Stereoselective Access to Z- and E-Macrocycles by Ruthenium-Catalyzed Z-Selective Ring-Closing Metathesis and Ethenolysis

Vanessa M. Marx, Myles B. Herbert, Benjamin K. Keitz, and Robert H. Grubbs*

Arnold and Mabel Beckman Laboratories of Chemical Synthesis Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California, 91125

Table of Contents

Procedures and spectral data	S1 - S30
General methods, compounds 1a and 4a	S 2
Compounds 5a and 6a	S 3
Compounds 7a, 16 and 10a	S 4
Compounds 11a and 12a	S 5
Compounds 8a and 9a	S 6
Compounds 13a and 14a	S 7
General procedure for Z-selective macrocyclizations,	
compound Z-1	S 8
Compounds Z-4 and Z-5	S 9
Compounds Z-6 and Z-7	S10
Compounds Z-8 and Z-9	S11
Compounds Z-10 and Z-11	S12
Compounds Z-12 and Z-13	S13
Compound Z-14 , general procedure for synthesis of	
<i>E</i> -dominant macrocycles, and compound <i>E</i> -6	S14
Compounds <i>E-8</i> and <i>E-10</i>	S15
Compound <i>E-13</i> , general procedure for Z-selective	
ethenolysis	S16
Compounds <i>E-6</i> and <i>E-8</i>	S17
Compounds <i>E</i> -10 and <i>E</i> -13	S18

¹ H and ¹³ C NMR spectra, in order of compound number,	
and HSQC spectra for compounds Z-1, Z-4 to Z-14	S19 - S88

4

12

General methods

All reactions were carried out in dry glassware under an argon atmosphere using standard Schlenk line techniques or in a Vacuum Atmospheres Glovebox under a nitrogen atmosphere unless otherwise specified. All solvents were purified by passage through solvent purification columns,¹ with the exception of anhydrous 1,2-dichloroethane which was used as received from Sigma Aldrich, and further degassed with argon. Ruthenium complex **2** was obtained from Materia Inc. ¹H-NMR spectra were acquired at 500 MHz and ¹³C-NMR spectra at 125 MHz as CDCl₃ solutions. Quantitative ¹³C measurements were acquired at 125 MHz (decoupled, without NOE, 13 second delay time). All HRMS were by positive-ion EI or FAB.

But-3-en-1-yl undec-10-enoate (1a)

10-Undecenoyl chloride (4.5 mL, 21 mmol) was dissolved in CH₂Cl₂ (40 mL), and pyridine (1.7 mL, 21 mmol), then 3-butenol (1.6 mL, 19 mmol), were added dropwise at 0 °C. The solution was warmed to room temperature, and stirred for four hours. The mixture was then washed sequentially with 1M HCl (*aq.*), saturated NaHCO₃ (*aq.*), brine, dried with Na₂SO₄, and the solvent was removed *in vacuo*. Flash chromatography of the residue (SiO₂, using 5% EtOAc in hexanes) provided **1a** (4.4 g, 88%) as a colourless oil; ¹H NMR δ 5.79 (2H, m), 5.11 (1H, m), 5.07 (1H, m), 4.99 (1H, m), 4.93 (1H, m), 4.12 (2H, t, *J* = 6.7 Hz), 2.38 (2H, m), 2.29 (2H, t, *J* = 7.6 Hz), 2.03 (2H, m), 1.61 (2H, m), 1.26-1.40 (10H, m); ¹³C NMR δ 173.8, 139.2, 134.1, 117.1, 114.2, 63.3, 34.3, 33.8, 33.1, 29.3, 29.2, 29.1 (2C), 28.9, 25.0; HRMS (EI) 238.1932, [C₁₅H₂₆O₂]⁺ requires 238.1933.

But-3-en-1-yl dec-9-enoate (4a)

Oxalyl chloride (2.1 mL, 25 mmol) was added dropwise to a solution of 9-decenoic acid (3.9 mL, 21 mmol) and pyridine (0.20 mL, 2.1 mmol) in CH_2Cl_2 (100 mL), and the solution was let to stir for fifteen hours, then concentrated. The residue was dissolved in CH_2Cl_2 (40 mL), and pyridine (1.7 mL, 21 mmol),

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics. 1996, 15, 1518.

then 3-butenol (1.6 mL, 19 mmol), were added dropwise at 0 °C. The solution was warmed to room temperature, and stirred for four hours. The mixture was then washed sequentially with 1M HCl (*aq.*), saturated NaHCO₃ (*aq.*), brine, dried with Na₂SO₄, and the solvent was removed *in vacuo*. Flash chromatography of the residue (SiO₂, using 5% EtOAc in hexanes) provided **4a** (4.0 g, 85%) as a colourless oil; ¹H NMR δ 5.79 (2H, m), 5.11(1H), 5.07 (1H, m), 4.99 (1H, m), 4.93 (1H, m), 4.13 (2H, t, *J* = 7.1 Hz), 2.38 (2H, m), 2.30 (2H, t, *J* = 7.5 Hz), 2.04 (2H, m), 1.62 (2H, m), 1.22-1.41 (8H, m); ¹³C NMR δ 173.8, 139.1, 134.1, 117.1, 114.2, 63.3, 34.3, 33.8, 33.1, 29.1 (2C), 28.9 (2C), 25.0; HRMS (EI) 224.1773, [C₁₄H₂₄O₂]⁺ requires 224.1776.

Undec-10-en-1-yl hex-5-enoate (5a)

According to the procedure for compound **4a**, 5-hexenoic acid (1.65 mL, 14 mmol) was reacted with oxalyl chloride (1.4 mL, 17 mmol) and pyridine (0.12 mL, 1.4 mmol), then 10-undecenol (2.6 mL, 13 mmol) and pyridine (1.2 mL, 14 mmol), to provide **5a** (0.86 g, 23%) as a colourless oil; ¹H NMR δ 5.80 (2H, m), 5.01 (2H, m), 4.96 (2H, m), 4.06 (2H, t, *J* = 6.8 Hz), 2.31 (2H, t, *J* = 7.6 Hz), 2.09 (2H, m), 2.04 (2H, m), 1.73 (2H, m), 1.61 (2H, m), 1.24-1.41 (12H, m); ¹³C NMR δ 173.7, 139.2, 137.7, 115.3, 114.1, 64.5, 33.8, 33.6, 33.1, 29.5, 29.4, 29.2, 29.1, 28.9, 28.7, 25.9, 24.1; HRMS (EI) 266.2245, [C₁₇H₃₀O₂]⁺ requires 266.2246.

