
Fig. S1. Cell trajectory straightness by region. (A) Mean track straightness from four wild-type embryos. (B) Mean straightness 
from three notum1a over-expressing embryos. (C) Mean straightness from three SU5402-treated embryos. In wild-type embryos, the 
DM has the straightest tracks. The straightness decreases in the PZ (P<0.05) and further in the PSM (P<0.05). Upon ectopic notum1a 
expression, there is no significant decrease in mean track straightness. After SU5402 treatment, the track straightness is diminished in 
the DM (P<0.05) and PZ (P<0.05). P-values calculated by ANOVA.

Fig. S2. Mean speeds of cell trajectories. (A) Means of four wild-type embryos. (B) Means of three notum1a over-expressing 
embryos. (C) Means of three SU5402-treated embryos. In wild-type embryos, the DM and PZ exhibit the highest track mean speeds. 
The mean speeds remains unchanged after ectopic notum1a expression. After SU5402 treatment, the mean speed of the PSM increases 
(P<0.05) becoming more similar to the DM and PZ. P-values calculated by ANOVA.



Fig. S3. Cell flow map of wild type, notum1a over-expressing embryos and SU5402-treated embryos. (A-J) The embryo was 
divided into sectors and an average 3D velocity vector was calculated for each sector (averaged in time and in the z dimension) using 
the individual cell velocities v

i
. The vector displacement map for the velocity was then obtained by plotting in each pixel the mean 

speed and the projection of the averaged 3D velocity vector. The heat map represents the average relative speed of the sector. The 
arrows are the 3D orientation of the averaged velocity vector. (A-D) Four wild-type embryos. (E-G) Three notum1a over-expressing 
embryos. (H-J) Three SU5402-treated embryos. Posterior is to the right.



Fig. S4. Cell flow within the PZ as revealed by the cell trajectories in the top 10% displacement in each direction. (A-D) Four 
wild-type embryos. (E-G) Three notum1a over-expressing embryos. (H-J) Three SU5402-treated embryos. (A-D) In the wild-type 
PZ, the spatial segregation of the top 10% of tracks with the largest displacements reveal the bilateral flow of cells. Cells from the 
DM move ventrally into the medial PZ (green). Cells then flow laterally (yellow). Along the lateral edges where they are spatially 
segregated from the ventral flow, cells move anteriorly (red) and dorsally (blue). (E-G) In the notum1a over-expression embryos, the 
flow pattern loses its bilateral symmetry. (H-J) In the SU5402-treated embryos, the bilateral symmetry is better maintained than in 
notum1a embryos.



Fig. S5. Map of local rotational velocity within the cell flow field calculated via a 3D finite element mesh. Posterior is to the right. 
The heat map represents magnitude of the local rotational velocity. Arrows represent the direction of the rotation via the ‘right-hand 
rule’. (A-D) Four wild-type embryos. (E-G) Three notum1a over-expression embryos. (H-J) Three SU5402-treated embryos. In the 
wild-type embryos, the local rotation reveals cells diving into the PZ from the DM (arrows slanting upwards). In the ectopic notum1a 
embryos, the diving is lost and the cells rotate up in the PZ (arrows slanting downwards). In the SU5402-treated embryos, the dorsal-
to-ventral local rotation into the PZ from the DM is reduced but not reversed.



Fig. S6. notum1a over-expression phenotypes. (A-D,M,O) Wild type. (E-H,N,P) The moderate notum1a over-expression phenotype 
used for quantitative image analysis. (I-L,Q) The severe notum1a over-expression phenotype. The expression domains of mesodermal 
genes tbx6 (A,E,I) her1 (B,F,J) eve (C,G,K) and the neural gene neurogenin1 (D,H,L) remain after ectopic notum1a expression 
indicating that notum1a retains patterned mesodermal and neural cell fates. (P) Roughly half of ‘moderate phenotype class’ embryos at 
8-10 somites give rise to misdirected body axes at 30 hpf.



Fig. S7. Heat shock expression of hsDTCF-GFP during trunk elongation causes a decrease in effective and coherent cell 
migration in the tailbud. (A-C,G) Data from the four wild-type embryos. (D-F,H) Data from three hsDTCF-GFP embryos. These 
embryos have reduced effective migration (DM, P<0.05; PZ, P<0.05) (D), polarization (DM, P<0.05) (E), correlation length of the 
direction of motion (DM, P<0.05) (F) and neighbor similarity (H) compared with wild type. These alterations in cell flow are more 
severe than seen in notum1a over-expressing embryos. P-values calculated by Student’s t-test.



