post-synaptic neuron, v(soma), because the intervening dendrite filters
the synaptic signal, and the soma integrates it with the local postsynaptic potentials created
by the many other simultaneously active inputs that the post-synaptic neuron is likely to re-
ceive. Therefore, although v(i) is a useful theoretical construct for understanding single neuron
computation (as long as Eq. S4 holds, see below), it may not be a quantity that is immediately
apparent in membrane potential recordings.

Fortunately for our purposes, STP experiments provide very different conditions from those
present in the functional circuit1, and these make the experimental assessment of v(i) amenable.
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In such experiments, which are often in vitro 2, normally only a single synapse, or a small subset
of synapses is stimulated. This has two effects: the somatic membrane potential depends only
on the postsynaptic potential in one dendritic compartment, and the local dendritic membrane
potential is kept in the subthreshold regime which minimises the effects of active conductances
(i.e. I(i)

other ≈ 0). Overall, these effects result in the somatic membrane potential reflecting the
local postsynaptic potential well except for the consequences of dendritic filtering. Filtering will
mostly affect the time constant and absolute amplitude of the somatic signal. We therefore fit
only the relative changes in somatic amplitudes (Fig. 3 of the main paper), which should be less
affected by this. Nevertheless, a stronger experimental test of the theory would require local
dendritic recordings under such minimal stimulation conditions.

1.3 Computational use

A common assumption in models of neural circuit activity is that neurons need to compute
some (potentially high-dimensional and complicated) functions of their inputs3,4. In terms of
(subthreshold) somatic membrane potentials, one can formalise this as

v(soma) = F
(
u(1), u(2), . . . , u(M)

)
(S3)

where u(i) is the somatic membrane potential of presynaptic neuron i (out of M), v(soma) is
the somatic membrane potential of the postsynaptic cell, and F is the non-linear function it
computes on its inputs which depends on dendritic processing and other intracellular processes.
(Note that Eq. S3 can be rewritten in terms of pre- and postsynaptic firing rates, which are
themselves also some non-linear functions of membrane potentials, in the same general form
with a suitable choice of F .)

However, since the postsynaptic membrane potential can only directly depend on the spiking
output of presynaptic cells, we propose that the cell approximates equation S3 by applying its
non-linearity to reliable estimates of the presynaptic membrane potentials, û(i). These we suggest
are represented by the local postsynaptic potentials, v(i) described above:

v(soma) = F
(
v(1), v(2), . . . , v(M)

)
' F

(
û(1), û(2), . . . , û(M)

)
(S4)

This is a key reason for introducing v(i) as an idealization. In line with standard reduced
neuron models3,5, we assumed here that the somatic membrane potential can be written to a
reasonable approximation in the form given by equation S4 as a function of v(i), rather than
v∗(i), which means that the effects of I(i)

other are incorporated into F . Crucially, the better the
individual v(i) estimate u(i), the better equation S4 implements equation S3. This is illustrated
in Supplementary Figure S1.

2 Estimation under the switching Ornstein–Uhlenbeck process

2.1 Generative process

For convenience, recall here the description of the generative model under the switching Ornstein–
Uhlenbeck (OU) process. In such a process, the resting membrane potential urest

t is not fixed
but randomly switches between two levels, u+ ans u−, corresponding to “up” and “down” states
(Supplementary Fig. S2b)

P
(
urest
t |urest

t−δt
)

=


1− η−δt if urest

t = u+ and urest
t−δt = u+

η−δt if urest
t = u− and urest

t−δt = u+

1− η+δt if urest
t = u− and urest

t−δt = u−

η+δt if urest
t = u+ and urest

t−δt = u−
(S5)

where η− and η+ are the rates of switching to the “down” and “up” states, respectively. The
presynaptic membrane potential evolves as an Ornstein-Uhlenbeck (OU) process around the
resting potential urest

t which is now time-dependent:

P
(
ut|ut−δt, urest

t

)
= N

[
ut; ut−δt +

1
τ

(
urest
t − ut−δt

)
δt, σ2

Wδt

]
(S6)

2



Pfister et al. Synapses as optimal estimators

Spike generation is described by the same rule as in the non-switching case. See Eqs. 5-7 of the
main paper.