Dec-9-en-1-yl undec-10-enoate (6a)

According to the procedure for compound **1a**, 10-undecenoyl chloride (4.5 mL, 21 mmol) was reacted with 9-decenol (3.4 mL, 19 mmol) and pyridine (1.7 mL, 21 mmol), to provide **6a** (6.4 g, 94%) as a colourless oil; ¹H NMR δ 5.81 (2H, m), 4.99 (2H, m), 4.93 (2H, m), 4.05 (2H, t, *J* = 6.7 Hz), 2.29 (2H, t, *J* = 7.5 Hz), 2.04 (2H, m), 1.61 (2H, m), 1.25-1.41 (20H, m); ¹³C NMR δ 174.0, 139.2, 139.1, 114.2, 114.1, 64.4, 34.4, 33.8 (2C), 29.4, 29.3, 29.2 (2C), 29.1 (2C), 29.0, 28.9 (2C), 28.7, 25.9, 25.0; HRMS (EI) 322.2884, [C₂₁H₃₈O₂]⁺ requires 322.2872.

Dec-9-en-1-yl oct-7-enoate (7a)

According to the procedure for compound **4a**, 7-octenoic acid (3.2 mL, 21 mmol) was reacted with oxalyl chloride (2.1 mL, 25 mmol) and pyridine (0.20 mL, 2.1 mmol), then 9-decenol (3.4 mL, 19 mmol) and pyridine (1.7 mL, 21 mmol), to provide **7a** (4.8 g, 81%) as a colourless oil; ¹H NMR δ 5.80 (2H, m), 4.99 (2H, m), 4.93 (2H, m), 4.06 (2H, t, *J* = 6.7 Hz), 2.29 (2H, t, *J* = 7.5 Hz), 2.04 (2H, m), 1.62 (2H, m), 1.26-1.44 (14H, m); ¹³C NMR δ 173.9, 139.1, 138.8, 114.4, 114.2, 64.4, 34.3, 33.8, 33.6, 29.4, 29.2, 29.0, 28.9, 28.7, 28.6, 28.5, 25.9, 24.9; HRMS (EI) 280.2406, [C₁₈H₃₂O₂]⁺ requires 280.2402.

9-Iodonon-1-ene (16)

Methanesulponyl chloride (3.3 mL, 42 mmol) was added dropwise to a 0 °C solution of 8-nonenol (5.9 mL, 35 mmol) and triethylamine (5.9 mL, 42 mmol) in CH₂Cl₂ (35 mL). The mixture was let to stir at room temperature for two hours, and was then washed sequentially with 1M HCl (*aq.*) (x2), saturated NaHCO₃ (*aq.*), brine, and dried with Na₂SO₄. The solvent was removed *in vacuo*, the residue was taken in acetone (125 mL), and NaI (13 g, 88 mmol) was added. The mixture was stirred at room temperature for 24 hours, then concentrated. Flash chromatography of the residue (SiO₂, using hexanes) provided **16** (6.9 g, 78%) as a colourless oil; ¹H NMR δ 5.81 (1H, m), 4.99 (1H, m), 4.93 (1H, m), 3.19 (2H, t, *J* = 7.0 Hz), 2.04 (2H, m), 1.82 (2H, m), 1.39 (4H, m), 1.31 (4H, m); ¹³C NMR δ 139.0, 114.3, 33.7, 33.5, 30.5, 28.9, 28.8, 28.4, 7.3; HRMS (EI) 252.0373, [C₉H₁₇I]⁺ requires 252.0375.

Nonadeca-1,18-dien-10-ol (10a)

10a

A solution of iodide 16 (6.9 g, 27 mmol) in Et₂O (50 mL) was cooled to -78 °C, and tert-butyl lithium

(32 mL, 1.7M in pentanes) was added dropwise. The solution was warmed to room temperature over 1 hour, then re-cooled to -78 °C, and 9-decenal² (3.9 g, 25 mmol) was added dropwise. The solution was warmed to room temperature over one hour, then washed with saturated NaHCO₃ (*aq.*), then brine, dried with Na₂SO₄, and concentrated. The residue was taken in hexanes, and recrystallized at -20 °C to provide **10a** (5.0 g, 71%) as a colourless solid; ¹H NMR δ 5.81 (2H, m), 4.99 (2H, m), 4.93 (2H, m), 3.58 (1H, m), 2.04 (4H, m), 1.25-1.48 (25H, m); ¹³C NMR δ 139.2 (2C), 114.1 (2C), 72.0, 37.5 (2C), 33.8 (2C), 29.6 (2C), 29.5 (2C), 28.9 (2C), 25.6 (2C); HRMS (EI) 280.2759, [C₁₉H₃₆O]⁺ requires 280.2766.

tert-Butyldimethyl(nonadeca-1,18-dien-10-yloxy)silane (11a)

tert-Butyldimethylsilyl chloride (0.18 g, 1.2 mmol) was added to a solution of alcohol **10a** (0.30 g, 1.1 mmol), imidazole (0.14 g, 2.1 mmol), and 4-dimethylaminopyridine (0.012 g, 0.10 mmol) in CH₂Cl₂ (5 mL), and the solution was let to stir for 24 hours at room temperature. The solution was washed with saturated NaHCO₃ (*aq.*), brine, and dried with Na₂SO₄. The solvent was removed *in vacuo*, and flash chromatography of the residue (SiO₂, using pentanes) provided **11a** (0.42 g, 98%) as a colourless oil; ¹H NMR δ 5.81 (2H, m), 4.99 (2H, m), 4.93 (2H, m), 3.61 (1H, m), 2.04 (4H, m), 1.38 (8H, m), 1.28 (16H, m), 0.88 (9H, s), 0.03 (6H, s); ¹³C NMR δ 139.2 (2C), 114.1 (2C), 72.4, 37.1 (2C), 33.8 (2C), 29.8 (2C), 29.5 (2C), 29.1 (2C), 28.9 (2C), 26.0 (3C), 25.3 (2C), 18.2, -4.4 (2C); HRMS (EI) 393.3545, [C₂₅H₄₉OSi-H]⁺ requires 393.3553.

