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Table S1: Fraction of mappable bases in human and mouse genomes

Organism Genome Size' Read Length (nt) Mappable Mappable
(Gb) used to compute Sequence1 Size Sequence1
mappable base® (Gb) Percentage
Mus musculus 2.655 54 2.284 86.0%
Mus musculus 2.655 100 2.389 90.0%
Homo sapiens 3.095 36 2.490 80.4%
Homo sapiens 3.095 100 2.765 89.3%

Note:

1. See Materials and Methods for description of the reference genomes. To generate the results in

this table, sequences from chrN_random and chrUn were excluded.

2. See Materials and Methods for details of our algorithm used to compute mappable base. The

fractions reported here are similar to other studies in the literature. For example, Rozowsky et al

(55) used an indexing algorithm and found the fractions of mappable bases based on 30bp read

is 81% in the mouse genome and 79.6% in the human genome (Table 1 of Rozowsky et al (565)).
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Table S2: Evaluation of the effects of modeling techniques using NA12878

Model Deletions Duplications
Step | Technique Total Total Sensitivity Total Total Sensitivity
Number Mbp Number Mbp
1 + GC Content 32402 215.8 0.59(362/610) | 1350 65.7 0.12(32/261)
2 + Mappability 11949 62.5 0.72(438/610) | 8471 94.3 0.23(60/261)
3 + Auto Regression | 7815 60.8 0.71(434/610) | 3051 79.8 0.20(53/261)
4 + Random uniform | 9364 62.7 0.73(447/610) | 3529 80.8 0.20(53/261)
distribution
5 + CNV quality 7734 61.8 0.73(447/610) | 2009 80.1 0.19(50/261)
(1) control: size filter
(2) + CNV quality 5370 48.8 0.73(446/610) | 1577 68.1 0.17(45/261)
control: RDA filter

We incorporated various techniques for bias correction, i.e. to account for GC content and
mappability, to model the auto-regression in the read-depth data computed from overlapping
windows, to account for additional noises by fitting a mixture of negative binomial and uniform
distributions, and to apply quality control to prioritize the CNV calls. As these techniques
incorporated incrementally, there are five partial versions of our algorithm as shown in Table S2.
In the first step the partial algorithm only corrects for GC content. In the next step, the partial
algorithm corrects for GC content and mappability together. Similarly, the auto-regression and
the mixture modeling are added incrementally. The algorithm becomes our full algorithm after
the CNV quality control step is applied where we (1) removed predicted CNVs that are shorter
than 800bps (i.e. those that appear in only one window), and (2) additionally removed predicted
CNVs with RDA value ranging between 0.75-1.25. To evaluate the effect of different techniques
on CNV inference, we used the high confidence CNVs reported in Mills et al (1) (610 deletions
and 462 duplications) to examine the performance of different partial versions of our algorithm.
Sensitivity is computed as the total number of high-confidence CNVs that were overlapped by
the GENSENG predicted calls (>50% overlapping) divided by the total number of high-
confidence CNVs. We then used the total number and total base pairs of the GENSENG
predicted calls as a surrogate measure of specificity. As shown in Table S2, correcting for GC

content alone resulted in low sensitivity and specificity. After various techniques were added
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step-wisely, both the sensitivity and the specificity were improved. Correcting for mappability

resulted in the most substantial improvement in both sensitivity and specificity. Quality control of

the predicted CNVs substantially improved specificity with minimal loss in sensitivity. The full

algorithm demonstrated the best performance and thus was used as the release of our
GENSENG software.

Table S3: Sensitivity to detect deletions in CEU trio data using deletions reported
in Handsaker et al

Total high- Deletions
confidence total number calls? Sensitivity3 Sensitivity3
Genome | Deletions’ (total Mbp) >1bp overlap > 50% overlap
Handsaker
et al(25) GENSENG | CNVnator* | GENSENG | CNVnator | GENSENG | CNVnator
2301 5370 4105
NA12878 (48.8) (142.1) 0.49 0.39 0.49 0.38
2200 4765 2656
NA12891 (88.1) (131.3) 0.50 0.38 0.50 0.37
2055 4295 2268
NA12892 (45.0) (128.0) 0.49 0.34 0.49 0.34
Average - - - 0.49 0.37 0.49 0.36
Note:

1. The high-confidence dataset used in this comparison was generated by Handsaker et al (25) and
was downloaded from ftp:/ftp.broadinstitute.org/pub/svtoolkit/misc/1ka/NGPaper/. The
coordinates of reported deletions were translated from NCBI36 to NCBI37 using liftOver.