2.2 Optimal estimator

The optimal estimator is given by the following filtering equation:

P
(
ut, u

rest
t |s0:t

) ∝ P(st|ut)
∑
urest
t−δt

∫ ∞
−∞

P
(
ut|ut−δt, urest

t

)
P
(
urest
t |urest

t−δt
)

P
(
ut−δt, urest

t−δt|s0:t−δt
)
dut−δt

(S7)

We are primarirly interested in the posterior over the membrane potential. This can be obtained
by marginalising Equation S7:

P(ut|s0:t) =
∑
urest
t

P
(
ut, u

rest
t |s0:t

)
= (1− ρt) p−t (ut) + ρt p

+
t (ut) (S8)

where
ρt = P

(
urest
t = u+|s0:t

)
(S9)

is the estimated probability of the resting membrane potential being in its “up” state (or the
mixture ratio), and

p−t (ut) = P
(
ut|urest

t = u−, s0:t
)

(S10)

p+
t (ut) = P

(
ut|urest

t = u+, s0:t
)

(S11)

express the posterior distribution of ut assuming that urest is in its “down” or “up” state, re-
spectively.

The mean of the posterior over the presynaptic membrane potential can be written as:

ût = (1− ρt) µ−t + ρt µ
+
t (S12)

where

µ−t =
∫ ∞
−∞

ut p
−
t (ut) dut (S13)

µ+
t =

∫ ∞
−∞

ut p
+
t (ut) dut (S14)

are the conditional mean estimates of ut, assuming again that urest is in its “down” or “up”
state, respectively.

The change in the posterior mean, corresponding to postsynaptic potential dynamics (in contin-
uous time) is then

˙̂ut = [1− ρt+ε] µ̇−t + ρt+ε µ̇
+
t + ρ̇t

[
µ+
t−ε − µ−t−ε

]
(S15)

Therefore, there are two factors contributing to changes in the mean posterior (and thus to the
size of an EPSP): changes in the conditional means µ− and µ+, and changes in the mixture
ratio ρt. These two factors act additively. However, for closer correspondence with the synaptic
resource and utilisation variables (Online Methods), Equation S15 can be rearranged as:

˙̂ut = ∆µ
t

[
1 +

∆ρ
t

∆µ
t

]
(S16)

where

∆µ
t = [1− ρt+ε] µ̇−t + ρt+ε µ̇

+
t (S17)

∆ρ
t = ρ̇t

[
µ+
t−ε − µ−t−ε

]
(S18)

correspond to the two factors. The associations of ∆µ
t and ∆ρ

t with short-term depression and
facilitation respectively are discussed in the two next sections.
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2.3 Changes in the conditional means, ∆µ
t

In order to understand the conditional means, let us first revisit the conditionalised posteriors,
p−t (ut) and p+

t (ut). In the limit when the dynamics of urest are sufficiently slow, and u− and u+

are not too far apart, these are approximately

p−t (ut)
≈∝ P(st|ut)

∫ ∞
−∞

P
(
ut|ut−δt = u′, urest

t = u−
)
p−t−δt(u

′) du′ (S19)

p+
t (ut)

≈∝ P(st|ut)
∫ ∞
−∞

P
(
ut|ut−δt = u′, urest

t = u+
)
p+
t−δt(u

′) du′ (S20)

If p−t−δt(ut) and p+
t−δt(ut) are Gaussians, each of Equations S19-S20 describes the posterior up-

dates for a simple OU process with non-linear–Poisson spike generation, as derived in the main
paper. This implies that the two conditional means, µ− and µ+, evolve as the posterior mean,
û in Eq. 11 of the main paper: their updates depend on the (here, conditionalised, or relative)
posterior variances when observing a spike at time t∗:

µ̇−t∗ ∝
(
σ−t∗−ε

)2
, µ̇+

t∗ ∝
(
σ+
t∗−ε

)2
(S21)

where (
σ−t
)2

=
∫ ∞
−∞

u2
t p
−
t (ut) dut −

(
µ−t
)2

(S22)

(
σ+
t

)2
=
∫ ∞
−∞

u2
t p

+
t (ut) dut −

(
µ+
t

)2
(S23)

We know from Eqs. 11 and 12 of the main paper that the proportionality in equation S21 leads
to depression. Thus ∆µ

t∗ , the total change in û due to changes in the conditional means at the
time of an incoming spike t∗, will also show depression because it is a weighted some of two terms
that both depress individually:

