Enantioselective Homocrotylboration of Aliphatic Aldehydes

Hongkun Lin,[†] Wenbo Pei,[†] Hao Wang,[§] Kendall N. Houk,^{*,§} and Isaac J. Krauss^{*,†}

[†]Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States [§]Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States

Table of Contents

General Experimental Methods	
Experimental Section	
Mosher Ester Analysis of Absolute Configuration	
References and Notes	
Copies of ¹ H NMR and ¹³ C NMR	
HPLC and GC chromatograms	
General computational methods	
Figure S1. Optimized Structures of 16 and 19	
Computational Data	

General Experimental Methods

Reactions were carried out in oven-dried glassware under a nitrogen atmosphere and were stirred magnetically. The phrase "concentrated" refers to removal of solvents by means of a rotary evaporator attached to a Welch 1400 oil pump (bled to 5-300 mm Hg as needed) followed by removal of residual solvents at < 1 Torr on a vacuum manifold attached to a Welch 1400 vacuum pump. SiliaFlash[®] F60 (230-400 mesh) from SiliCycle[®] was used for flash column chromatography unless specifically indicated. Analytical thin layer chromatography (TLC) was performed using silica gel 60 F-254 pre-coated glass plates (0.25 mm). TLC plates were analyzed by short wave UV illumination. or by staining with iodine on silica or dipping in cerium-ammonium-molybdate (CAM) stain (40 g of ammonium pentamolybdate, 1.6 g of cerium (IV) sulfate, 800 mL of diluted sulfuric acid (1:9, with water, v/v)) or vanillin stain (15g vanillin in 250 mL ethanol and 2.5 mL concentrated sulfuric acid) and heating on a hot plate. Tetrahydrofuran (THF), dichloromethane (DCM), toluene and diethyl ether (Et₂O) were obtained by degassing with argon and passage through activated alumina columns. ¹H and ¹³C NMR spectra were recorded on a Varian Inova 400 MHz in CDCl₃ at ambient temperature unless otherwise indicated. Chemical shifts are reported in δ (ppm downfield from tetramethylsilane) and referenced to residual undeuterated solvents (7.26 for ¹H NMR and 77.16 for ¹³C NMR). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet), p (pentet), m (multiplet), app (apparent) and br (broad). IR spectra were recorded on a Varian 640-IR FT-IR spectrometer and are reported in wave numbers (cm⁻¹). High performance liquid chromatography (HPLC) analyses were performed on an Agilent 1100 Series instrument equipped with a quaternary pump, using chiral columns (250×4.6 mm, 5 µm), monitored by UV absorption. Gas chromotography mass spectroscopy (GC-MS) analyses were performed on an Agilent 7890A GC System and 5975C VL MSD with Triple-Axis Detector. High resolution mass spectra (HRMS) were performed by Mass Spectrometry Laboratory, University of Illinois at Urbana-Champaign using electron impact (EI), chemical ionization (CI) or electrospray ionization (ESI). Optical rotation values were measured on a Jasco Digital Polarimeter using a cell with a path length of 1 dm (c given in g/100 mL).

Preparation of S1

Propyne (roughly 4.7 mL, 82.5 mmol) was condensed to a Schlenk flask at -78 °C. A 0 °C solution of HBBr•SMe₂ (1 M in DCM, 75 mL) was cannulated to propyne, and then the flasked was firmly sealed, warmed to ambient temperature and stirred for 4 h.

The mixture was then cannulated to 112.5 mL 2 N NaOH at 0 °C, and stirred for 2 h. DCM phase was separated, and the aqueous phase was extrated with Et₂O once. The pH of the aqueous phase was adjusted to 2-3 with 2 N HCl, and extracted with Et₂O four times. All organic phases were combined, dried with MgSO₄, filtered and concentrated *in vacuo*.

To the crude boronic acid in 75 mL DCM and 150 mL Et_2O was added diethanolamine (7.2 mL, 75 mmol) and activated 3 Å molecular sieves (15 g). The mixture was stirred vigorously for 2 h, filtered through celite and concentrated. The crude oil was recrystalized from DCM/ Et_2O to afford **S1** (10.4 g, 89 %).¹

¹H NMR (400 MHz, CDCl₃) δ 6.15–6.02 (m, 1H), 5.96 (dq, 1H, J = 17.4, 6.1), 5.49 (app dd, 1H, J = 17.4, 1.6), 4.03-3.72 (m, 4H), 3.34-3.16 (m, 2 H), 2.81-2.58 (m, 2H), 1.72 (dd, 3H, J = 6.2, 1.4); ¹³C NMR (100 MHz, CDCl₃) δ 135.2, 63.0, 51.3, 21.4, (C-B resonance missing due to boron broadening²); IR (neat) 3103, 2954, 2865, 1640, 1453, 1273, 1092, 1058, 990, 859, 729; HRMS (ESI) calcd for C₇H₁₅NO₂B (M+H)⁺, 156.1196, found 156.1198.

Representative procedure for preparation of homocrotylation reagent. ent-1 is illustrated.

