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1 Supplemental Methods

1.1 Seven State Single Channel Model With IP3 Dependence

The PO and other kinetics of IP3R change with C and I. The peak PO increases

nonlinearly as we increase I (symbols in Figure 2S). To reach a minimal model

that gives both the IP3 and Ca2+ dependence of IP3R gating we fit the open

probability function to the PO data where PO is a function of both C and I.

Using the information criterion proposed by Scharz [1] we find that the best fit

to the PO data is obtained by using the following rational function in both C and

I. Note that the ”best fit” here refers to the fit to the PO data that depends on

both C and I, while in case of four state model it refers to the fit to the PO data

at fixed I = 10µM and varying C.

PO(C, I) =
KO24C2I4

Z(C, I)
(1S)
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Z(C, I) =KR00 +KA20C
2 +KI50C

5 +KR04I
4 +KA24C

2I4 +KO24C
2I4 +KI54C

5I4 (2S)

If the channel kinetics obey the laws of detailed balance and mass action, at

least one state can be associated with each distinct monomial in the PO. The

monomials are: KR00, KA20C2, KI50C5, KR04I4, KA24C2I4, KO24C2I4, and KI54C5I4.

Thus there are seven states: R00, A20, I50, R04, A24, O24, and I54. The first

and second indices in each state respectively correspond to the number of C and

I bound to the channel when in that state. The constant KXij is the product

of forward equilibrium constants along any path connecting the rest state R00

to state Xij. We call KXij the occupancy parameter of state Xij. The quantity

KXijCiIj is the occupancy of state (Xij) relative to the state R00. The occupancy

parameters for the seven states are given in Table 1S.

The model scheme with seven states that explicitly treats Ca2+ and IP3 binding is shown

in Figure 1S. Model fit to the experimental data is shown by solid lines in Figure 2S. The

patch clamp PO data given by symbols in Figure 2S is the mean of multiple patch clamp

experiments on Xenopus Laevis occytes for the same ligand concentrations C and I.

As we will discuss in detail bellow and in the main text in relation to the four state

model, there are “low occupancy” states with one, two, and three IP3 bound that mediates

the transition between the rest state R00, which has no IP3 bound, and state R04, which

has four IP3 bound. Similarly, there are three low occupancy states for each A20 ⇋ A24

and I50 ⇋ I54 transitions. The PO data are not adequate to provide accurate estimates of

the occupancy of these states, however, they serve as “speed bumps” for the probability flux

between high occupancy states.

1.2 Derivation of Transition Rates and Simplification of Four State

Model

The transition between the R0 and A2 states involve one low occupancy state, A1. We

use the subscripts to represent the number of Ca2+ ions bound to IP3R in that state. To

simplify this chain we first write it in terms of probability fluxes as shown in eq. 3S. The

probability flux between two states with l and m number of ligands bound respectively is

given by kfluxlm Cn where kfluxlm is the flux parameter and n is the maximum of l and m. The

goal is to aggregate this 3 state chain into 2 state chain by eliminating the low occupancy

state. We will derive the mean time to go from one state to another. The effective transition

rates between the high occupancy states are simply the inverse of mean times to transition
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between those states.

R0

kflux01 C
⇐ÔÔ⇒A1

kflux12 L2

⇐ÔÔ⇒A2 (3S)

Assuming detailed balance, we can write the generator matrix, Q, in the following form [2, 3]

Q =W −1Qef . (4S)

Writing the generator matrix in this form automatically imposes detail balance on the net-

work. W in equation (4S) is the diagonal matrix whose entries are the unnormalized equi-

librium occupancies of the three states, R0, A1,and A2.

W =
⎛
⎜⎜⎜
⎝

1 0 0

0 KA1C 0

0 0 KAC2

⎞
⎟⎟⎟
⎠

(5S)

where KA1C and KAC2 are the occupancies of states A1 and A2 respectively relative to

state R0 having an occupancy of 1. We call the constant Ki as the occupancy parameter.