2. Default filters were applied. CNVnator filter: the default g0 filters removes any predicted calls that
have >50% reads with zero-valued MAPQ (i.e. reads with multiple mapping locations).
GENSENG filter removes any predicted calls that have RDA values lower than 0.75.

3. Sensitivity was calculated by dividing the number of the overlapping events (>1bp or >50%
overlap with the high-confidence CNVs) by the total number of high-confidence CNVs.

4. The total numbers of deletions reported by the authors of CNVnator are 4100, 2223, 2352 for

NA12878, NA12891, NA12892 respectively based on the same detection (i.e.100bp bin size) and
quality control (i.e. default qO filter) parameters as used in Table S3. These replicable results

suggest that our usage of CNVnator is accurate.
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Table S4: Summary GENSENG results from the mouse dataset and comparison to
Yalcin et al

DELETIONS DUPLICATIONS
Inbred #GENSENG | #Yalcin | #Yalcin #Yalcin #GENSENG | #Yalcin | #Yalcin #Yalcin
Mouse CNV calls CNV CNVs CNVs CNV calls CNV CNVs CNVs
Strain (total Mbp) | calls overlapped | overlapped | (total Mbp) | calls overlapped | overlapped
(>1 bp) by | (>50% (>1 bp) by | (>50%
GENSENG | overlap) by GENSENG | overlap) by
calls GENSENG calls GENSENG
(percent) calls (percent) calls
(percent) (percent)
129S1SvimJ | 4387(24.8) | 6262 1487(24%) | 1474(24%) | 428(4.7) 64 28(44%) 22(34%)
AlJ 4931(24.9) 5674 1379(24%) | 1366(24%) | 297(3.6) 64 23(36%) 20(31%)
AKR/J 5961(34.7) 6007 2135(36%) | 2123(35%) | 1348(4.9) 78 36(46%) 33(42%)
BALB/cJ 4861(32.6) 5509 1450(26%) | 1435(26%) | 474(3.2) 73 26(36%) 22(30%)
C3H/HeJ 4827(29.4) 6035 1870(31%) | 1849(31%) | 1509(4.3) 84 26(31%) 22(26%)
CAST/EiJ 10081(55.3) | 8995 679(8%) 637(7%) 351(8.8) 77 17(22%) 12(16%)
CBA/J 4579(28.2) 17544 876(5%) 797(5%) 575(3.4) 348 22(6%) 11(3%)
DBA/2J 5957(34.2) 6268 1270(20%) | 1244(20%) | 889(3.3) 63 19(30%) 14(22%)
LP/J 6551(34.2) 6513 1147(18%) | 1128(17%) | 736(5.0) 60 22(37%) 20(33%)
NOD/LtJ 11484(58.8) | 6371 992(16%) 970(15%) 165(2.3) 60 19(32%) 11(18%)
NZO/HILtJ 6191(30.4) 5953 800(13%) 773(13%) 491(4.5) 45 12(27%) 11(24%)
PWK/PhJ 15780(73.4) | 17901 5409(30%) | 5390(30%) | 348(4.7) 90 37(41%) 31(34%)
WSB/EiJ 6120(32.6) 5741 618(11%) 595(10%) 526(5.5) 56 16(29%) 13(23%)
Note:

1. The released structural variation (SV) calls (4) were downloaded from ftp://ftp-

mouse.sanger.ac.uk/current_svs/. These SVs have been classified into several categories based

on specific paired-end mapping patterns (4). We extracted 2 categories, including deletions and
copy number gains (GAINS and TANDEMDUP), to compare to the GENSENG predicted calls.