Nonadeca-1,18-dien-10-yl acetate (12a)

Acetic anhydride (0.13 mL, 1.4 mmol) was added to a solution of alcohol **10a** (0.19 g, 0.68 mmol) and pyridine (0.070 mL, 0.87 mmol) in CH₂Cl₂ (1.5 mL), and the solution was let to stir for 17 hours at room temperature. The mixture was diluted with diethyl ether, washed with saturated NaHCO₃ (*aq.*), brine, and dried with Na₂SO₄. The solvent was removed *in vacuo*, and flash chromatography of the residue

² Prepared from 9-decenol according to: Berube, M.; Laplante, Y.; Poirier, D. Med. Chem. 2006, 4, 329.

(SiO₂, using 10% Et₂O in pentanes) provided **12a** (0.21 g, 95%) as a colourless oil; ¹H NMR δ 5.80 (2H, m), 4.99 (2H, m), 4.92 (2H, m), 4.85 (1H, m), 2.03 (3H, s), 2.03 (4H, m), 1.49 (4H, m), 1.36 (4H, m), 1.22-1.31 (16H, m); ¹³C NMR δ 170.9, 139.2 (2C), 114.2 (2C), 74.4, 34.1 (2C), 33.8 (2C), 29.5 (2C), 29.4 (2C), 29.0 (2C), 28.9 (2C), 25.3 (2C), 21.3 (2C); HRMS (FAB) 321.2794, [C₂₁H₃₈O₂-H]⁺ requires 321.2794.

Nonadeca-1,18-dien-10-one (8a)

Tetrapropylammonium perruthenate (0.21 g, 0.60 mmol) was added to a solution of alcohol **8a** (3.5 g, 12 mmol) and *N*-methylmorpholine *N*-oxide (2.1 g, 18 mmol) in CH₂Cl₂ (25 mL). The mixture was let to stir at room temperature for one hour, then loaded directly onto a silica gel column. Purification by flash chromatography (using 10% EtOAc in hexanes) provided **8a** (3.2 g, 97%) as a colourless solid; ¹H NMR δ 5.80 (2H, m), 4.98 (2H, m), 4.93 (2H, m), 2.38 (4H, t, *J* = 7.5 Hz), 2.03 (4H, m), 1.56 (4H, m), 1.37 (4H, m), 1.29 (12H, m); ¹³C NMR δ 211.7, 139.1 (2C), 114.2 (2C), 42.8 (2C), 33.8 (2C), 29.3 (2C), 29.2 (2C), 28.9 (4C), 23.9 (2C); HRMS (EI) 278.2607, [C₁₉H₃₄O]⁺ requires 278.2610.

2,2-Di(non-8-en-1-yl)-1,3-dioxolane (9a)

para-Toluenesulphonic acid (0.010 g, 0.055 mmol) was added to a solution of ketone **9a** (0.30 g, 1.1 mmol) and ethylene glycol (0.60 mL, 11 mmol) in benzene (10 mL), and refluxed using a Dean-Stark apparatus for 21 hours. The solution was then cooled, diluted with Et₂O, washed sequentially with 10% NaOH (*aq.*), saturated NaHCO₃ (*aq.*), then brine, dried with Na₂SO₄, and concentrated. In order to facilitate separation of **9a** from unreacted **8a**, the residue was dissolved in MeOH (5 mL), and stirred with NaBH₄ (10 mg) for *ca.* 30 minutes. The mixture was then diluted with Et₂O, washed with brine, then dried with Na₂SO₄. The solvent was removed *in vacuo*, and flash chromatography of the residue (SiO₂, using 2% Et₂O in pentanes) provided **9a** (0.30 g, 86%) as a colourless oil; ¹H NMR δ 5.81 (2H, m), 4.99 (2H,

m), 4.92 (2H, m), 3.92 (4H, s), 2.04 (4H, m), 1.59 (4H, m), 1.25-1.40 (20H, m); ¹³C NMR δ 139.2 (2C), 114.1 (2C), 111.9, 64.9 (2C), 37.1 (2C), 33.8 (2C), 29.9 (2C), 29.5 (2C), 29.1 (2C), 28.9 (2C), 24.9 (2C); HRMS (EI) 322.2862, [C₂₁H₃₈O₂]⁺ requires 322.2872.

N-(Dec-9-en-1-yl)hex-5-enamide (13a)

5-Hexenoic acid (1.5 mL, 13 mmol), then triethylamine (3.3 mL, 24 mmol), were added to a solution of 9-decenamine³ (1.9 g, 12 mmol), 1-hydroxybenzotriazole hydrate (2.0 g, 13 mmol), and *N*-ethyl-*N'*-(3-dimethylaminopropyl)carbodiimide hydrochloride (2.5 g, 13 mmol) in CH₂Cl₂ (60 mL), and the mixture was stirred at room temperature overnight. The solution was diluted with EtOAc, and washed sequentially with 0.5M citric acid (*aq*.), saturated NaHCO₃, then brine, dried with Na₂SO₄, and concentrated. Purification by flash chromatography (using a gradient of CH₂Cl₂ to 5% MeOH in CH₂Cl₂) provided **13a** (2.6 g, 87%) as a pale yellow oil; ¹H NMR δ 5.79 (2H, m), 5.47 (1H, br s), 4.98 (4H, m), 3.23 (2H, m), 2.16 (2H, t, *J* = 7.5 Hz), 2.09 (2H, m), 2.03 (2H, m), 1.74 (2H, m), 1.48 (2H, m), 1.37 (2H, m), 1.29 (8H, m); ¹³C NMR δ 172.7, 139.2, 138.0, 115.3, 114.2, 39.5, 36.0, 33.8, 33.2, 29.7, 29.4, 29.2, 29.0, 28.9, 26.9, 24.8; HRMS (EI) 251.2240, [C₁₆H₂₉ON]⁺ requires 251.2249.