Fig. S8. A two-dimensional model of the tailbud cell flow. (A) The T-shape with dimensions labeled and the different regions 
showed in color. (B) The simulation set up for three different cases namely, (1) WT, (2) notum3 over-expression and (3) FGF 
inhibition. (C) Variation of the Polarization, cell number in DM, rate of growth of the T-trunks, and the angular standard deviation as a 
function of noise strength in the DM. See Appendix S1 for additional details.
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APPENDIX 

Quantitative analysis of cell motion 

Imaris software (Bitplane) was used to track the 3-D position of individual nuclei and 

extract basic statistics of motion. For an arbitrary cell !, with position vector !! ! , the 

incremental displacement and the instantaneous velocity are given by Δ!! ! =

!! ! + Δ! − !! ! , and !! ! = Δ!! ! /Δ! respectively, where Δ! is the elapsed time. 

Before we started analyzing, the cell-position data for the entire tailbud was divided into 

different regions, namely the DM, PZ, and the PSM. This subdivision was done manually 

in Imaris by sorting tracks by physical location. For these different regions, we plotted 

the distributions of the instantaneous speeds, speed coefficient of variation (CV) and the 

track straightness. The CV of the speed is defined as the standard deviation of the cell-

speeds divided by the mean speed, namely !!!(!) − !!(!) !/ !!(!) . The track 

straightness is simply the track displacement divided by the track length. Thus, a value 

of 1 represents a straight line.  All the plots and further analysis of the cellular flow were 

performed in MatLab.  

 

Establishing the reference frame 

To correct for any drift or global movement of the tailbud, we quantified the cellular 

movement with respect to the anterior 50  !" of the PSM which consistently displayed 

relatively minimal movement along the anterior-posterior axis. The center of mass 

velocity !!"!"#$(!) was then calculated at each time point by averaging over all the cell 
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velocities in this region. The individual position and velocity of the cells in the tailbud 

were then corrected as, 

      (1) 

We used (r! ,  u!)  to compute the Mean Square Displacement (MSD), Polarization, 

correlation functions, neighbor similarity, the polar and azimuthal angle of the 

instantaneous velocity and convergence and extension. These values were calculated 

for four wild-type embryos, three affected and three unaffected notum1a over-

expressing embryos, three affected and three unaffected SU5402 treated embryos, 

three cdh2 mutant embryos and three hsΔTCF-GFP embryos. The values were 

averaged for each group of embryos.  The specifics of each metric are discussed in 

detail in the supplemental materials. 

 

Mean Square Displacement (MSD) 

The MSD for an individual cell track i is given by, 

 

 

             

                     (2) 

 

where ! is the lag-time and the average is taken over the entire time trajectory T. The 

MSD function is then fitted by a power law 

 

     (3) 
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The exponent α carries information about the motion type: α = 1 is Brownian and a ≈ 2 is 

ballistic. The prefactor A is proportional to the effective diffusion coefficient (in case of 

Brownian motion) or velocity (in the case of ballistic motion). We performed our MSD 

analysis on each individual track thus obtaining a distribution of A and α  values by fitting 

Eq. (3). The α value was then averaged for the different regions of the embryo to obtain 

a mean α  value. 

 

Polarization 

To quantify the degree of order in different regions of the embryo, we defined the 

Polarization (Cavagna, et al, 2010) as the average normalized velocity: 

 

     (4) 

Here the inner summation indicates average taken over the total number of cells (N) at 

each time and the outer bracket indicates the average over all times. For ordered 

behavior, Φ is close to 1 whereas for disordered behavior Φ is close to zero. 

 

Spatial Correlation and Correlation Length Scale 

A quantification of how the direction of cellular motion is correlated in space is achieved 

by calculating the two point correlation of the normalized velocities n! = u!/ u!  (Bialek, 

et al, 2012): 

    (5)
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Here !!" is the distance between the cell pairs and !(! − !!") is a smoothed Dirac delta 

function selecting cell pairs in !, ! + !" . To estimate the characteristic distance over 

which the motion stays coordinated, we define a correlation length scale !! which was 

obtained by fitting the initial decay of !!(!) by an exponential function !  exp (−! !!). 