(1) Preparation of ent-S2

Although *ent*-S2 can be prepared from condensation of tartaramide diol with commercially available *trans*-1-propen-1-ylboronic acid,³ it is more economical on a large scale to prepare and use S1, which is very stable in storage. S1 is converted to *ent*-S2 as follows: (-)-N,N,N',N'-tetramethyl-D-tartaramide *ent*-9 (2.0 g, 9.79 mmol) and S1 (1.5 g, 9.79 mmol) were dissolved in 49 mL of DCM. To the mixture was added 16 mL of brine. The reaction was stirred for 30 min. The mixture was thoroughly shaken with brine (16 mL) and 1 N NaHSO₄ (12.2 mL, 12.2 mmol) in a separotary funnel. DCM phase was separated, and the aqueous phase was extracted with DCM three times. The combined organic phases were stirred with MgSO₄ for 4 h, filtered, concentrated *in vacuo* and pumped overnight, affording *ent*-S2 (2.1 g, 84 %), which was used without further purification.⁴

(2) Cyclopropanation

1.6), 3.22 (s, 6H), 2.98 (s, 6H), 1.85 (dd, 3H, J = 6.5, 1.6).

ent-S2 (2.1 g, 8.18 mmol) and (-)-N,N,N',N'-tetramethyl-D-tartaramide *ent*-9 (0.8357 g, 4.09 mmol) were dissolved in DCM (30 mL) at ambient temperature and allowed to stand for 2 h, generating solution A, which was then cooled to -78°C.

To a DCM (41 mL) solution of Et₂Zn (2.52 mL, 24.6 mmol) was added CH₂I₂ (2.97 mL, 36.8 mmol) dropwise at -78 °C, and this mixture was stirred vigorously for 10 min. (Ineffective stirring due to precipitation of zinc salt did not affect the reaction.) The -78 °C solution A was cannulated to carbenoid within 5 min, followed by DCM rinses (5.5 mL \times 2). The mixture was stirred at -78 °C for 2 h. 80 mL of saturated aqueous NH₄Cl solution was carefully added to quench the reaction. After addition of NH₄Cl, the mixture was stirred at -78 °C for 5 min, taken out of the cooling bath and warmed to ambient temperature. After phase separation, the aqueous phase was extracted with DCM three times. The combined organic phase was dried with Na₂SO₄, filtered and concentrated to 20 mL. Pinacol (1.2 g, 9.82 mmol) was added to the crude mixture and the mixture was allowed to stay at ambient temperature and atmosphere overnight. After concentration, the crude mixture was flashed through a short silica column, eluted with 1:1 pentane/ether. The fractions containing product (stained with I2 or CAM) were combined and concentrated to afford ent-10 (1.4 g, 95 %). This material typically contains ~5 % CH₂ homologated product, and was used in the next step without purification. It is important to achieve full conversion, as any unreacted alkenylboronate will be homologated to crotylboronate in the next step. The crotylboronate contaminant is undesirable, as it is more reactive than 1, leading to crotylated impurities in the homocrotylation products.

¹H NMR (400 MHz, CDCl₃) δ 1.21 (s, 12H), 1.07 (d, 3H, J = 5.8), 0.99-0.88 (m, 1H), 0.70-0.62 (m, 1H), 0.35 (ddd, 1H, J = 9.4, 5.1, 3.3), -0.46 (dt, 1H, J = 9.4, 5.7); ¹³C NMR (100 MHz, CDCl₃) δ 82.9, 24.86, 24.81, 20.1, 12.8-12.6 (br), 12.4; IR (neat) 2978, 1420, 1314, 1218, 1146, 856; HRMS (EI) calcd for C₁₀H₁₉O₂B (M⁺) 182.1478, found 182.1480. *ent-10* [α]_D²⁰ = +42.7° (c 2.06, DCM). Data for **10**: identical to that for *ent-10*, except for optical rotation [α]_D²⁰ = -38.4° (c 0.88, DCM).

ee % analysis: *ent*-10 was oxidized to the corresponding alcohol *ent*-S3 with 10 equiv. of NaBO₃•4H₂O suspended in ether/water biphasic mixture for 2 h. Then the oxidant was filtered and the phases were allowed to separate. The aqueous phase was extracted with Et₂O twice. The combined organic phases were dried over MgSO₄, filtered and concentrated. This crude mixture was benzoylated with 5 equiv. of benzoyl chloride and 5 equiv. of 4-(dimethylamino)pyridine (DMAP) in DCM overnight. The ee % of *ent*-S4 was determined as 98 % by chiral HPLC (Daicel Chiralpak AS-H, hexanes, 0.5 mL/min, 220 nm), t_R (major) = 18.72 min, t_R (minor) = 16.62 min. -97 % ee for S4.

(3) Homologation

To a mixture of *ent-10* (1.2g, 6.4 mmol) and ICH₂Cl (925 μ L, 12.7 mmol) in 51 mL of THF at -78 °C was added n-BuLi (2.5 M in hexanes, 5.1 mL) with a syringe pump over 1 h. The mixture was stirred at -78 °C for an additional 10 min before being allowed to warm to ambient temperature and stirred for an additional 4 h. Saturated aqueous NH₄Cl solution (50 mL) was added to the mixture. The organic phase was separated and the aqueous phase was extracted with Et₂O three times. The combined organic phases were dried with Na₂SO₄, filtered and concentrated. The crude mixture was flashed through a short silica column, eluted with 1:1 pentane/ether. The fractions containing product (stained with I₂ or CAM) were combined and concentrated to afford *ent-***85** (910 mg, 73 %). **85** obtained by this route contains no *cis*-impurity, in contrast with *rac-***S5** obtained by direct

cyclopropanation of commercial *trans*-crotylboronate from Aldrich. NMR, IR and HRMS data for *ent-***S5** was identical to our previous report for *rac-***S5**.⁵

ent-**S5**
$$[\alpha]_{D}^{20} = +20.2^{\circ}$$
 (c 0.78, DCM). **S5** $[\alpha]_{D}^{20} = -20.3^{\circ}$ (c 1.62, DCM).