tert-Butyl dec-9-en-1-yl(hex-5-enoyl)carbamate (14a)

A solution of amide **13a** (1.0 g, 4.0 mmol) in THF (15 mL) was cooled to -78 °C, and *n*-butyl lithium (15 mL, 2.5M in hexanes) was added dropwise. After 30 minutes of stirring, a solution of di-*tert*-butyl dicarbonate (0.89 g, 4.1 mmol) in THF (4 mL) was added dropwise, and the mixture was let to warm to 0 °C over two hours. The solution was then diluted with Et₂O, washed with saturated NH₄Cl (*aq.*), dried with Na₂SO₄, and concentrated. Purification by flash chromatography (using 2% Et₂O in pentanes) provided **13a** (1.1 g, 79%) as a colourless oil; ¹H NMR δ 5.79 (2H, m), 4.96 (4H, m), 3.62 (2H, t, *J* = 7.5

³ Prepared from 10-undecenoyl chloride according to: Kaur, N.; Delcros, J.-G.; Martin, B.; Phanstiel, O. J. Med. Chem. **2005**, *48*, 3832.

Hz), 2.81 (2H, t, J = 7.5 Hz), 2.08 (2H, m), 2.01 (2H, m), 1.72 (2H, m), 1.51 (9H, s), 1.48 (2H, m), 1.35 (2H, m), 1.26 (8H, m); ¹³C NMR δ 175.8, 153.4, 139.2, 138.3, 114.9, 114.1, 82.6, 44.5, 37.7, 33.8, 33.2, 29.4, 29.3, 29.0, 28.9, 28.7, 28.1 (3C), 27.4, 26.9, 24.4; HRMS (EI) 351.2783, $[C_{21}H_{37}O_3N]^+$ requires 351.2773.

General procedure 1: Z-selective macrocyclizations catalyzed by Ru-complex 2

In a glovebox, a 500 mL Strauss flask was charged with a solution of diene (1 equiv, *ca.* 0.45 mmol) in dichloroethane (5 mM, 90 mL), and a solution of **2** (7.5 mol%) dissolved in dichloroethane (1 mL) was added. The flask was sealed, brought out of the glovebox, and subjected to a single freeze/pump/thaw/cycle. The flask was kept under a static vacuum of 20 mtorr, and heated at 60 °C. After 24 hours (except for **Z-8** which was quenched after 8 hours), the mixture was cooled, quenched with excess ethyl vinyl ether, and concentrated. Flash chromatography of the residue (SiO₂, using 2% Et₂O in pentanes for compound **1**, and 66% Et₂O in pentanes for compound **13**) provided the product.

Z-Oxacyclotetradec-11-en-2-one (1)

According to *General Procedure 1*, diene **1a** (0.11 g, 0.46 mmol) was reacted with **2** (0.022 g, 0.035 mmol) to provide **Z-1** (0.056 g, 58% yield, 85% *Z* as determined by ¹H-NMR) as a colourless oil; ¹H NMR δ 5.54 (1H, m), 5.38 (1H, m), 4.23 (2H, t, *J* = 5.3 Hz), 2.41 (2H, m), 2.35 (2H, t, *J* = 6.3 Hz), 2.03 (2H, m), 1.64 (2H, m), 1.24-1.39 (10H, m); ¹³C NMR δ 174.0, 132.3, 127.1, 63.7, 33.3, 27.7, 27.5, 26.1, 26.0, 25.5, 25.4, 25.2, 23.5; HRMS (EI) 210.1623, [C₁₃H₂₂O₂]⁺ requires 210.1620.

Z-Oxacyclotridec-10-en-2-one (4)

According to *General Procedure 1*, diene **4a** (0.10 g, 0.45 mmol) was reacted with **2** (0.021 g, 0.033 mmol) to provide **Z-4** (0.035 g, 40% yield, 86% *Z* as determined by ¹H-NMR) as a colourless oil; ¹H NMR δ 5.40 (2H, m), 4.23 (2H, t, *J* = 4.5 Hz), 2.43 (2H, m), 2.28 (2H, t, *J* = 6.0 Hz), 2.09 (2H, m), 1.67 (2H, m), 1.49 (2H, m), 1.38 (2H, m), 1.27 (2H, m), 1.21 (2H, m); ¹³C NMR δ 174.7, 132.3, 127.1, 64.2, 35.4, 29.7, 27.5, 27.3, 26.0, 25.9, 24.6, 23.5; HRMS (EI) 196.1424, [C₁₂H₂₀O₂]⁺ requires 196.1463.

Z-Oxacyclohexadec-6-en-2-one (5)

According to *General Procedure 1*, diene **5a** (0.11 g, 0.43 mmol) was reacted with **2** (0.022 g, 0.035 mmol) to provide **Z-5** (79 mg, 77% yield, 84% *Z* as determined by ¹H-NMR) as a colourless oil; ¹H NMR δ 5.35 (2H, m), 4.14 (2H, t, *J* = 5.5 Hz), 2.35 (2H, t, *J* = 6.6 Hz), 2.02-2.12 (4H, m), 1.61-1.74 (4H, m), 1.28-1.44 (12H, m); ¹³C NMR δ 174.0, 131.2, 129.0, 64.5, 34.3, 28.0, 27.9, 27.4, 27.0, 26.9, 26.8, 26.6, 26.2, 25.6, 25.5; HRMS (EI) 238.1933, [C₁₅H₂₆O₂]⁺ requires 238.1943.