 

Neighbor Similarity 

The neighbor similarity is a local measure of correlated movement and is written for any 

!"-th pair (Arboleda-Estudillo, et al, 2010) as:  

  (6) 

Here !!"  are the angles between the cell pairs and Θ(!!" − !!) is a Heaviside step-

function. Only the neighboring pairs are considered, and we take the maximum distance 

between neighbors !!~20  !" (assuming the average cell diameter is ~  10  !"). The 

neighbor similarity value can vary between -1 and +1 depending on whether the cells 

are moving in opposite or same direction. 

 

Computing the polar angle of the instantaneous velocity 

The polar angle  is calculated using the following formula: 

     (7)

 

where the x-axis is taken aligned along the anterior-posterior axis and the y-axis aligns 

with the medial-lateral axis.  We calculated the standard deviation of the mean polar 

angle, namely !! − ! !, where the average was taken over all cells at all time-points. 
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Convergence and Extension  

The rate of medial to lateral convergence and posterior extension for the ADM was 

calculated by measuring the change is size, both in the anterior-posterior and medial-

lateral dimensions and dividing by the elapsed time. Size was measured by taking the 

difference of the terminal points at the first time point and at the last time point of the 

data set. 

 

Smoothed Particle Hydrodynamics 

The bulk behavior of the cellular movement in the posterior tailbud was studied by 

interpolating the velocity field between Lagrangian points (cell nuclei) and smoothing 

using Smoothed Particle Hydrodynamics (SPH): a mesh-free, particle based 

interpolation technique (Liu and Liu, 2010; Monaghan, 1992). In discrete time, the 

behavior of any physical quantity (velocity in our case) at an arbitrary point in space 

(inside the domain of interest) is obtained by taking a weighted average over a local 

neighborhood. For a detailed discussion on SPH, refer to (Liu and Liu, 2010; Monaghan, 

1992). 

 

The interpolation of any physical quantity !!(!) using SPH at a given instant of time can 

be written as, 

       (8) 

Here ! is an arbitrary point inside the volume. W is a smoothing kernel and ℎ is the 

spatial width over which the smoothing is performed. The sum is taken over all the cell 

positions measured at each time. Each cell ! at a position !! has a volume Ω! and the 

value of the physical quantity is !!.  

fS (r) = f j
j=1

N

! " jW (r # rj,h).
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In our study we want to estimate the bulk movement of the cells, as well as the behavior 

when the bulk field is removed from the individual cell velocities. We therefore 

interpolate the velocities exactly at the cell positions. Defining Ω = !/!, where ! is the 

mass and ! is the density, the bulk velocity !!! at position ! is given by, 

       (9) 

Assuming the mass of the individual cells to be constant (!! ≈ !), the density at each 

cell location can then be calculated as, 

    (10) 

which is then used in Eq. 9. 

 

The smoothing kernel must be a normalized function, satisfying the following property, 

 

       (11) 

 

where !(!− !′) is the Dirac delta function. Eq. 11 ensures that with decreasing ℎ, the 

smoothened function value approaches the actual function value. A proper kernel should 

also be compactly supported, namely ! !− !′, ℎ = 0, |!− !′| > !ℎ  (!  is a scaling 

factor). This ensures that the smoothing is performed strictly inside the local window 

defined by ℎ (Liu and Liu, 2010).  A low degree polynomial (cubic or a quartic spline) is a 

common choice for smoothing kernels that have good compact support and are 

computationally fast (Liu and Liu, 2010). Here we choose a quartic smoothing function 

(Liu, et al, 2003), 
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   (12) 

where ! = |!− !!|/ℎ. Here !!  is the normalization constant (! is the dimension), for 

! = 3, !! = 315/208!ℎ!. Before using this kernel for our data, we tested it to estimate 

known functions. For the analysis of zebrafish tailbud data, we varied ℎ = 5  !"  !"  40  !" 

in steps of 5  !".  

 

One complication of using SPH for smoothing is implementing proper boundary 

conditions for complex shapes. One way to minimize the effect of boundaries is by 

choosing a small smoothing radius. On the other hand since we want to extract the bulk 

cellular movement in the embryo, too small value of the smoothing radius ℎ will fail to do 

so. Here we show the data for radius (ℎ = 15  !") that can smooth over a larger spatial 

extent, without introducing significant boundary effects. 