Qef in equation (4S) is the symmetric generator matrix with element Qef
xy corresponding to

the equilibrium probability flux from state x to y. The diagonal entries of Qef are given by

Qef
xx = −∑y≠xQ

ef
xy which is an expression of conservation of probability [2].

Qef =
⎛
⎜⎜⎜
⎝

−kflux01 C kflux01 C 0

kflux01 C −kflux01 C − kflux12 C2 kflux12 C2

0 kflux12 C2 −kflux12 C2

⎞
⎟⎟⎟
⎠

(6S)

Equations (4S-6S) give

Q =
⎛
⎜⎜⎜
⎝

−kflux01 C kflux01 C 0
kflux01

KA1
−k

flux
01 +kflux12 C

KA1

kflux12 C

KA1

0
kflux12

KA
−k

flux
12

KA

⎞
⎟⎟⎟
⎠

(7S)
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We first aggregate R0 and A1 states and represent the aggregated state by R. The exact

distribution of first passage time to go from R to A2 is given by

fRA2 = ΠRe
QRRtQRA2uA2 (8S)

where ΠR = (1,0) is a vector whose elements are initial probabilities of states R0 and A1

and uA2 is a vector with all entries equal to one and dimension equal to the number of final

states to which the system is about to transition, in this case one state (A2). QRR, and

QRA2 are the sub-matrices of Q

QRR =
⎛
⎝
−kflux01 C kflux01 C
kflux01

KA1
−k

flux
01 +kflux12 C

KA1

⎞
⎠

(9S)

QRA2 =
⎛
⎝

0
kflux12 C

KA1

⎞
⎠

(10S)

We can calculate the mean time to go from aggregated state R to A2, TRoA2 , by integrating

equation (8S) and is given by

TR0A2 = ΠR(QRR)−2QRA2uA2 (11S)

TR0A2 =
kflux01 + kflux01 KA1C + kflux12 C

kflux01 kflux12 C2
(12S)

TR0A2 =
1

kflux01 C
+ 1

kflux12 C2
(13S)

The last expression is reached by assuming that the occupancy of the state A1 is negligible

as compared to states R0 and A2.

Similarly, the distribution of first passage time to go to R0 from A, which represents the
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aggregate of A1 and A2 states is given by

fAR0 = ΠAe
QAAtQAR0uR0 , (14S)

where ΠA = (0,1) is the row matrix having the initial probabilities of states A1 and A2

respectively, uR0 is a 1 × 1 identity matrix, QAA, and QAR0 are the sub-matrices of Q

QAA =
⎛
⎜
⎝

−k
flux
01 +kflux12 C

KA1

kflux12 L

KA1

kflux12

KA
−k

flux
12

KA

⎞
⎟
⎠

(15S)

QAR0 =
⎛
⎝

kflux01

KA1

0

⎞
⎠

(16S)

Integrating equation (14S) gives us the mean time to go from state A to R0 as

TA2R0 = ΠA(QAA)−2QAR0uR0 (17S)

TA2R0 =
kflux12 KA1 + kflux01 KA + kflux12 KAL

kflux01 kflux12

(18S)

TA2R0 =KAC
2 ( 1

kflux01 C
+ 1

kflux12 C2
) =KAC

2TR0A2 (19S)

Thus we can write

TRA = 1

kflux12 C2
+ 1

kflux01 C
(20S)

TAR = ( C
CA
)

2

TRA (21S)

The mean transition times for O ⇋ I and R ⇋ I branches of the model can be derived
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using the same analogy and are given as

TOI = ( C
CO
)

2

( 1

kflux45 C5
+ 1

kflux34 C4
+ 1

kflux23 C3
) (22S)

TIO = ( C
CI
)

5

(CO
C
)

2

TOI (23S)

TRI = 1

k̂flux01 C
+ 1

k̂flux12 C2
+ 1

k̂flux23 C3
+ 1

k̂flux34 C4
+ 1

k̂flux45 C5
(24S)

TIR = ( C
CI
)

5

TRI (25S)

The .̂ in equation (24S) is used to distinguish the flux parameters in R ⇋ I branch from R

⇋ O and O ⇋ I branches.