2. This comparison focuses on the 19 autosomes.

3. GENSENG filter removes any predicted calls that have RDA values ranging between 0.5-2
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Table S5: Method differences between CNVnator and GENSENG

GENSENG

CNVnator

Features of the method

A flexible hidden Markov
model to integrate correction
for multiple biases and
inference of CNV in a single

analysis

Mean-shift technique with
multiple bandwidth

partitioning

Bias correction

approach

1-step approach.

Correct for GC content,
mappability, and additional
noises in the data.

Use cubic spline smoothing to
describe the GC-content vs
read-depth relationship for
each specific dataset (fitting

the data most closely).

2-step approach.

Correct for GC-content only.
Use a simple linear
regression to describe the
GC-content vs read-depth
relationship (in most cases

not appropriate).

Input preparation

Use confidently aligned reads
(e.g. MAPQ>10)

Use overlapping windows (e.g.

500bp in length with 200bp

overlap).

Use all reads

Use non-overlapping
windows (e.g. 100bp in
length)

Post-processing

Segment merging

Remove CNVs calls with low
signal-to-noise-ratio based on
RDA statistics

Segment merging
Remove CNV calls for
which the fraction of reads
that aligned to multiple

locations is >50%
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Table S6: Performance on datasets with varying sequence coverage: simulation

COVERAGE DELETIONS DUPLICATIONS
Total Total Sensitivity' | FDR? | Total Total Sensitivity' | FDR?
simulated | predicted simulated | predicted
TRUE CNV TRUE CNV
CNV calls CNV calls
5x 43 25 0.58 0 21 11 0.52 0
10x 43 32 0.70 0.06 21 13 0.57 0
20x 43 34 0.72 0.09 21 15 0.57 0
30x 43 35 0.72 0.11 21 15 0.57 0
40x 43 35 0.72 0.11 21 17 0.62 0

To identify the lower bound that GENSENG can handle, we applied GENSENG to data with
varying sequencing coverage generated by simulation and compared the performance to that
based on the native coverage (40x) using the same evaluation metrics (as was done in Table 1
of the main texts). In Table S6, we repeated the simulation process as described earlier with the
targeted coverage been set as 5x, 10x, 20x, 30x, and 40x. To test the consistency of our
simulation, we simulated data at 40x coverage for 10 times and observed replicable results
(data not shown). As in Table 1, stringent GENSENG filter removes any predicted calls that
span only one window, have RDA values ranging between 0.5-1.25 or mappablility < 0.3. The
results demonstrate that: (1) higher sequencing coverage improves CNV detection power; (2)
the lower bound of sequencing coverage that yield reasonably good performance of GENSENG
is 10x (70% sensitivity and 6% FDR for deletions; 57% sensitivity and 0 FDR for duplications);
(3) GENSENG could potentially work on data sequenced to as low as 5x but with much reduced

sensitivity (fell by 14% for deletions and fell by 10% for duplications).
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Table S7: Performance on datasets with varying sequence coverage: 1000GP

NA12878
COVERAGE DELETIONS DUPLICATIONS
Total high- | Total Sensitivity> | Total high- | Total Sensitivity?
confidence predicted (Number of confidence predicted (Number of
CNvs' CNV calls | pigh. CNvs' CNVcalls | pigh-
(Mbp confidence (Mbp confidence
spanned) CNV spanned) CNV
detected) detected)
5x 610 745 (5.42) 0.38 261 482 (21.13) | 0.12
10x 610 1344 (6.51) | 0.53 261 769 (47.16) | 0.14
20x 610 1939 (6.76) 0.57 261 941 (55.76) 0.14
30x 610 2488 (7.64) 0.62 261 1042 (30.55) | 0.14
40x 610 5071 (11.73) | 0.70 261 984 (38.58) | 0.15

To identify the lower bound that GENSENG can handle, we applied GENSENG to datasets

down-sampled from 1000GP and compared the performance to that based on the native

coverage (40x) using the same evaluation metrics (as was done in Table 2 of the main texts). In

Table S7, using the DownsampleSam.jar tool from Picard, we down-sampled the high coverage

1000GP data from NA12878 and achieved a series of sequencing coverage of 5x, 10x, 20x,