 

We studied the fluctuations of the cell movement in the tailbud after removing the bulk 

motion, namely, 

         (13) 

 

 

Finite element method 

Finite element method (FEM) is a computer aided mathematical technique (Burnett, 

1987), which is often used to obtain approximate numerical solutions of partial 

differential equations, describing a physical system. Here we used FEM following 

established procedures from the field of fluid mechanics to extract velocity fields from 
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the Lagrangian velocities of the individual nuclei. (Kelley and Ouellette, 2011; Lee and 

Schachter, 1980). This allows us to look at the spatial variations of the velocity fields and 

quantify local rates of rotation and divergence.  

 

For each time snap-shot, a tetrahedral mesh was constructed from the cell data using 

Delaunay triangulation (Lee and Schachter, 1980) such that no point lay in the 

circumcircle of any triangle. Once the mesh was created we defined a velocity function 

for each tetrahedron. If ! = !, !, !,!  are the four vertices of a tetrahedron with 

coordinates [ !! ,!! ,!! , !! , !! , !! , !! , !! , !! , !! ,!! ,!! ], then the velocity function on 

this tetrahedron can be written in terms of the linear basis functions as, 

 

 (14)
 

 

where !′! are the linear basis functions. Given Eq. (14), we can evaluate ! !,!, !  (or its 

derivative) anywhere in the tetrahedron provided we know the correct basis functions. 

The basis functions !′! are chosen such that there is one basis function per vertex and 

the basis function of the ith vertex satisfies  !!(!) = !!,!  , where !!,! is the Kronecker delta 

function. In the present example, they are written as (Burnett, 1987),  

 

v(x, y, z) = v(a)!a (x, y, z)+ v(b)!b(x, y, z)+ v(c)!c (x, y, z)+ v(d)!d (x, y, z),
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 (15) 

 

where the vertical bars denote the determinant operation and V is the volume of the 

tetrahedron given by, 

 

    (16)

 

Using !(!,!, !) we calculated the vorticity in the velocity fields which is simply, 

    (17)

 

 

We divided the whole embryo into voxels and an average local rotational velocity was 

assigned to each sector. A two dimensional projection of the embryo was then obtained 

by averaging over all the sectors in the third dimension (the averaging is done for both 

the vectors and their absolute values). This was then plotted similar to the vector 

displacement map for the velocities. 
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Computer Model and Simulations 
 
We consider a two-dimensional model of self-propelled motion with polar alignment 

based on the study by Szabó et. al., (Szabo, et al, 2006). Each cell is modeled as a soft 

particle of radii !!  with an instantaneous position !!  (the center of the particle). The 

overdamped dynamics of the ith cell is given by, 

    
!ri = v0n̂i + µ F(

j=1

N

! ri,rj )

!!i =
1
!
sin"1 n̂i # !̂r( ) $ ẑ%

&
'
( +!i.     (18)

 

The cells move with a self-propelling velocity !!!! of constant speed !! and mobility ! 

and experience forces by the neighboring cells via F(ri,rj ) . The unit vector !! =

(cos!! , sin!!) defines the cellular polar direction, i.e. the direction of the self-propelling 

velocity. This polar axis tends to align along the direction of cellular velocity 

!̂r = !ri / !ri = (cos!i, sin!i )  with a relaxation time ! and an angular noise denoted by!i . The 

quantity !i  is a delta-correlated white noise with zero mean. 

 

The interaction between cells is short ranged and modeled by a piecewise linear force-

function which is given by, 

 

   F(ri,rj ) = r̂ij

Frep
(Req ! rij )
Req

, !!!!! !!!!!!!!! !!!!!!!!rij < Req,
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(Req ! rij )
!Req

, !!!Req " rij " (1+! )Req,
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#
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%
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%
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Here rij = ri ! rj , and r̂ij is the corresponding unit vector. Frep  andFadh  are the maximum 

repulsive and adhesive force values. The equilibrium distance between two cells is given 

by Req = (ai + aj ) . The parameter ! sets the upper bound for the short ranged attraction 

and is taken to be a small quantity (< 1). For details of the model please refer to (Szabo, 

et al, 2006; Vicsek and Zafeiris, 2012). 