Z-Oxacycloicos-11-en-2-one (6)

According to *General Procedure 1*, diene **6a** (0.14 g, 0.43 mmol) was reacted with **2** (0.021 g, 0.033 mmol) to provide **Z-6** (0.98 g, 75% yield, 94% Z as determined by quantitative ¹³C-NMR) as a colourless oil; ¹H NMR δ 5.35 (2H, m), 4.12 (2H, t, J = 5.8 Hz), 2.31 (2H, t, J = 6.9 Hz), 2.03 (4H, m), 1.63 (4H, m), 1.22-1.43 (20H, m); ¹³C NMR δ 174.0, 130.1, 130.0, 64.3, 34.8, 29.3, 29.1, 29.0, 28.8 (2C), 28.7 (2C), 28.5, 28.4, 28.1, 26.5, 26.4, 26.3, 25.1; HRMS (EI) 294.2552, [C₁₉H₃₄O₂]⁺ requires 294.2559.

Z-Oxacycloheptadec-8-en-2-one (7)

According to *General Procedure 1*, diene **7a** (0.13 g, 0.46 mmol) was reacted with **2** (0.022 g, 0.035 mmol) to provide **Z-7** (0.085 g, 71% yield, 89% *Z* as determined by quantitative ¹³C-NMR) as a colourless oil; ¹H NMR δ 5.32 (2H, m), 4.14 (2H, t, *J* = 5.4 Hz), 2.33 (2H, t, *J* = 6.5 Hz), 2.04 (4H, m), 1.63 (4H, m), 1.21-1.43 (14H, m); ¹³C NMR δ 173.9, 130.2, 130.1, 63.7, 34.6, 29.4, 28.8, 28.7, 28.5 (2C), 28.4, 27.7, 27.0, 26.8, 25.3 (2C); HRMS (EI) 252.2089, [C₁₆H₂₈O₂]⁺ requires 252.2100.

Z-Cycloheptadec-9-enone (8)

According to *General Procedure 1*, diene **8a** (0.12 g, 0.43 mmol) was reacted with **2** (0.021 g, 0.033 mmol) for 8 hours to provide **Z-8** (0.068 g, 62% yield, 50% Z as determined by ¹H-NMR) as a colourless solid; ¹H NMR δ 5.34 (2H, m), 2.39 (4H, t, J = 6.7 Hz), 2.01 (4H, m), 1.61 (4H, m), 1.21-1.39 (16H, m); ¹³C NMR δ 212.95, 130.2 (2C), 42.5 (2C), 29.0 (2C), 28.6 (2C), 28.2 (4C), 26.7 (2C), 23.9 (2C); HRMS (EI) 250.2299, [C₁₇H₃₀O]⁺ requires 250.2297.

Z-1,4-Dioxaspiro[4.16]henicos-13-ene (9)

According to *General Procedure 1*, diene **9a** (0.14 g, 0.43 mmol) was reacted with **2** (0.021 g, 0.033 mmol) to provide **Z-9** (0.075 g, 60% yield, 85% *Z* as determined by quantitative ¹³C-NMR) as a colourless oil; ¹H NMR δ 5.33 (2H, m), 3.91 (4H, s), 2.05 (4H, m), 1.57 (4H, m), 1.24-1.38 (20H, m); ¹³C NMR δ 130.1 (2C), 112.2, 64.3 (2C), 35.7 (2C), 29.2 (2C), 28.8 (2C), 27.8 (2C), 27.7 (2C), 27.1 (2C), 22.8 (2C); HRMS (EI) 294.2545, [C₁₉H₃₄O₂]⁺ requires 294.2559.

Z-Cycloheptadec-9-enol (10)

Z-10

According to General Procedure 1, diene 10a (0.12 g, 0.43 mmol) was reacted with 2 (0.021 g, 0.033 mmol) to provide **Z-10** (0.062 g, 56% yield, 65% Z as determined by quantitative ¹³C-NMR) as a colourless solid; ¹H NMR δ 5.34 (2H, m), 3.72 (1H, m), 2.04 (4H, m), 1.50 (4H, m), 1.22-1.40 (21H, m); ¹³C NMR δ 130.2 (2C), 70.4, 35.6 (2C), 29.0 (2C), 28.2 (2C), 28.0 (2C), 27.9 (2C), 26.8 (2C), 23.5 (2C); HRMS (EI) 252.2451, $[C_{17}H_{32}O]^+$ requires 252.2453.

Z-tert-Butyl(cycloheptadec-9-en-1-yloxy)dimethylsilane (11)

According to General Procedure 1, diene 11a (0.17 g, 0.43 mmol) was reacted with 2 (0.021 g, 0.033 mmol) to provide Z-11 (0.090 g, 56% yield, 75% Z as determined by quantitative 13 C-NMR) and recovered **11a** (0.022 g, 13%) as an inseperable mixture; for **Z-11**: ¹H NMR δ 5.34 (2H, m), 3.68 (1H, m), 2.04 (4H, m), 1.18-1.53 (24H, m), 0.88 (9H, s), 0.03 (6H, s); ¹³C NMR δ 130.2 (2C), 71.3, 35.9 (2C), 29.1 (2C), 28.5 (2C), 28.1 (2C), 27.9 (2C), 26.9 (2C), 25.9 (3C), 23.4 (2C), 18.2, 4.5 (2C); HRMS (EI) 365.3252, $[C_{23}H_{46}OSi-H]^+$ requires 365.3240.

Z-Cycloheptadec-9-en-1-yl acetate (12)

Z-12

According to General Procedure 1, diene 12a (0.14 g, 0.43 mmol) was reacted with 2 (0.022 g, 0.035 mmol) to provide Z-12 (0.074 g, 59% yield, 75% Z as determined by quantitative ¹³C-NMR) as a colourless oil; ¹H NMR δ 5.34 (2H, m), 4.86 (1H, m), 2.03 (4H, m), 2.01 (3H, s), 1.55 (4H, m), 1.22-1.40 (20H, m); ¹³C NMR δ 170.8, 130.2, 73.5, 32.2 (2C), 29.1 (2C), 28.2 (2C), 27.8 (2C), 26.8 (2C), 23.4 (2C), 21.4 (2C); HRMS (FAB) 295.2633, [C₁₉H₃₄O₂+H]⁺ requires 295.2637.