The mean open time for this model is given by:

τO = 1

KOA +KOI

(26S)

where KOA and KOI are the rates from the O state to A and I respectively. The rate KOA

is Ca2+ independent. Under optimal conditions most of the closing transitions in a patch

clamp are between O and A. Thus we can approximate KOA by τ−1
O without introducing

large error. i.e.

TOA = τO (27S)

We can write the mean time from O to A as

TOA = Occupancy of O × 1

probability flux from O to A

=KOC
2 × 1

kflux22 C2
(28S)
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where kflux22 is flux parameter for A⇋ O transition. Equation (28S) gives kflux22 = KO/τO. In

analogy with equation (28S), we can write

TAO = τO
C2
O

C2
A

(29S)

It is easy to check that the product of times around the loop in one direction equals

the product of times around in the opposite direction, confirming that detailed balance is

satisfied. The transition rates, Kij, between the various states (R, A, O, I) are the inverses

of mean transition times, Tij between states so that KAR = T −1
AR, etc. Various constants used

in the above equations are derived as follows.

1.3 Parameters Estimation

We estimated various constants used in the mean transition times from the PO and rapid

perfusion experiments [4]. The PO data gave us estimates to CA, CO, and CI . τo = 30 ms

is the mean open time of the channel under optimal conditions (2 µM Ca2+ and 10 µM IP3

concentrations). For the probability flux parameters kfluxij s and k̂fluxij s we used the kinetic

data on Ca2+ regulation at optimal IP3 concentration (10µM) which is listed in the following

chart [4].

Mean activation time (changing Ca2+ from < 10nM to 2µM) = 40 ± 3ms

Mean de-activation time (changing Ca2+ from 2µM to < 10nM) = 160 ± 20ms

Mean inhibition time (changing Ca2+ from 2µM to 300µM) = 290 ± 40ms

Mean inhibition-recovery time (changing Ca2+ from 300µM to 2µM) = 2.4 ± 2s

Changing Ca2+ from < 10nM to 300µM ,
9

103
experiments failed to cause bursts

Changing Ca2+ from 300µM to < 10nM ,
6

94
times the channel bursts before

getting de-activated. (30S)
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Thus we can write

TRA ∣C=2µM= 40ms (31S)

TAR ∣C=10nM= 160ms (32S)

TOI ∣C=300µM= 290ms (33S)

TIO ∣C=2µM= 2.4s (34S)

TRA
TRI
∣C=300µM= 9

103
(35S)

TIR
TIO
∣C=10nM= 6

94
(36S)

Using the equalities 31S and 32S we extracted kflux01 and kflux12 . Equalities 33S and 34S gave

us kflux23 and kflux45 . We put kflux34 equal to one as this corresponds to the fast transition in

the chain O ⇋ I. k̂flux01 and k̂flux45 are extracted from equalities 35S and 36S. Finally, we

put k̂flux12 , k̂flux23 , and k̂flux34 equal to 1 as they correspond to fast transitions between low

occupancy states. The values of occupancy and probability flux parameters are given in

Table 2S.

1.4 Stochastic Scheme of Channel Gating

The gating of IP3R is given by the four state model described in the main text. To determine

the state of the channel, we have to determine the transition probabilities at a given time.

That is, if the jth channel is in state i, we have to determine the probabilities with which

it remains in that state or switches into another state allowed by the kinetic scheme shown

in Fig. 1 (main text) within the time interval ∆t. For example, if a channel is in state

R; possible transitions are to states A and I. For a sufficiently small time interval ∆t,

the probabilities for these transitions are given by P
(j)
R→A = K

(j)
RA∆t and P

(j)
R→I = K

(j)
RI ∆t.