 

Parameter Values 

To study Eq. (18) numerically we use particles whose radii are uniformly distributed in

a![a0 "! ,a0 +! ], where 2a0 = 5 / 6  is the average cell diameter and we choose ! = 0.05 . 

We set v0 =1,!µ =1,!! =1,!Frep = 32,!Fadh = 0.95,!" = 0.2 for the simulations. The magnitude 

of the angular noise is chosen from a uniform distribution in the interval !
!t

""
2
, "
2

#
$%

&
'(

, 

where  is the control parameter. The time-step of integration is taken to be !t = 0.005 . 

For our simulations we set the initial number density to a high value  (close to unity) to 

ensure the onset of collective motion and also to mimic the conditions in a real tissue 

where the cells are closely packed. As a result the absolute noise strength required to 

represent the WT situation (such that the angular distribution agrees with those obtained 

from experiments) is also high. 

 

Simulations 

We perform the simulations on a geometric structure that resembles a ‘T’ in 2D with 

reflective walls (A). This is an oversimplification of the actual 3D geometry of the tailbud 

representing the collective behavior across the DM into the PZ, followed by a bilateral 

division. In our model the lower column of the T represents the DM region and the upper 

part is representative of the PZ region (A). Particles are introduced at a constant rate 

!
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from below. They move forward and divide bilaterally in the PZ, and then move out along 

the two trunks of the T. Unlike the real embryo, where the tip of the tailbud grows in the 

forward direction, the upper wall of the T here is held fixed. Similarly the two trunks of 

the T can be considered to be representative of the two PSMs: however in contrary to 

the real PSMs which grows towards the posterior direction, they are allowed to grow 

freely outside and as a result the velocity of the particles do not go to zero (as it does in 

the PSM). Here, we aim to understand the changes in the collective behavior as a 

function of cellular polar direction and cellular flow in the DM region only.  A simpler 

geometric shape like a rectangular column (where particles flow in at a constant rate 

from one side and are allowed to grow on the other side) would be sufficient to illustrate 

the interplay between influx, coherence of the cellular flow and jamming. However, we 

utilize the T-shape due to a closer resemblance to the tailbud geometry. 

 

To compare the different scenarios of collective motion as seen in the experiments, we 

vary only two parameters, namely the angular noise amplitude !  and the cellular flow-

rate at the inlet (bottom of the T). The dimension of the T-shape is shown in (A). L is 

chosen in such a way that N0 = L / 4a0 ~10 .  

 

We simulate the WT situation (Panel B, case 1) by pushing particles with angular noise 

! DM =1.4  into the T at a constant rate ( (N0 ! 2)  particles in every Nsteps = ! / (v0!t)

iteration steps). Here ! is a parameter to control the flow, which is set to! =1.5 . The 

angular noise in the PZ is kept higher (! PZ ,PSM = 5.6 ). As a result the polarization and 

correlation length of the simulated cells motion are smaller in the PZ than in the DM 

mimicking experimental data.   
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In the experiments, over-expression of notum3 leads to reduced polarization and flow 

rate in the DM but not in the ADM. (Panel B, case 2). We simulated this using the 

stronger angular noise (! = 5.6 ) everywhere but keeping the influx of cells at the bottom 

of the T the same as for the WT case (! =1.5 ). 

 

Finally, we simulate the FGF inhibition case (panel B, case 3) using the same high 

angular noise everywhere as for notum3 overexpression along with a reduced flow 

(! = 3 ). The cellular motion in the DM region is quantified by calculating the Polarization 

(Φ), the angular standard deviation, and mean number of cells. Note that these 

measures are calculated on a small time-window after removal of initial transients (the 

same amount of transient for all the different cases), and then averaged over 100 

different stochastic runs. Since the number density is time-dependent, for the case of 

high angular noise, taking a longer time window introduces artifacts due to inability of the 

walls to adjust to increasing cell number in this simple model.  

 

We also studied the variation of the various measures, as a function of noise intensity 

(panel C) in the DM ( is set constant at 5.6 in the top column, and varied in DM). With 

increasing angular noise the Polarization goes down, whereas the Number of cells in the 

DM and the angular standard deviation goes down. We quantified an additional measure, 

namely the growth velocity of the T trunks, which goes down with increasing noise. 

 

 

 

 

 

!
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