Z-Azacyclopentadec-6-en-2-one (13)

According to General Procedure 1, diene 13a (0.11 g, 0.44 mmol) was reacted with 2 (0.022 g, 0.035 mmol) to provide (Z)-13 (0.029 g, 30% yield, 84% Z as determined by ¹H-NMR) as a colourless solid; ¹H NMR δ 5.41 (2H, m), 5.28 (1H, m), 3.32 (2H, m), 2.02 (2H, t, *J* = 6.1 Hz), 2.13 (2H, m), 1.99 (2H, m), 1.75 (2H, m), 1.52 (2H, m), 1.25-1.39 (10H, m); ¹³C NMR δ 172.7, 131.2, 129.4, 38.9, 35.3, 28.4, 27.9, 27.3, 26.9, 26.7 (2C), 25.8, 25.4, 25.3; HRMS (EI) 223.1930, [C₁₄H₂₅ON]⁺ requires 223.1936.

Z-tert-Butyl 2-oxoazacyclopentadec-6-ene-1-carboxylate (14)

According to *General Procedure 1*, diene **14a** (0.15 g, 0.43 mmol) was reacted with **2** (0.022 g, 0.035 mmol) to provide **Z-14** (0.082 g, 59% yield, 83% *Z* as determined by ¹H-NMR) as a colourless oil; ¹H NMR δ 5.37 (1H, m), 5.27 (1H, m), 3.83 (2H, t, *J* = 5.8 Hz), 2.86 (2H, t, *J* = 5.8 Hz), 2.16 (2H, m), 1.96 (2H, m), 1.75 (2H, m), 1.58 (2H, m), 1.51 (9H, m), 1.20-1.35 (10H, m); ¹³C NMR δ 176.0, 153.6, 131.3, 129.6, 82.5, 43.9, 36.2, 28.4, 28.1 (3C), 28.0, 27.6, 27.1, 27.0, 26.3, 25.9, 25.8, 24.4; HRMS (EI) 323.2447, [C₁₉H₃₃O₃N]⁺ requires 323.2460.

General procedure 2: Synthesis of E-enriched macrocycles⁴

A solution of diene (1 equiv, 1.8 mmol) and benzylidenebis(tricyclohexylphosphine)dichlororuthenium (0.074 g, 0.090 mmol) in CH_2Cl_2 (6 mM, 300 mL) was refluxed for six hours, then quenched with ethyl vinyl ether, and concentrated. Flash chromatography of the residue (SiO₂, using 2% Et₂O in pentanes for compounds **6** and **8**, 10% Et₂O in pentanes for compound **10**, and 66% Et₂O in pentanes for compound **13**) provided the product.

E-Oxacycloicos-11-en-2-one (6)

E-6

According to *General Procedure 2*, diene **6a** provided *E*-**6** (0.31 g, 58% yield, 69% *E* as determined by quantitative ¹³C-NMR) as a colourless oil; ¹H NMR δ 5.32 (m, 2H), 4.09 (t, *J* = 5.6 Hz,

S14

⁴ Prepared in a manner similar to: Lee, C.-W.; Grubbs, R. H. Org. Lett. 2000, Org. Lett., 2, 2145-2147.

2H), 2.31 (t, *J* = 6.7 Hz, 2H), 2.01 (m, 4H), 1.63 (m, 4H), 1.26-1.41 (m, 20H); ¹³C NMR δ 174.2, 130.8, 130.8, 64.4, 34.2, 32.0, 31.9, 29.4, 29.2, 28.9 (2C), 28.8 (2C), 28.7, 28.3, 27.7, 27.6, 26.2, 25.1.

E-Cycloheptadec-9-enone (8)

According to *General Procedure 2*, diene **8a** provided *E*-**8** (0.20 g, 44% yield, 80% *E* as determined by ¹H-NMR) as a colourless solid; ¹H NMR δ 5.31 (m, 2H), 2.37 (t, *J* = 7.1 Hz, 4H), 2.01 (m, 4H) 1.60 (m, 4H), 1.22-1.37 (m, 16H); ¹³C NMR δ 213.4, 131.2 (2C), 42.6 (2C), 32.1 (2C), 29.0 (2C), 28.9 (2C), 28.5 (2C), 27.6 (2C), 24.2 (2C).

E-Cycloheptadec-9-enol (10)

According to *General Procedure 2*, diene **10a** provided *E***-10** (0.18 g, 40% yield, 80% *E* as determined by quantitative ¹³C-NMR) as a colourless solid; ¹H NMR δ 5.34 (m, 2H), 3.71 (m, 1H), 2.02 (m, 4H), 1.50 (m, 4H), 1.23-1.36 (m, 20H); ¹³C NMR δ 131.0 (2C), 71.4, 35.6 (2C), 32.4 (2C), 29.2 (2C), 28.7 (2C), 28.2 (2C), 27.4 (2C), 22.9 (2C).

E-Azacyclopentadec-6-en-2-one (13)

Similar to *General Procedure* 2, except after 6 hours a second aliquot of 5 mol% bis(tricyclohexylphosphine)benzylidine ruthenium(IV) was added and the solution refluxed for an additional six hours, diene **13a** provided *E*-**13** (0.13 g, 33% yield, 55% *E* as determined by ¹H-NMR) as a colourless solid. ¹H NMR δ 5.36 (m, 2H), 5.32 (1H, *overlapped*), 3.27 (q, *J* = 5.7 Hz, 2H), 2.21 (t, *J* = 6.3 Hz, 2H), 2.13 (m, 2H), 2.01 (m, 2H), 1.78 (m, 2H), 1.45 (m, 2H), 1.34 (m, 8H), 1.26 (m, 2H); ¹³C NMR δ 172.9, 130.4, 130.1, 38.9, 34.6, 31.5 (2C), 27.8, 27.6, 26.4, 26.2, 25.2, 23.8, 23.4.