Conversion from *ent*-**S5** to *ent*-**1** was performed according to our previous report.⁵ NMR, IR and HRMS data for *ent*-**1** was identical to our previous report for *rac*-**1**.⁵

ent-1 $[\alpha]_{\rm D}^{20}$ = +27.6° (c 0.88, DCM). 1 $[\alpha]_{\rm D}^{20}$ = -24.9° (c 1.02, DCM).

Homocrotylboration

All reactions were performed using 0.1 mmol of aldehydes 9 according to the same procedure as in our previous report,⁵ for a period indicated in Table 1. ee's % were determined by chiral HPLC directly for compounds 12a, 12f and 12g, or after benzoylation with benzoyl chloride (5 equiv.) and DMAP (10 equiv.) in DCM overnight for compounds 12b, 12c, 12d, and 12e.

and IR data was identical to the literature.⁶ HRMS (ESI) calcd for $C_{14}H_{20}ONa (M+Na)^+ 227.1412$, found 227.1422. $[\alpha]_D^{20} = +5.8^\circ$ (c 0.85, DCM).

17.6 mg, 89 % yield after flash column chromatography, 10 % to 15 % ethyl acetate/hexanes. 97 % ee (Daicel Chiralpak AD-H, hexanes, 0.5 mL/min, 220 nm), t_R (major) = 16.01 min, t_R (minor) = 14.39 min.

¹H NMR (400 MHz, CDCl₃) δ 5.68 (ddd, 1H, *J* = 17.4, 10.2, 8.2), 5.03 (ddd, 1H, *J* = 17.2, 1.8, 1.0), 4.96 (dd, 1H, *J* = 10.3, 1.6), 3.67-3.58 (m, 1H), 2.50-2.34 (m, 1H), 1.48-1.17 (m, 15H), 1.02 (d, 3H, *J* = 6.8), 0.88 (t, 3H, *J* = 6.8); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 113.5, 69.9, 44.4, 38.2, 34.9, 32.0, 29.8, 29.4, 25.8, 22.8, 21.4, 14.2; IR (neat) 3327, 3076, 2923, 2858, 1641, 1458, 1126, 998, 914; HRMS (EI) calcd for $C_{13}H_{25}O(M-[H^-])^+$ 197.1906, found 197.1905. $[\alpha]_D^{20} = -14.9^\circ$ (c 0.65, DCM).

OH Me 16.2 mg, 89 % yield after flash column chromatography, 10 % ethyl acetate/hexanes. 97 % ee (Daicel Chiralcel OD-H, hexanes, 0.5 mL/min, 12c 220 nm), t_R (major) = 21.75 min, t_R (minor) = 15.86 min.

¹H NMR (400 MHz, CDCl₃) δ 5.65 (ddd, 1H, J = 17.2, 10.2, 8.4), 5.02 (ddd, 1H, J = 17.2, 1.9, 1.0), 4.96 (dd, 1H, J = 10.2, 1.8), 3.44-3.35 (m, 1H), 2.48-2.35 (m, 1H), 1.88-1.56 (m, 4H + water), 1.53-0.90 (m + d, 10H + 3H, J = 6.8); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 113.6, 73.9, 44.3, 41.2, 35.0, 29.3, 28.0, 26.7, 26.5, 26.4, 21.6; IR (neat) 3361, 3075, 2922, 2854, 1640, 1449, 995, 911; HRMS (EI) calcd for C₁₂H₂₂O (M⁺) 182.1671, found 182.1670. [α]²⁰_D = -27.9° (c 0.66, DCM).

¹H NMR (400 MHz, CDCl₃) δ 5.66 (ddd, 1H, *J* = 17.2, 10.2, 8.4), 5.03 (ddd, 1H, *J* = 17.2, 1.7, 1.0), 4.97 (dd, 1H, *J* = 10.1, 1.7), 3.44-3.35 (m, 1H), 2.48-2.34 (m, 1H), 1.62 (m, 1H), 1.46-1.30 (m, 3H), 1.03 (d, 3H, *J* = 6.6), 0.905 (d, 3H, *J* = 6.8), 0.902 (d, 3H, *J* = 6.8); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 113.6, 74.4, 41.1, 35.1, 34.1, 21.6, 18.8, 17.4; IR (neat) 3389, 3077, 2960, 2878, 1639, 1460, 1134, 994, 914; HRMS (CI) calcd for C₉H₁₇O (M-[H⁻])⁺ 141.1280, found 141.1280. $[\alpha]_D^{20} = -49.2^\circ$ (c 0.27, DCM).

84 % NMR yield, 9.7 mg, 62 % isolated yield after flash column chromatography, 10:1 pentane/Et₂O. 98 % ee (Regis (R,R)-Whelk-O 1, Kromasil , hexanes, 0.5 mL/min, 220 nm), t_R (major) = 17.66 min, t_R (minor) = 20.45 min. ¹H NMR (400 MHz, CDCl₃) δ 5.62 (ddd, 1H, *J* = 17.2, 10.2, 8.5), 5.03 (ddd, 1H, *J* = 17.2, 1.9, 1.0), 4.97 (dd, 1H, *J* = 10.2, 1.8), 3.23 (br d, 1H, *J* = 10.0), 2.50-2.34 (m, 1H), 1.47-1.22 (m, 3H), 1.04 (d, 3H, *J* = 6.8), 0.88 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 113.8, 77.4, 38.6, 35.4, 34.8, 25.8, 21.9; IR (neat) 3395, 3077, 2960, 2873, 1643, 1468, 1394, 1263, 1063, 1007, 918, 821; HRMS (CI) calcd for C₁₀H₁₉O (M-[H⁻])⁺ 155.1436, found 155.1436. [α]²⁰_D = -50.6° (c 0.45, DCM).