The probability for the channel to remain in state R is PR→R = 1 − PR→A − PR→I . To

determine the transition probabilities, we followed the procedure outlined in part by the

Gillespie algorithm [5]. The unit interval is divided into three subintervals of length PR→i∆t,

i represent the three states to which the channel can make transition. If a random number

drawn from a uniform distribution over the unit interval falls into the subinterval PR→i∆t,

the corresponding transition is performed. The time interval ∆t was kept small enough for

the linear dependence of Pi→i on the time interval to remain valid. We used a time step of

10 µs throughout this paper. The channel is open only when it is in state O. The above
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procedure was repeated for all channels.

1.5 Diffusion of Ca2+ and Buffers

Ca2+ concentration on the cytoplasmic side of the cluster is controlled by diffusion; the flux

coming out from the ER through IP3Rs, Jj; and the concentrations of free stationary buffers,

free mobile buffers and free dye: bs, bm and bd, respectively. Thus the rate equations for

Ca2+ concentration at distance rj and time t due to channel j, cj(rj, t); and free Ca2+ buffers,

bjs(rj, t); bjm(rj, t); and bjd(rj, t) at distance rj and time t from channel j are described as

below:

∂cj(rj, t)
∂t

= Dc∇2
jcj + Jjδ(rj) + krs(Bs − bjs) − kfs cjbs + krm(Bm − bjm) − kfmcjbjm

+ krd(Bd − bjd) − k
f
dc
jbjd (37S)

∂bjs
∂t

= krs(Bs − bjs) − kfs cjbjs (38S)

∂bjm
∂t

= Dm∇2
jb
j
m + krm(Bm − bjm) − kfmcjbjm (39S)

∂bjd
∂t

= Dd∇2
jb
j
d + k

r
d(Bd − bjd) − k

f
dc
jbjd. (40S)

In the above equations Bi is the total concentration, kfi the forward (binding) rate, and

kri reverse (unbinding) rate for the various buffers with i = s,m, d. Dc, Dm, and Dd are the

diffusion coefficients for Ca2+ , mobile buffers, and dye respectively. We consider slow mobile

buffer mimicking ethylene glycol tetraacetic acid (EGTA). The term “slow” refer to binding

kinetics of buffer, not its mobility. We also include ATP as a mobile Ca2+ buffer [6]. δ(rj)
is the Dirac delta function and Jj is the Ca2+ flux through the jth channel.

Jj =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

I
2×F×δV for r ≤ ∆r,

0 for r > 0.
(41S)

Where I = 0.075 pA is the channel current, F is the Faraday’s constant, ∆r = 5nm,

and δV is the volume of the hemisphere over the channel having a radius of rpore [7]. Using

I = 0.075 pA in Eq. (41S), a channel experiences approximately 300 µM Ca2+ when open [8].

As we will discuss in the main text, smaller value of I gives rise to puffs with much longer

lifetime than those observed experimentally. We assume that the Ca2+ pump and leak
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currents are slow on the time scales considered here and therefore have negligible effects.

Various parameters used in Eqs. (37S-40S) are given in Table 3S.

1.6 Elements of Tridiagonal Matrix (TM)

Here we derive the elements of the TM for equations (37S-40S). In what follows n is the

time index and j is the space index in spherical polar coordinates. We can write equation

(6) as

c(n+1) − c(n)
∆t

= D∇2c(n+1) + Jδ(r) + krs(Bs − b(n)s ) − kfs c(n+1)b
(n)
s

+krm(Bm − b(n)m ) − kfmc(n+1)bm + krd(Bd − b(n)d )

−kfdc
(n+1)b

(n)
d (42S)

Writing the Laplacian in spherical polar coordinates and considering no-flux boundary con-

ditions we get the elements of lower, middle, and upper diagonal (aj, bj, and cj respectively)

of the TM given as

aj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if j = 1

−D∆t
∆r2 (1 −

1
2j )2 if j = 2, ...N − 1

−2D∆t
∆t if j = N.