30x, 40x. As in Table 2, stringent GENSENG filter removes any predicted calls that span only

one window, have RDA values ranging between 0.75-1.25 or mappablility < 0.3. The results

demonstrate that: (1) higher sequencing coverage improves CNV detection power; (2) the lower

bound of sequencing coverage that yield reasonably good performance of GENSENG is 10x

(53% sensitivity for deletions; 14% sensitivity for duplications); (3) GENSENG could potentially

work on data sequenced to as low as 5x but with much reduced sensitivity (fell by 32% for

deletions and fell by 3% for duplications).
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Supplemental Figures
Figure S1: Relationship between read-depth and known confounders: NA12878
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S1c
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Figure S1a: Read-depth distribution for chromosome 22 of NA12878. Blue: observed
distribution. Red: expected Poisson distribution. Read-depth was computed as the number of
fragments in each genomic window, a.k.a window count.

Figure S1b: Boxplot of read-depth/window-count by mappability score class. A positive

correlation is observed, where low mappability scores tend to have low read-depth and high
mappability scores tend to have high read-depth.

Figure S1c: Boxplot of read-depth/window-count by GC content class. A non-linear relationship

between GC content and read-depth is observed, where sequences with extreme GC contents

(extremely low or high) tend to have lower read-depth.
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Figure S2: Relationship between read-depth and known confounders: AKR/J
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Figure S2a: Read-depth distribution for chromosome 17 of mouse inbred strain AKR/J. Blue:
observed distribution. Red: expected Poisson distribution. Read-depth was computed as the
number of fragments in each genomic window, a.k.a window count.

Figure S2b: Boxplot of read-depth/window-count by mappability score class. A positive
correlation is observed, where low mappability scores tend to have low read-depth and high
mappability scores tend to have high read-depth.

Figure S2c: Boxplot of read-depth/window-count by GC content class. A non-linear relationship

between GC content and read-depth is observed, where sequences with extreme GC contents
(extremely low or high) tend to have lower read-depth.
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Figure S3 Read-depth distribution after accounting for known confounders
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Based on the input data computed for chromosome 22 of NA12878, we extracted compatible
windows that have the same GC content class (0.4-0.5), the same mappability score class (0.9-
1), and have high likelihood to be copy number normal regions (e.g. having not overlapped any
high-confidence CNVs or other candidate CNVs). We then compared the observed read-depth
distribution from these compatible windows to its theoretical expectations. Blue: observed
distribution; red: Poisson distribution; green: negative binomial distribution. As shown in the
figure, the Poisson distribution still does not fit the data; whereas the negative binomial

distribution fits the data well.
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Figure S4 RDA ranking and prioritization of CNV prediction from simulation study
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From the 716 predicted GENSENG calls (690 deletions and 26 duplications), a CNV-quality-
control filter was applied to remove any GENSENG predicted CNVs with mappability less than

0.3, yielding in 77 predicted deletions and 16 predicted duplications shown in this figure. In

Figure S4a, the red dots indicate the true discoveries (29) and black the false discoveries (48).

It is evident that ranking the RDA values (the X-axis) correctly prioritized the predictions made
by GENSENG. In Figure S4c, all 16 predicted duplications had RDA>1.25 and were all true

discoveries.
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Figure S5 Example CNVs identified from the human HTS dataset
Figure Sba: A shared deletion
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There are 6 panels from the top to the bottom. The X-axis of each panel indicates genomic
position in base pair but the specific coordinates are not shown. The first panel: read-depth
computed from individual spa5w; the second panel: read-depth from individual spa42w; the third
panel: read-depth from individual spa105w; the fourth panel: read-depth computed after pooling
all the reads together from spabw, spa42w, and spa105w. The GC content and mappability of
the region are plotted in the fifth and the sixth panels respectively. In the first through the fourth
panels, the black dots in Y-axis indicate read-depth signal; the red dashed lines are the
boundaries from GENSENG prediction; the grey lines are the median read-depth of the

chromosome.
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Figure Sb5b: A private duplication
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There are 5 panels from the top to the bottom similarly to Figure S5a. The first panel: read-

depth from individual spa5w; the second panel: read-depth from individual spa42w; the third