Ph He 15.6 mg, 82 % yield after flash column chromatography, 10 % to 15 % ethyl acetate/hexanes. 97 % ee (Daicel Chiralpak AS-H, 2 % isopropanol/hexanes, 1 mL/min, 210 nm), t_R (major) = 5.53 min, t_R (minor) = 6.03 min.

¹H NMR (400 MHz, CDCl₃) δ 7.36-7.27 (m, 2H), 7.27-7.17 (m, 3H), 5.65 (ddd, 1H, J = 17.4, 10.2, 8.2), 5.01 (ddd, 1H, J = 17.2, 1.6, 0.8), 4.95 (ddd, 1H, J = 10.1, 1.7), 3.91-3.79 (m, 1H), 2.78 (dd, 1H, J = 13.5, 4.4), 2.66 (dd, 1H, J = 13.5, 8.4), 2.51-2.39 (m, 1H), 1.65-1.38 (m, 3H + water), 1.03 (d, 3H, J = 6.8); ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 138.7, 129.6, 128.7, 126.6, 113.7, 70.6, 44.7, 43.8, 34.9, 21.3; IR (neat) 3412, 3071, 3027, 2959, 2922, 1641, 1604, 1494, 1451, 1078, 1020, 913, 740; HRMS (EI) calcd for C₁₃H₁₈O (M⁺) 190.1358, found 190.1357. [α]_D²⁰ = +1.7° (c 0.62, DCM).

24.5 mg, 89 % yield after flash column chromatography, 8:1 ethyl acetate/hexanes. 97 % ee (Daicel Chiralpak AS-H, 2 % isopropanol/hexanes, 1 mL/min, 210 nm), t_R (major) = 17.44 min, t_R (minor) = 12.34 min.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (app d, 2H, J = 8.2), 7.25 (app d, 2H, J = 8.2), 5.66 (ddd, 1H, J = 17.2, 10.2, 8.2), 5.03 (ddd, 1H, J = 17.2, 1.6, 1.0), 4.96 (dd, 1H, J = 10.2, 1.7), 4.36 (q, 2H, J = 7.1), 3.73-3.62 (m, 1H), 2.84 (d of app t, 1H, J = 13.7, ~8.0), 2.71 (d of app t, 1H, J = 13.7, ~8.2), 2.48-2.33 (m, 1H), 1.87-1.33 (m + t, 5H + 3H + water, J = 7.1), 1.02 (d, 3H, J = 6.8); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 147.8, 144.1, 129.8, 128.5, 128.2, 113.7, 69.2, 60.9, 44.4, 39.3, 34.9, 32.2, 21.2,

14.5; IR (neat) 3484, 3073, 2965, 2926, 2872, 1711, 1610, 1273, 1105, 914; HRMS (ESI) calcd for $C_{17}H_{25}O_3 (M+H)^+ 277.1804$, found 277.1806. $[\alpha]_D^{20} = +11.2^\circ$ (c 1.22, DCM).

OH Me Ph Me 12h
dr (>20:1) was determined using material partially purified by column chromatography; 10 % ethyl acetate/hexanes, combining all product-containing fractions, together with some fractions before and after. This mixture was then analyzed by LC-MS (ACQUITY UPLC[®] BEH300 C18 column, 50:50:0.1 acetonitrile/water/formic acid, 0.35 mL/min, 258nm). A second column (10 % ethyl acetate/hexanes) was then performed to afford analytically pure material, 16.9 mg 12h, 83 % yield.

¹H NMR (400 MHz, CDCl₃) δ 7.37-7.27 (m, 2H), 7.27-7.15 (m, 3H), 5.57 (ddd, 1H, J = 17.2, 10.2, 8.4), 4.98 (ddd, 1H, J = 17.2, 1.7, 1.0), 4.94 (dd, 1H, J = 10.2, 1.8), 3.71 (ddd, 1H, J = 9.6, 6.1, 2.9), 2.74 (app p, 1H, J = 6.8), 2.45-2.32 (m, 1H), 1.65-1.20 (m + d, 3H + 3H + water, J = 7.0), 0.96 (d, 3H, J = 6.8); ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 144.1, 128.6, 128.0, 126.5, 113.7, 74.0, 46.3, 41.7, 35.1, 21.5, 16.0; IR (neat) 3391, 3073, 3027, 2963, 2928, 2876, 1640, 1603, 1493, 1453, 1001, 913, 760; HRMS (ESI) calcd for C₁₄H₂₀ONa (M+Na)⁺ 227.1412, found 227.1420. $[\alpha]_D^{20} = -5.9^\circ$ (c 0.84, DCM).

CH Me Ph Me 12h' dr (>20:1) was determined using material partially purified by column chromatography; 10 % ethyl acetate/hexanes combining all product-containing fractions, together with some fractions before and after. This mixture was then analyzed by LC-MS (ACQUITY UPLC[®] BEH300 C18 column, 50:50:0.1 acetonitrile/water/formic acid, 0.35 mL/min, 258nm). A second column (10 % ethyl acetate/hexanes) was then performed to afford 15.9 mg 12h', 78 % yield, eluted with 10 % ethyl acetate/hexanes.