General procedure 3: Z-selective ethenolysis of E-dominant macrocycles

A solution of *E*-enriched macrocycle (1 equiv.) in THF (1M) was prepared in a 4 mL vial in a glovebox and sealed with a septum cap. Catalyst **2** (2 mol %) was added as a solution in a minimal amount of THF. The sealed vial was removed from the glovebox and stirred under an ethylene atmosphere. The reaction was heated (35 °C for **6** and **9**, 40 °C for **12**, 75 °C for **7**) for 2 hours, then quenched with ethyl vinyl ether and concentrated. Flash chromatography of the residue (SiO₂, using 2% Et₂O in pentanes for compounds **6** and **7**, 10% Et₂O in pentanes for compound **9**, and 66% Et₂O in pentanes for compound **12**) provided the product as the pure *E*-isomer. Isolated yields of the pure *E*-macrocycles and recovered diene were calculated based on the assumption that only the *Z*-isomer underwent ethenolysis and that it reacted completely.

E-Oxacycloicos-11-en-2-one (6)

According to *General Procedure 3*, macrocycle **6** (97 mg, 0.33 mmol, 69% *E*) was reacted with **2** (4.2 mg, 7.0 µmol) and provided the pure *E*-isomer of **6** (47 mg, 69% yield) and diene **6a** (27 mg, 81% yield) as colourless oils; ¹H NMR δ 5.32 (m, 2H), 4.09 (t, *J* = 5.6 Hz, 2H), 2.31 (t, *J* = 6.7 Hz, 2H), 2.01 (m, 4H), 1.63 (m, 4H), 1.26-1.41 (m, 20H); ¹³C NMR δ 174.2, 130.8, 130.8, 64.4, 34.2, 32.0, 31.9, 29.4, 29.2, 28.9 (2C), 28.8 (2C), 28.7, 28.3, 27.7, 27.6, 26.2, 25.1. HRMS (EI) 294.2549, [C₁₉H₃₄O₂]⁺ requires 294.2559.

E-Cycloheptadec-9-enone (8)

According to *General Procedure 3*, macrocycle **8** (156 mg, 0.62 mmol, 80% *E*) was reacted with **2** (7.9 mg, 12 µmol) and provided the pure *E*-isomer of **8** (50 mg, 40% yield) and diene **8a** (16 mg, 46% yield) as colourless solids; ¹H NMR δ 5.31 (m, 2H), 2.37 (t, *J* = 7.1 Hz, 4H), 2.01 (m, 4H) 1.60 (m, 4H), 1.22-1.37 (m, 16H); ¹³C NMR δ 213.4, 131.2, 42.6, 32.1, 29.0, 28.9, 28.5, 27.6, 24.2. HRMS (FAB) 251.2372, [C₁₇H₃₀O+H]⁺ requires 251.2375.

E-Cycloheptadec-9-enol (10)

According to *General Procedure 3*, macrocycle **10** (108 mg, 0.43 mmol, 80% *E*) was reacted with **2** (5.4 mg, 9.0 µmol) and provided the pure *E*-isomer of **10** (68 mg, 78% yield) and diene **10a** (19 mg, 79% yield) as colourless solids; ¹H NMR δ 5.34 (m, 2H), 3.71 (m, 1H), 2.02 (m, 4H), 1.50 (m, 4H), 1.23-1.36 (m, 20H); ¹³C NMR δ 131.0 (2C), 71.4, 35.6 (2C), 32.4 (2C), 29.2 (2C), 28.7 (2C), 28.2 (2C), 27.4 (2C), 22.9 (2C). HRMS (FAB) 251.2371, [C₁₇H₃₂O₂-H]⁺ requires 251.2375.

E-Azacyclopentadec-6-en-2-one (13)

According to *General Procedure 3*, macrocycle **13** (51 mg, 0.22 mmol, 55% *E*) was reacted with **2** (2.8 mg, 4.4 µmol) and provided the pure *E*-isomer of **13** (21 mg, 75% yield) as a colourless solid, and diene **13a** (21 mg, 86% yield) as a pale yellow oil; ¹H NMR δ 5.36 (m, 2H), 5.32 (1H, *overlapped*), 3.27 (q, *J* = 5.7 Hz, 2H), 2.21 (t, *J* = 6.3 Hz, 2H), 2.13 (m, 2H), 2.01 (m, 2H), 1.78 (m, 2H), 1.45 (m, 2H), 1.34 (m, 8H), 1.26 (m, 2H); ¹³C NMR δ 172.9, 130.4, 130.1, 38.9, 34.6, 31.5 (2C), 27.8, 27.6, 26.4, 26.2, 25.2, 23.8, 23.4. HRMS (FAB) 224.2014, [C₁₄H₂₅NO+H]⁺ requires 224.2014.

¹H NMR (CDCl₃, 500 MHz) spectrum of but-3-en-1-yl undec-10-enoate (1a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of but-3-en-1-yl undec-10-enoate (1a)

¹H NMR (CDCl₃, 500 MHz) spectrum of but-3-en-1-yl dec-9-enoate (4a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of but-3-en-1-yl dec-9-enoate (4a)

¹H NMR (CDCl₃, 500 MHz) spectrum of undec-10-en-1-yl hex-5-enoate (5a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of undec-10-en-1-yl hex-5-enoate (5a)

¹H NMR (CDCl₃, 500 MHz) spectrum of dec-9-en-1-yl undec-10-enoate (6a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of dec-9-en-1-yl undec-10-enoate (6a)

¹H NMR (CDCl₃, 500 MHz) spectrum of dec-9-en-1-yl oct-7-enoate (7a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of dec-9-en-1-yl oct-7-enoate (7a)

¹H NMR (CDCl₃, 500 MHz) spectrum of nonadeca-1,18-dien-10-one (8a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of nonadeca-1,18-dien-10-one (8a)

¹H NMR (CDCl₃, 500 MHz) spectrum of 2,2-di(non-8-en-1-yl)-1,3-dioxolane (9a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of 2,2-di(non-8-en-1-yl)-1,3-dioxolane (9a)

S32

¹H NMR (CDCl₃, 500 MHz) spectrum of nonadeca-1,18-dien-10-ol (10a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of nonadeca-1,18-dien-10-ol (10a)