∆µ
t∗ ∝ σ2

t∗ (S24)

where, from Eq. S17
σ2
t = [1− ρt+ε]

(
σ−t−ε

)2
+ ρt+ε

(
σ+
t−ε
)2

(S25)

2.4 Changes in the mixture ratio, ∆ρ
t

The dynamical equation for the mixture ratio can be derived as (see section 2.5):

ρ̇t ≈ η+ − [η+ + η− + γ+
t − γ−t

]
ρt −

[
γ+
t − γ−t

]
ρ2
t + ∆̄ρ

t−ε St
(S26)

where

γ+
t δt = P

(
st = 1|urest

t = u+, s0:t−δt
)

and γ−t δt = P
(
st = 1|urest

t = u−, s0:t−δt
)

(S27)

are the (conditionalised) posterior firing rates and are analogous to γt derived in Eq. 10 of the
main text.

The most important term from Equation S26 for us now is

∆̄ρ
t∗ =

1

1 +
γ−t∗
γ+
t∗

1− ρt∗
ρt∗

− ρt∗ (S28)

expressing the size of the instantaneous update in ρ after observing a spike (Fig. S3) at time t∗

(see Supplementary Figure S3). This quantity is non-negative, and highly non-linear in ρ:
in particular, it has an inverted U-shape which means that in the range of low ρ values (the left
arm of the inverted-U), larger ρ values imply larger increments in ρ thus leading to facilitation.
The greater the difference in firing rates between the “up” and “down” states is, γ+

t∗/γ
−
t∗ , the
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larger the magnitude but also the smaller the window of facilitation becomes (the peak of the
∆̄ρ
t∗ curve shifts up and to the left∗). Also note, that for the range of large ρ values, depression,

rather than facilitation, is predicted. The overall effect, of course, also depends on the conditional
means, because ∆ρ

t∗ =
[
µ+
t∗−ε − µ−t∗−ε

]
∆̄ρ
t∗ (see Eq. S18), and the balance between ∆∗µ and ∆∗ρ

(Eq. S16).

2.5 Deriving ρ̇

The mixture ratio ρt = P(urest
t = u+|s0:t) at time t can be written as

ρt =
∫ ∞
−∞

P
(
ut, u

rest
t = u+|s0:t

)
dut (S29)

By using the filtering equation of the optimal estimator (equation S7), we write

ρt ∝
∑
urest
t−δt

P
(
urest
t = u+|urest

t−δt
)

P
(
urest
t−δt|s0:t−δt

) ·
·
∫ ∞
−∞

∫ ∞
−∞

P(st|ut) P
(
ut|ut−δt, urest

t = u+
)

P
(
ut−δt|urest

t−δt, s0:t−δt
)
dut−δt dut

∝
∑
urest
t−δt

P
(
urest
t = u+|urest

t−δt
)

P
(
urest
t−δt|s0:t−δt

) · (S30)

·
∫ ∞
−∞

P
(
st|ut−δt, urest

t = u+
)

P
(
ut−δt|urest

t−δt, s0:t−δt
)
dut−δt

∝
∑
urest
t−δt

P
(
urest
t = u+|urest

t−δt
)

P
(
urest
t−δt|s0:t−δt

)
P
(
st|urest

t = u+, urest
t−δt, s0:t−δt

)
(S31)

If we assume that the the probability of having a spike at time t, given the resting membrane
potential at time t, urest

t and the spiking history s0:t−δt, is independent of the resting membrane
potential at time t− δt, we have:

ρt
≈∝

∑
urest
t−δt

P
(
urest
t = u+|urest

t−δt
)

P
(
urest
t−δt|s0:t−δt

)
P
(
st|urest

t = u+, s0:t−δt
)

≈∝ P
(
st|urest

t = u+, s0:t−δt
) [

(1− ρt−δt) η+δt+ ρt−δt
(
1− η−δt)] (S32)

Similarly, the estimated probability of being in the “down” state is appoximately proportional
(with the same constant of proportionality) to

(1− ρt) ≈∝ P
(
st|urest

t = u−, s0:t−δt
) [

(1− ρt−δt)
(
1− η+δt

)
+ ρt−δt η−δt

]
(S33)