¹H NMR (400 MHz, CDCl₃) δ 7.35-7.28 (m, 2H), 7.28-7.20 (m, 3H), 5.65 (ddd, 1H, J = 17.2, 10.2, 8.2), 5.01 (ddd, 1H, J = 17.2, 1.8, 0.8), 4.96 (dd, 1H, J = 10.2, 1.6), 3.72-3.62 (m, 1H), 2.70 (app p, 1H, J = 7.0), 2.51-2.38 (m, 1H), 1.66-1.19 (m + d, 3H + 3H + water, J = 7.0), 1.01 (d, 3H, J = 6.8);

¹³C NMR (100 MHz, CDCl₃) δ 144.1, 143.7, 128.6, 128.3, 126.8, 113.7, 74.0, 46.7, 41.8, 34.9, 21.6, 18.0; IR (neat) 3443, 3071, 3027, 2964, 2875, 1640, 1602, 1452, 1005, 911, 762; HRMS (ESI) calcd for $C_{14}H_{20}ONa (M+Na)^+ 227.1412$, found 227.1415. $[\alpha]_D^{20} = +21.2^\circ$ (c 0.80, DCM).

87 % NMR yield. dr (>99:1) was analyzed by silvlation of the crude mixture (no OH Me concentration was performed to avoid any potential loss of diastereomers) with N-methyl-N-(trimethylsilyl)trifluoroacetamide at 70 °C for 1 h, followed by GC-MS analysis (Agilent 19091S-433 HP-5MS 5% phenyl-methyl-siloxane capillary

column, 30 m × 250 µm × 0.25 µm, 1 mL/min, 1 min at 60 °C, then 0.1 °C/min to 64 °C). Flash column chromatography was performed to afford 11.8 mg 12i, 76 % isolated yield, eluted with 10:1 to 20:3 pentane/ Et_2O .

Et

Me

12i

to 20:3 pentane/ Et_2O .

¹H NMR (400 MHz, CDCl₃) δ 5.66 (ddd, 1H, J = 17.2, 10.3, 8.4), 5.03 (ddd, 1H, J = 17.2, 1.8, 1.0), 4.96 (dd, 1H, J = 10.3, 1.8), 3.56 (d of app t, 1H, J = 9.6, 3.1), 2.46-2.33 (m, 1H), 1.70-1.29 (m, 4H), 1.26 (br s, 1H), 1.23-1.09 (m, 1H), 1.03 (d, 3H, J = 6.8), 0.90 (t, 3H, J = 7.4), 0.88 (d, 3H, J = 6.8); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 113.6, 72.7, 41.4, 40.7, 35.1, 26.0, 21.5, 13.6, 12.0; IR (neat) 3360, 3078, 2962, 2929, 2874, 1638, 1458, 1379, 1136, 997, 913; HRMS (CI) calcd for C10H19O (M- $[\text{H}^{-}])^{+}$ 155.1436, found 155.1437. $[\alpha]_{\text{D}}^{20}$ = -41.0° (c 0.56, DCM).

96 % NMR yield. dr (>99 : 1) was analyzed by silvlation of crude mixture (no OH Me Et concentration was performed to avoid any potential loss of diastereomers) with Me N-methyl-N-(trimethylsilyl)trifluoroacetamide at 70 °C for 1 h, followed by GC-12i' MS analysis (Agilent 19091S-433 HP-5MS 5% phenyl-methyl-siloxane capillary column, 30 m × 250 µm × 0.25 µm, 1 mL/min, 1 min at 60 °C, then 0.1 °C/min to 64 °C). Flash column chromatography was performed to afford 12.7 mg 12i', 81 % isolated yield, eluted with 10:1

¹H NMR (400 MHz, CDCl₃) δ 5.65 (ddd, 1, J = 17.2, 10.2, 8.3), 5.03 (ddd, 1, J = 17.2, 1.8, 0.8), 4.97 (dd, 1, J = 10.2, 1.6), 3.54-3.46 (m, 1), 2.48-2.35 (m, 1), 1.66-1.23 (m, 5), 1.23-1.06 (m, 1), 1.03 (d, 3, J = 6.6), 0.90 (t, 3, J = 7.4), 0.87 (t, 3, J = 6.7); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 113.7, 73.4, 41.1, 40.3, 35.1, 25.0, 21.7, 14.7, 11.9; IR (neat) 3358, 3076, 2962, 2928, 2874, 1642, 1459, 1379, 1138, 994, 912; HRMS (CI) calcd for C₁₀H₁₉O (M-[H⁻])⁺ 155.1436, found 155.1437. [α]²⁰_D = +29.4° (c 0.64, DCM).

Mosher Ester Analysis of Absolute Configuration

R- and *S*- MTPA esters were prepared from 12d.⁷ The following $(\delta_S - \delta_R)$ values were observed between the two derivatives, indicating the *S* configuration of the C–O stereocenter. The absolute configuration of all other homocrotylation products is assigned by analogy to 12d.

References and Notes

[1] Chatette, A. B.; Lebel, H. Org Synth, 2004, Coll. Vol. 10, 613; 1999, 76, 86.

[2] Due to quadrupole broadening, the NMR signal for carbon directly attached to boron is often too weak to be observed. See: Wrackmeyer, B. *Prog. Nucl. Magn. Reson. Spectrosc.* **1979**, *12*, 227-259.

[3] Tanino, K.; Takahashi, M.; Tomata, Y.; Tokura, H.; Uehara, T.; Narabu, T.; Miyashita, M. *Nat. Chem.* **2011**, *3*, 484-488.

- [4] Roush, W. R.; Grover, P. T. J. Org. Chem. 1995, 60, 3806-3813.
- [5] Pei, W.; Krauss, I. J. J. Am. Chem. Soc. 2011, 133, 18514-18517.
- [6] Tamaru, Y.; Kimura, M. Org Synth, 2009, Coll. Vol. 11, 327-335; 2006, 83, 88-96.
- [7] Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat. Protocols 2007, 2, 2451-2458.