¹H NMR (CDCl₃, 500 MHz) spectrum of *tert*-butyldimethyl(nonadeca-1,18-dien-10-yloxy)silane (11a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of *tert*-butyldimethyl(nonadeca-1,18-dien-10-yloxy)silane (11a)

¹H NMR (CDCl₃, 500 MHz) spectrum of nonadeca-1,18-dien-10-yl acetate (12a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of nonadeca-1,18-dien-10-yl acetate (12a)

S38

¹H NMR (CDCl₃, 500 MHz) spectrum of *N*-(dec-9-en-1-yl)hex-5-enamide (13a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of *N*-(dec-9-en-1-yl)hex-5-enamide (13a)

¹H NMR (CDCl₃, 500 MHz) spectrum of *tert*-butyl dec-9-en-1-yl(hex-5-enoyl)carbamate (14a)

¹³C NMR (CDCl₃, 125 MHz) spectrum of *tert*-butyl dec-9-en-1-yl(hex-5-enoyl)carbamate (14a)

¹H NMR (CDCl₃, 500 MHz) spectrum of Z-oxacyclotetradec-11-en-2-one (1)

¹³C NMR (CDCl₃, 125 MHz) spectrum of Z-oxacyclotetradec-11-en-2-one (1)

HSQC spectrum of Z-oxacyclotetradec-11-en-2-one (1)

¹H NMR (CDCl₃, 500 MHz) spectrum of Z-oxacyclotridec-10-en-2-one (4)

¹³C NMR (CDCl₃, 125 MHz) spectrum of Z-oxacyclotridec-10-en-2-one (4)

HSQC spectrum of Z-oxacyclotridec-10-en-2-one (4)

¹H NMR (CDCl₃, 500 MHz) spectrum of Z-oxacyclohexadec-6-en-2-one (5)

¹³C NMR (CDCl₃, 125 MHz) spectrum of Z- oxacyclohexadec-6-en-2-one (5)

¹H NMR (CDCl₃, 500 MHz) spectrum of Z-oxacycloicos-11-en-2-one (6)

¹³C NMR (CDCl₃, 125 MHz) spectrum of Z-oxacycloicos-11-en-2-one (6)

¹H NMR (CDCl₃, 500 MHz) spectrum of Z-oxacycloheptadec-8-en-2-one (7)

¹³C NMR (CDCl₃, 125 MHz) spectrum of Z-oxacycloheptadec-8-en-2-one (7)

HSQC spectrum of Z-oxacycloheptadec-8-en-2-one (7)

¹H NMR (CDCl₃, 500 MHz) spectrum of Z-cycloheptadec-9-enone (8)

¹³C NMR (CDCl₃, 125 MHz) spectrum of Z-cycloheptadec-9-enone (8)

¹H NMR (CDCl₃, 500 MHz) spectrum of Z-1,4-dioxaspiro[4.16]henicos-13-ene (9)

¹³C NMR (CDCl₃, 125 MHz) spectrum of Z-1,4-dioxaspiro[4.16]henicos-13-ene (9)

¹H NMR (CDCl₃, 500 MHz) spectrum of Z-cycloheptadec-9-enol (10)

¹³C NMR (CDCl₃, 125 MHz) spectrum of Z-cycloheptadec-9-enol (10)

¹H NMR (CDCl₃, 500 MHz) spectrum of *Z-tert*-butyl(cycloheptadec-9-en-1-yloxy)dimethylsilane (11)

¹³C NMR (CDCl₃, 125 MHz) spectrum of *Z-tert*-butyl(cycloheptadec-9-en-1-yloxy)dimethylsilane (11)

S68

HSQC spectrum of *Z-tert*-butyl(cycloheptadec-9-en-1-yloxy)dimethylsilane (11)

¹H NMR (CDCl₃, 500 MHz) spectrum of Z-cycloheptadec-9-en-1-yl acetate (12)

¹³C NMR (CDCl₃, 125 MHz) spectrum of Z-cycloheptadec-9-en-1-yl acetate (12)

HSQC spectrum of Z-cycloheptadec-9-en-1-yl acetate (12)

¹H NMR (CDCl₃, 500 MHz) spectrum of Z-azacyclopentadec-6-en-2-one (13)

¹³C NMR (CDCl₃, 125 MHz) spectrum of Z-azacyclopentadec-6-en-2-one (13)

S74

¹H NMR (CDCl₃, 500 MHz) spectrum of Z-tert-butyl 2-oxoazacyclopentadec-6-ene-1-carboxylate (14)

¹³C NMR (CDCl₃, 125 MHz) spectrum of *Z-tert*-butyl 2-oxoazacyclopentadec-6-ene-1-carboxylate (14)

HSQC spectrum of *Z-tert*-butyl 2-oxoazacyclopentadec-6-ene-1-carboxylate (14)

¹H NMR (CDCl₃, 500 MHz) spectrum of *E*-oxacycloicos-11-en-2-one (6)

¹³C NMR (CDCl₃, 125 MHz) spectrum of *E*-oxacycloicos-11-en-2-one (6)

¹H NMR (CDCl₃, 500 MHz) spectrum of *E*-cycloheptadec-9-enone (8)

¹³C NMR (CDCl₃, 125 MHz) spectrum of *E*-cycloheptadec-9-enone (8)

¹H NMR (CDCl₃, 500 MHz) spectrum of *E*-cycloheptadec-9-enol (10)

¹³C NMR (CDCl₃, 125 MHz) spectrum of *E*-cycloheptadec-9-enol (10)

¹H NMR (CDCl₃, 500 MHz) spectrum of *E*-azacyclopentadec-6-en-2-one (13)

¹³C NMR (CDCl₃, 125 MHz) spectrum of *E*-azacyclopentadec-6-en-2-one (13)

S86

¹H NMR (CDCl₃, 500 MHz) spectrum of 9-iodonon-1-ene (16)

¹³C NMR (CDCl₃, 125 MHz) spectrum of 9-iodonon-1-ene (16)