(43S)

bj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6D∆t
∆r2 + 1 + kfs b(n,j)s ∆t + kfmb(n,j)s ∆t + kfdb

(n,j)
d ∆t if j = 1

D∆t
∆r2 (1 +

1
2j )2 +

D∆t
∆r2 (1 −

1
2j )2 + 1 + kfs b(n,j)s ∆t

+kfmb(n,j)s ∆t + kfdb
(n,j)
d ∆t if j = 2, ..N − 1

2D∆t
∆r2 + 1 + kfs b(n,j)s ∆t + kfmb(n,j)s ∆t + kfdb

(n,j)
d ∆t if j = N.

(44S)

cj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−6D∆t
∆r2 if j = 1

−D∆t
∆r2 (1 +

1
2j )2 if j = 2, ....N − 1

0 if j = N.

(45S)
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The right hand side for the TM system for the cytosolic Ca2+ concentration is represented

by dj and is

dj = c(n,j) + krs(Bs − b(n,j)s )∆t + Jδ(r)∆t + krm(Bm − b(n,j)m )∆t

+krd(Bd − b(n,j)d )∆t, j=1,..N (46S)

The rate equations for mobile and dye buffers can be expanded and solved iteratively in

similar fashion.

The stationery buffers can be solved iteratively according to

b
(n+1,j)
s − b(n,j)s

∆t
= krs(Bs − b(n+1,j)

s ) − kfs c(n,j)b
(n+1,j)
s (47S)

b
(n+1,j)
s = b

(n,j)
s + krsBs∆t

1 + kfs c(n,j)∆t + krs∆t
(48S)

1.7 Fluorescence Estimation

We estimate the fluorescence signal from total internal reflection fluorescence (TIRF) mi-

croscopy by following the procedure outlined in [9], i.e.

Fluorescence =∑
j
∫ ∫ ∫ dxdydzb∗jd (rj(x, y, z))

×( − (x − x0)2
σ2
x

− (y − y0)2
σ2
y

)exp( − z

γz
) (49S)

Where b∗j = (Bd − bjd) is the Ca2+-bound dye due to the Ca2+ released by the jth channel,

σ2
x = σ2

y = 0.0225 µm2, γz = 0.15 µm, and x0, y0 = 0. The integration in Eq. (49S) is performed

over a cubic volume of 1 µm × 1 µm × 0.15 µm.

1.8 Experimental Methods

The experimental data in the main text shown for comparison is taken from [10, 11]. The

PO data is taken from [10] and the puff data is taken from [11]. Here we briefly present the

experimental methods used to acquire those data, and refer the reader for detailed description

to [10, 11].
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1.8.1 PO data [10]

Patch clamp of the outer membrane of individual nuclei mechanically isolated from Xeno-

pus Laevis oocytes was performed as described in [12]. The cytoplasmic aspect of the IP3R

channel faced into the patch pipette. All experimental solutions contained 140 mM KCl, 10

mM Hepes (pH adjusted to 7.1 with KOH), and 0 or 0.5 mM Na2ATP as indicated. Total

Ca2+ content in the solutions was determined by induction-coupled plasma mass spectrom-

etry (Mayo Medical Laboratory, Rochester, MN). Free Ca2+ concentrations were calculated

by using the MAXCHELATOR software (C. Patton, Stanford University, Palo Alto, CA).

Pipette solutions contained 10 µM concentration of IP3. All experiments were performed at

room temperature with the pipette electrode at +20 mV relative to the reference-bath elec-

trode. Each data point shown is the mean of results from at least four separate patch-clamp

experiments performed under the same conditions. Error bars indicate the standard error

of the mean (SEM). Single-channel currents were amplified by an Axopatch-1D amplifier

(Axon Instruments, Foster City, CA), filtered at 1 kHz, digitized at 5 kHz. Channel dwell

times and POs were obtained by using TAC 3.03 (Bruxton, Seattle, WA).

1.8.2 Puff data [11]

Human neuroblastoma SH-SY5Y cells were cultured as described in [13] in a mixture (1:1)

of Hams F12 medium and Eagle MEM, supplemented with 10% (vol./vol.) FCS and 1%

nonessential amino acids. Cells were incubated at 37 oC in a humidified incubator gassed

with 95% air and 5% CO2, passaged every 7 days, and used for a maximum of 20 passages.