Let α denote the proportionality factor assumed in equations S32 and S33. By first noting that
ρt can be trivially rearranged as

ρt =
1

1 +
α (1− ρt)

αρt

(S34)

we can insert equations S32 and S33 to get

ρt ≈ 1

1 +
P(st|urest

t = u−, s0:t−δt)
P(st|urest

t = u+, s0:t−δt)
[(1− ρt−δt) (1− η+δt) + ρt−δt η−δt]
[(1− ρt−δt) η+δt+ ρt−δt (1− η−δt)]

(S35)

∗Formally, it can be shown, that lim
γ+
t∗/γ

−
t∗→∞

∆̄ρ
t∗ = 1 − ρt∗ and lim

γ+
t∗/γ

−
t∗→1

∆̄ρ
t∗ = ε ρt∗ [1− ρt∗ ] where ε =

1− γ−t∗/γ+
t∗ → 0. It is interesting to note that in this latter limit the update in ρ happens to be proportional to

the uncertainty about the resting membrane potential (i.e. the variance of the associated Bernoulli distribution,
ρt∗ [1− ρt∗ ])
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By taking the limit of δt → 0 and after some elementary algebra, we can express the temporal
derivative of ρ:

ρ̇t = lim
δt→0

ρt − ρt−δt
δt

≈ η+ − [η+ + η− + γ+
t − γ−t

]
ρt −

[
γ+
t − γ−t

]
ρ2
t + ∆̄ρ

t−εSt (S36)

where γ+
t and γ−t denote the conditionalised posterior firing rates of the “up” state and “down”

state respectively:

γ+
t δt = P

(
st = 1|urest

t = u+, s0:t−δt
)

γ−t δt = P
(
st = 1|urest

t = u−, s0:t−δt
)

and ∆̄ρ
t denotes the amplitude of the update of ρ after having observed a spike at time t:

∆̄ρ
t =

1

1 +
γ−t
γ+
t

1− ρt
ρt

− ρt (S37)
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Supplementary Figures and Legends
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Supplementary Figure S1. Computation with M=100 inputs. Left: membrane potential traces
u(i) of the presynaptic neurons. Middle-left: presynaptic spike trains generated from the mem-
brane potential traces. Middle: estimated presynaptic membrane potential û(i) with a static
synapse (green) a dynamical synapse (blue) and the optimal estimator (red). The black line
denotes the presynaptic membrane potential itself. Middle-right: ideally, the somatic mem-
brane potential of the postsynaptic cell computes a (potentially non-linear) function (here, we
took v(soma) =

∑
i Jiu

(i)) of its M = 100 inputs (black). Practically, this is approximated as∑
i Jiû

(i) with estimates û(i) given by static synapses (green), dynamical synapses (blue), or
the optimal estimator (red). Right: firing rate of the postsynaptic neuron which is computed
as a non-linear (here sigmoidal) function of the somatic potential of the postsynaptic neuron,
f
(
v(soma)

)
. Parameters for the simulation were: βσ=2, τ=20 ms, g(urest)=10 Hz, Ji=1/

√
M ,

f(v)=f0/(1 + exp(−αv)), with f0 =50 Hz and α=2 mV−1.
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Supplementary Figure S2. Generative model for presynaptic membrane potential fluctuations
and spike generation. (a) Graphical model for the case with constant resting membrane potential.
The membrane potential ut follows an Ornstein-Uhlenbeck (OU) process around a constant
resting potential urest. A spike is elicited at time t (st = 1) with probability g(ut) δt. (b)
Graphical model for the case with changing resting membrane potential. The resting potential
urest
t (see Eq. S5) can randomly switch between a “down” and an “up” state. (c) Instantaneous

firing rate g(u) as a function of the membrane potential u for different values of the spiking
determinism parameter β (β−1 = 3 mV – solid line, 10 mV – dot-dashed line, 1 mV – dotted
line) with g0 set such that g(−60 mV)=10 Hz.
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∆̄∗
ρ

ρ

1

0
0 1

∆̄ρ

Supplementary Figure S3. ∆̄ρ, the increment in ρ after observing a spike, as a function of ρ, for
different values of γ+

t

γ−t
(1 – blue, 2 – green, 5 – orange, 10 – red, →∞ - black). Dotted black line

shows the location of the peak of the curves as γ+
t

γ−t
is varied 1→∞.
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