¹H NMR (400 MHz) of **S1**

¹³C NMR (100 MHz) of **S1**

S14

¹H NMR (400 MHz) of **S2**

¹H NMR (400 MHz) of **10**

Me

¹³C NMR (100 MHz) of **10**

¹H NMR (400 MHz) of **12b**

¹H NMR (400 MHz) of **12c**

¹³C NMR (100 MHz) of **12c**

¹H NMR (400 MHz) of **12d**

¹³C NMR (100 MHz) of **12d**

¹³C NMR (100 MHz) of **12e**

QH Me I // 12e

¹H NMR (400 MHz) of **12f**

 13 C NMR (100 MHz) of **12f**

OH Me I Ph. 12f

ndq 0 10 20 30 40 50 60 80 06 100 110 140 130 120 160 150 190 180 170

È

¹H NMR (400 MHz) of **12h**

¹³C NMR (100 MHz) of **12h**

¹H NMR (400 MHz) of **12h'**

¹³C NMR (100 MHz) of **12h'**

QH Me Ph **≬** Me 12h'

¹H NMR (400 MHz) of **12i**

¹³C NMR (100 MHz) of **12i**

¹³C NMR (100 MHz) of **12i'**

OH Me Et Me 12i'

HPLC chromatograms

S4 and ent-S4

Racemic S4 was prepared from S1 by cyclopropanation, oxidation and benzoylation.

All racemic homocrotylation compounds were prepared from our racemic **1**, containing 5 % *cis*-cyclopropane, resulting in a shoulder peak in all racemic HPLC chromatograms.

12a

12c

12e

12f

¹H-NMR overlay of 12h/12h' samples used in dr analysis

GC-MS chromatogram of 12i/i'

General Computational Methods

All calculations were performed with the Gaussian 09 package.¹ Geometries were fully optimized in the gas phase and characterized by frequency calculations using B3LYP functional and 6-31G* basis set. Free energies were calculated for each stationary point.

Reference 1:

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

Figure S1. Optimized structures of 16 and 19.

Cartesian coordinates of stationary points

TS-O			
В	0.33011272	-0.09661836	0.0000000
С	1.47924472	-1.32190536	-0.04057100
С	2.64816172	-1.00573336	0.76075300
С	3.64915172	0.46982664	0.16505600
H	0.92697772	-2.11826136	0.47369900
H	1.72856172	-1.63790936	-1.05777200
С	4.02667272	-1.04068836	0.33101000
H	4./86/12/2	-1.21/1/036	1.08984200
п u	4.23239072	-1.00119700	1 81977000
п u	2.47143372 4.27480172	1 06468564	0 82424100
H	3 71730172	0 72916264	-0 88707300
С	2.05417272	1.55975864	0.40676900
H	1.85497272	1.42317964	1.47416900
С	2.62947372	2.91676164	0.04999800
Н	1.84384672	3.66348864	0.21424700
Н	3.48939872	3.18256264	0.67183900
Н	2.91271972	2.95749664	-1.00600500
0	1.10134372	1.16700964	-0.40042300
0	-0.68145928	-0.34773136	-0.97422300
0	-0.10804728	0.02022964	1.38263700
С	-1.29984928	0.75977864	1.58157300
C	-1.87810528	0.39054064	-0.82237600
C	-2.39995628	0.30985264	0.61610500
н u	-2.01485128	-0.01572636	-1.02252200
л Н	-3 29596628	0 93410564	0 73819000
Н	-2 67544928	-0.72806436	0 84198400
Н	-1.11560828	1.84079164	1.43923000
Н	-1.61226128	0.62056364	2.62499700
Sum of	electronic and zero-point	Energies=	-603.460589
Sum of	electronic and thermal En	ergies=	-603.447974
Sum of	electronic and thermal En	thalpies=	-603.447030
Sum of	electronic and thermal Fr	ee Energies=	-603.498727
Imagin	ary frequency: -496.76 cm^{-1}		
TS-Cl			
В	0.49114331	0.12882448	0.0000000
С	1.32543031	-1.27966152	-0.21757700
С	2.62761131	-1.25138852	0.46276200
С	3.76477931	0.00618448	-0.19187900
Н	0.71830931	-2.05446252	0.26704800
H	1.43075631	-1.53228852	-1.27848500
С	3.89072631	-1.58547752	-0.12429400
H	4.69691231	-1.91136352	0.52/33100
H TI	2 60424121	-2.05589052	-1.10450300
л Н	2.00434131 1 59881931	-1.10000102 0 40551079	1.341/3900
Н	₹.J90019J1 3 75281831	0.70331240	-1 24441400
Cl	0.00948031	0.25432548	1.84723000
Cl	-0.99117969	0.21028748	-1.10180800
С	2.54123731	1.35360248	0.31072000
Н	2.46862831	1.21269548	1.39259600
С	3.30216131	2.60050448	-0.09322200

	Н	2.70176331	3.46293548	0.21667600
	Н	4.27786931	2.66554348	0.39613800
	Н	3.42766731	2.65097748	-1.17868900
	0	1.40230431	1.22580148	-0.35022300
S	um of electronic	and zero-point	Energies=	-1255.592233
S	um of electronic	and thermal En	ergies=	-1255.581620
S	um of electronic	and thermal En	thalpies=	-1255.580676
S	um of electronic	and thermal Fre	ee Energies=	-1255.628261
I	maginary frequen	cy: -421.09 cm ⁻¹		
]	[S-LA			
	В	0.04025765	0.16103060	0.0000000
	С	-0.62250635	-1.18034740	-0.66250600
	С	-2.08650035	-1.16890940	-0.48612400
	C	0 COCE700E	1 20707740	1 22222400