Four days before imaging, cells were harvested in PBS solution without Ca2+ or Mg2+ and

subcultured in Petri dishes with glass coverslips as the base (MatTek) at a seeding density

of 3× 104cells/mL. Cells were then loaded a few hours before use by incubation with Hepes-

buffered saline solution (in mM: NaCl, 135; KCl, 5; MgSO4, 1.2; CaCl2, 2.5; Hepes 5;

glucose, 10) containing 1 µM ci-IP3 / PM (SiChem) at room temperature for 45 min, followed

by incubation with 1 µM caged ci-IP3 /PM plus 5 µM fluo-4 AM (Invitrogen) at room

temperature for 45 min, and finally 45 min with 5 µM EGTA-AM (Invitrogen).

Imaging of changes in Ca2+ was accomplished by using a home-built TIRF microscope

system based around an Olympus IX 70 microscope equipped with an Olympus X60 TIRFM

objective (NA 1.45). Fluorescence of cytosolic fluo-4 was excited within the ≈ 100-nm evanes-

cent field formed by total internal reflection of a 488-nm laser beam incident through the

microscope objective at the cover glass/aqueous interface. Images of emitted fluorescence

λ > 510 nm were captured at a resolution of 128 × 128 pixels (1 pixel=0.33 µm) at a rate of
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420 frames/s by a Cascade 128 electronmultiplied CCD camera (Roper Scientific). Photo-

release of i-IP3 from a caged precursor was evoked by flashes of UV light (350 - 400 nm)

derived from a fiber-optic arc lamp source introduced via a UV reflecting dichroic mirror in

the upper side-port of the microscope. The UV light was adjusted to uniformly irradiate a

region slightly larger than the imaging frame, and any given imaging field was exposed to

only a single flash. We sought to obtain data under condition of roughly constant cytosolic

IP3, and adjusted the flash duration as required between 50 and 400 ms so as to obtain a

similar mean puff frequency (≈ 1 per s/cell) in each cell to compensate for variations in load-

ing of caged IP3. Image processing and analysis was done using MetaMorph 7.5 (Molecular

Dynamics).
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Fig. 1S: Schematic of the seven state model for single IP3R channel. Xij represents the
state where the channel has i Ca2+ and j IP3 bound. KXijYmn represents the transition rate
from state Xij to Ymn. The occupancy parameter, KXij of state Xij is the product of all
forward equilibrium constants for the reactions along an arbitrary path connecting state Xij
to R00. For example, KR04 = KR00R04

KR04R00
, KA24 = KR00R04

KR04R00

KR04A24

KA24R04
, etc.
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Fig. 2S: Equilibrium open probability of the single IP3R channel in Xenopus laevis oocytes
as a function of C at four IP3 concentrations (10 µM black, 33 nM blue, 20 nM red, 10 nM
green). The solid lines and circles represent the fit from the seven state model and the mean
PO from patch clamp experiments on Xenopus Laevis occytes [10] respectively. The error
bars represent standard errors of the mean. The thick orange line is the PO from the four
state model at 10 µM and is shown for comparison.
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Fig. 3S: Statistics of Ca2+ puffs and blips in the presence of various buffer concentrations:
Distribution of (A) puffs amplitude, (B) puffs termination time, and (C) blips life time.
The distributions given by the model are obtained from the number of open channels during
elementary Ca2+ release events using buffer concentrations of Bs = 100 µM,BEGTA = 100 µM
(black line), Bs = 50 µM,BEGTA = 100 µM (blue line), Bs = 0 µM,BEGTA = 100 µM (red
line), Bs = 0 µM,BEGTA = 0 µM (green line). The gray bars represent experimental data
and is modified from [11].
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Fig. 4S: Statistics of Ca2+ puffs and blips in the presence of 0 µM (solid lines) and 200 µM
(dotted lines) ATP: (A) Distribution of puff termination times, (B) termination time as a
function of puff amplitude, and (C) life time distribution of blips.
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Fig. 5S: Bigger puffs have higher probability of depleting ER. (A) Distribution of local
ER Ca2+ concentration for Crest

ER = 700 µM . The black and red lines correspond to the puffs
with 5 ≤ Amplitude ≤ 10 and 2 ≤ Amplitude ≤ 10 respectively. The distribution shifts to the
right when smaller puffs are taken into account indicating that bigger puffs are more likely
to deplete ER. (B) Average amplitude (number of open channels) of puffs for each bin in
panel (A) showing that puffs causing lower ER Ca2+ have higher average amplitude and vice
versa. The line colors in panel (B) have the same meaning as in (A).
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Fig. 6S: Bigger clusters have higher probability of depleting ER. Distribution of local ER
Ca2+ concentration for puffs produced by a cluster of 10 (red), 15 (blue), and 20 (black)
channels. All puffs (Amplitude > 2) were taken into account and Crest

ER = 700 µM . The
distribution shifts to the left as the number of channels in the cluster increases indicating
that bigger clusters are more likely to deplete ER. In all three cases, channels were arranged
in a two-dimensional array with an inter-channel spacing of 120 nm as described in the
main text. The inset shows the fraction of times when the CER dropped below 50% of Crest

ER

(350 µM) as a function cluster size.
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Table 1S: Occupancy parameters for the seven state model.

Parameter Value
KR00 1
KA20 1.035 × 105µM−2

KI50 1 × 104µM−4

KR04 3.11 × 1010µM−4

KA24 1.135 × 1011µM−6

KO24 4.56 × 1011µM−6

KI54 2.296 × 106µM−9
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Fig. 7S: Puff cycle. The number of channels in each of the four states during a single puff.
The dashed line after 200 ms marks the puff termination.
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Table 2S: Gating parameters for the four state model.

Parameter Value
τO 30ms
CA 0.484µM
CO 0.238µM
CI 6.5µM

kflux01 0.0162/µMms

kflux12 0.027/µM2ms

kflux23 2.1651 × 10−4/µM3ms

kflux34 1.0/µM4ms

kflux45 3.5935 × 10−8/µM5ms

k̂flux01 0.0014127/µMms

k̂flux12 1.0/µM2ms

k̂flux23 1.0/µM3ms

k̂flux34 1.0/µM4ms

k̂flux45 5.6297 × 10−7/µM5ms
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Table 3S: Concentrations, rates, and cluster parameters
Quantity Symbol — Numerical Value Reference

Concentrations
Resting Cytosolic Calcium Carest = 50nM [14]
Lumenal Calcium CaER = 700µM [8]
Cytosolic Ca2+ in Front of Open Pore Cmax = 300µM
Optimal Ca2+ Copt = 2µM
Stationary Buffer Bs = 100µM [15, 16]
Dye Buffer Bd = 25 µM
EGTA BEGTA = 100 µM
ATP BATP = 0, unless mentioned otherwise

Channel Scales

Number of channels Nch = 10 − 20 [11]
Pore Radius rpore = 2.5nm [17, 18]
IP3R Radius RIPR = 10nm [19]
Mean Nearest Neighbor Channel Spacing rnn = 120nm

Diffusion Coefficients

Ca2+ Dc = 0.223µm2/ms [20]
Dye Dd = 0.200µm2/ms [21]
EGTA DEGTA = 0.200µm2/ms [21]
ATP DATP = 0.14µm2/ms [6]

Rates

Stationary Buffer kfs = 0.2/µMms [14]
krs = 0.4/ms [14]

Dye Buffer kfd = 0.1/µMms [14, 21]
krd = 0.025/ms [14, 21]

EGTA kfEGTA = 0.006/µMms [14, 21]
krEGTA = 0.001/ms [14, 21]

ATP kfATP = 0.01364/µMms [6]
krATP = 30/ms [6]

24