С			-2.	.08650035	-1.16890940	-0.48612400
С			-2.	60657335	-1.29797740	1.22323400
Н			-0.	43687435	-1.08875140	-1.74059700
Η			-0.	19383635	-2.12106840	-0.31830300
С			-2.	86453535	-2.27669840	-0.02344700
Н			-3.	91544635	-2.33228240	-0.29337100
Н			-2.	36829235	-3.23735640	0.08529400
Н			-2.	62886335	-0.32804940	-0.91496800
Н			-3.	.58913135	-1.00199340	1.57709400
Н			-1.	99841535	-1.85171840	1.93148300
С			-1.	77571135	0.36179460	1.57218300
Н			-2.	29221835	1.02517960	0.87021400
С			-2.	16878335	0.58257460	3.02042200
Н			-1.	76776035	1.55526360	3.32746200
Н			-3.	25363935	0.59992760	3.15672300
Н			-1.	72599935	-0.18124640	3.66568500
0			-0.	47048535	0.26981860	1.40899000
0			1.	58266565	0.12103160	0.18935300
0			-0.	.34993535	1.28031260	-0.80458500
В			2.	50387065	-1.16750340	0.28852300
Cl			1.	72742865	-2.29404740	1.59734300
Cl			2.	39499265	-1.98615640	-1.40455500
С			4.	02131265	-0.78023140	0.65524600
С			4.	49698065	-0.79260540	1.97966800
С			4.	.93156765	-0.38111440	-0.34308100
С			5.	80635865	-0.42377340	2.29440700
Н			3.	.83137065	-1.10851940	2.77739600
С			6.	24124465	-0.00785840	-0.03743900
Н			4.	60987365	-0.37642740	-1.38067000
С			6.	68526365	-0.02702540	1.28592200
Η			6.	14131665	-0.45280940	3.32884300
Η			6.	91821865	0.28939860	-0.83515600
Н			7.	70686965	0.25711660	1.52701400
С			0.	15253165	2.55854460	-0.45842400
С			2.	.07908265	1.41802960	0.66599500
С			1.	67086765	2.50882160	-0.31406700
Η			-0.	14714235	3.25901360	-1.24644800
Η			-0.	29498535	2.91261160	0.48662900
Η			2.	05779265	3.47012160	0.04934700
Η			2.	13099265	2.30627660	-1.28802900
Η			1.	65386065	1.58391460	1.66110800
Н			3.	15833965	1.33842960	0.74950200
Sum	of	electronic	and	zero-point	Energies=	-1780.368915
Sum	of	electronic	and	thermal En	ergies=	-1780.347307

Sum of electronic and thermal Enthalpies= -1780.346363 Sum of electronic and thermal Free Energies= -1780.439773 Imaginary frequency: -396.63 cm⁻¹

TS-2			
В	0.49114331	0.01610306	0.0000000
С	1.66225731	-1.04980894	-0.42463200
С	2.96250731	-0.71512694	0.20615700
С	3.58018131	0.83950006	-0.29514700
Н	1.35814631	-2.03252794	-0.04408600
Н	1.76353931	-1.12472994	-1.51419600
С	4.22866631	-0.69092394	-0.44398100
Н	2.97289431	-0.71201494	1.29637500
Н	4.34677831	1.36248206	0.26852200
Н	3.46936531	1.16114706	-1.32619200
Cl	0.13704731	-0.19825994	1.87466700
Cl	-1.04319269	-0.21500994	-1.01056300
С	2.12922931	1.74517706	0.36835000
Н	2.16848931	1.49729606	1.43369000
С	2.48188531	3.19085306	0.07136000
Н	1.68880831	3.81510506	0.49718100
Н	3.43375831	3.48457106	0.52326000
Н	2.51144231	3.37409606	-1.00678100
0	1.01597331	1.36842606	-0.24837500
С	5.53339131	-0.90150894	0.28715700
Н	5.79026631	-1.96768394	0.27358500
Н	6.35280431	-0.35345594	-0.18982300
Н	5.46390631	-0.58623094	1.33352000
Н	4.23310431	-0.97248194	-1.49560100
Sum of	electronic and zero-point	Energies=	-1294.883532
Sum of	electronic and thermal En	ergies=	-1294.871195
Sum of	electronic and thermal En	thalpies=	-1294.870251
Sum of	electronic and thermal Fr	ee Energies=	-1294.921639
Imagina	ary frequency: -341.02 cm ⁻¹		

TS-4

В	-0.33011272	-0.01610306	0.0000000
С	-1.10188572	-1.40478406	-0.45052900
С	-2.45750072	-1.48242406	0.08420700
С	-3.74578972	-0.14823106	-0.32862000
Н	-0.51871572	-2.20611206	0.02148600
Н	-1.07699472	-1.53471306	-1.53683100
С	-3.66165772	-1.68087606	-0.67933000
Н	-4.47262872	-2.25317406	-0.22973100
Н	-3.52790472	-1.89025806	-1.73913900
Н	-2.54592872	-1.52733306	1.16817200
Cl	-0.11381572	-0.01800506	1.89375800
Cl	1.28988228	0.16172694	-0.87430800
С	-2.39233472	1.24470194	0.13881400
Н	-2.42779872	1.11016294	1.22245800
С	-3.06726872	2.49034494	-0.39840700
Н	-2.52456772	3.35409094	0.00317100
Н	-4.11456072	2.58219694	-0.10655300
Н	-2.98244672	2.52175394	-1.48852000
0	-1.21171672	1.07482394	-0.41755600
Н	-3.87390272	0.35395494	-1.28405100
С	-4.83282572	0.07374394	0.71603300

S48

Η			-4.	83505172	1.08349894	1.13466800
Н			-5.	82363872	-0.11352406	0.28380900
Н			-4.	70759972	-0.61972106	1.55565500
Sum o	of	electronic	and	zero-point	Energies=	-1294.872834
Sum o	сf	electronic	and	thermal Ene	ergies=	-1294.860782
Sum c	сf	electronic	and	thermal Ent	halpies=	-1294.859838
Sum c	сf	electronic	and	thermal Fre	e Energies=	-1294.910468
Imagi	ina	ry frequenc	cy: -	436.40 cm ⁻¹		

TS-6

В		0.13687600	-0.22542352	-0.00295096
С		1.33142100	-1.25307052	0.44490404
С		2.64589700	-0.56707752	0.56078104
С		3.18674900	0.00846248	-0.96709696
Н		1.06976800	-1.63598752	1.43867604
Н		1.40584600	-2.11032852	-0.23553196
С		3.89247600	-1.07952752	0.10441904
Н		2.69350000	0.25931048	1.26901904
Н		3.98713700	0.72988748	-1.10156396
Н		2.97697400	-0.61042252	-1.83342796
Cl		-0.30162300	0.88806748	1.49478904
Cl		-1.36711200	-1.15895952	-0.57353396
С		1.79684300	1.19011748	-1.18834596
0		0.62719500	0.56809848	-1.14240196
С		2.03365200	2.41942748	-0.32293396
Н		3.02717500	2.83791048	-0.51697496
Н		1.28333900	3.16367248	-0.61238796
Н		1.90002200	2.23475748	0.74219704
Н		2.05790100	1.40188948	-2.23187996
С		5.22094800	-0.64637552	0.67417304
Н		5.50572800	-1.32794552	1.48505904
Н		6.01304800	-0.67805552	-0.08137796
Н		5.17223700	0.36592548	1.08852504
Н		3.87525400	-2.06962052	-0.34732296
Sum of	electronic	and zero-point	Energies=	-1294.874905
Sum of	electronic	and thermal Ene	ergies=	-1294.862621
Sum of	electronic	and thermal Ent	thalpies=	-1294.861677
Sum of	electronic	and thermal Fre	ee Energies=	-1294.912941
Imagin	ary frequend	cy: -326.72 cm ⁻¹		

16

-			
В	-0.28180354	0.41867956	0.0000000
С	1.11045446	-0.22892244	-0.37517000
С	1.34870746	-1.72791444	-0.27505800
С	1.75862446	-2.36036144	1.03932600
Н	1.32615846	0.10698856	-1.40290700
Н	1.86260046	0.29928656	0.23069000
С	2.75234946	-2.25022144	-0.09270600
Н	3.03890446	-3.15889944	-0.61501700
Н	3.55543646	-1.52373244	0.00669000
Н	0.71074146	-2.33446844	-0.91468100
Н	1.37405546	-3.34575544	1.29133100
Н	1.89608146	-1.70680044	1.89815500
Cl	-0.35377754	2.21294356	-0.04292600
С	-1.76085354	-1.50595344	0.49062800
С	-2.91715054	-1.66462244	1.45452200
H	-3.18792654	-2.71799044	1.55928200

Η			-2.	.61820054	4 -1.27268344	2.43305900
Н			-3.	78401854	-1.10112344	1.10005000
0			-1.	46587154	-0.14126644	0.35747400
Cl			-2.	.22488854	-2.18998744	-1.15315300
Н			-0.	.88023954	-2.07392044	0.78483100
Sum	of	electronic	and	zero-po	int Energies=	-1255.633572
Sum	of	electronic	and	thermal	Energies=	-1255.621895
Sum	of	electronic	and	thermal	Enthalpies=	-1255.620950
Sum	of	electronic	and	thermal	Free Energies=	-1255.673056
19						
В			-0.	57165861	0.61191628	0.0000000
С			0.	79195439	9 -0.13977972	-0.37328300
С			2.	03439639	0.30662528	0.38103500
С			2.	89716939	9 1.44292228	-0.13597900
Н			Ο.	62135439	9 -1.21089172	-0.19315000
Н			Ο.	96389739	-0.04489972	-1.45516900
С			3.	41222939	0.02282628	-0.16270700
Н			4.	20072839	-0.25094072	0.53342100
Η			3.	48348639	9 -0.47006772	-1.12924700
Η			1.	94411139	0.24844228	1.46436000
Н			3.	34371939	2.13554628	0.57448200
Η			2.	63047139	9 1.89447128	-1.08951900
Cl			-0.	.98098961	L 0.60677028	1.82515400
Cl			-2.	.02150661	L 0.14019828	-1.03766800
С			-0.	15924361	L 3.12556328	0.32165200
Н			-0.	23461861	L 2.96549528	1.40331100
С			0.	.13549739	9 4.47519228	-0.21563300
Η			-0.	61463761	L 5.18432728	0.15844500
Н			1.	.10380139	9 4.81157628	0.17905900
Η			0.	.15040239	9 4.47630528	-1.30669100
0			-0.	.33203761	L 2.16037328	-0.43199100
Sum	of	electronic	and	zero-po	int Energies=	-1255.623634
Sum	of	electronic	and	thermal	Energies=	-1255.611280
Sum	of	electronic	and	thermal	Enthalpies=	-1255.610336
Sum	of	electronic	and	thermal	Free Energies=	-1255.663576