panel: read-depth from individual spa105w; the fourth panel: GC content; the fifth panel:

mappability. In individual spa5w (first panel), the steel blue dots indicate read-depth signal from

a predicted duplication whose boundary is enclosed by the red dashed lines.
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Figure S6 Example shared CNVs identified from mouse HTS datasets
Figure S6a: A shared duplication
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Figure S6a shows a shared duplication from the mouse chromosome 17, also found from
microarray studies (e.g. (5)). For this region, AKR/J, C3H/HedJ, CBA/J, 129S1/SvimJ, A/J,
DBA/2J, and LP/J belong to the same haplotype (6) that contains this duplication, hence identity
by descent. NOD/ShiLtJ and BALB/cJ belong to another haplotype (6) that does not contain this
duplication. There are 6 panels from the top to the bottom. The X-axis of each panel indicates

genomic position in base pair. In the first through the fourth panels, the black dots in Y-axis
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indicate read-depth signal from representative strains of each haplotype with their names and

sequencing coverage labeled in the right margin; the red solid lines are the boundaries from

GENSENG prediction; the green dashed lines are the boundaries reported by the Mouse

Genomes Project (4); the grey lines are the median read-depth of the chromosome. The GC

content and mappability of the region are plotted in the fifth and the sixth panels respectively.

The last panel shows the locations of segmental duplication (purple) and repeat-mask repetitive

DNAs (orange).

Figure S6b: A shared deletion
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Figure S6b shows a shared deletion from the mouse chromosome 17. Within the compatible
interval with no historical recombination, chr17:36775200-36842845 (6), AKR/J, C3H/HedJ, and
CBA/J belong to the same haplotype (6) that contains this deletion, hence identity by descent.
NOD/ShiLtd, 129S1/SvimJ, A/J, DBA/2J, BALB/cJ, LP/J belong to another haplotype (6) that
does not contain this deletion. There are 6 panels from the top to the bottom. The X-axis of each
panel indicates genomic position in base pair. In the first through the fourth panels, the black
dots in Y-axis indicate read-depth signal from representative strains of each haplotype with their
names and sequencing coverage labeled in the right margin; the red solid lines are the
boundaries from GENSENG prediction; the green dashed lines are the boundaries reported by
the Mouse Genomes Project (4); the grey lines are the median read-depth of the chromosome.
The GC content and mappability of the region are plotted in the fifth and the sixth panels
respectively. The last panel shows the locations of segmental duplication (purple) and repeat-
mask repetitive DNAs (orange). Note that beginning at approximately 3684100 bp, there
appears to be a deletion-like artifact in all strains with zero-valued read-depth. Close inspection
suggested that it was caused by zero-valued mappability and was not called as deletion by

GENSENG because of its ability to correct biases.
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1 Overview

GENSENG’s analytic protocol comprises four steps:

1. Read quality control;

2. Computation of read-depth and covariate values;

3. HMM inference of copy number while correcting for biases;

4. Post-segmentation processing.

2 Input Data Preparation

2.1 Read quality control

1. Remove any read that fails platform/vendor quality checks, or either a PCR duplicate or an
optical duplicate.

2. Extract all single-end reads and properly paired paired-end reads.

3. Extract confidently aligned reads with MAPQ > a specified threshold. In this study, we use
MAPQ >10, which was empirically determined.

2.2 Selection of window size

We use a sliding window approach where each window is of 500bp in length and is overlapped by
the adjacent window by 200bp. The size of the window and the degree of overlap was empirically

determined.

2.3 Computation of read-depth

Each read (e.g. 36-mer or 51-mer from the 1000 Genomes Project data) is represented by its middle
base pair. A fragment is counted where read mapping information is available.

1. If two ends of a pair fall in two windows, assign 1/2 to each window where the ends fall;

2. If both ends of a pair fall in the same window, assign 1 to the window;

3. If paired-ended but only one-end present, assign 1/2 to the window where the ends fall;

4. If single-end, always assign 1 to the window where the end falls.



2.4 Computation of covariate values

The set of covariates include GC content and mappability score.

GC content is computed as in the following steps. (1) Calculate the proportion of G or C bases in
each window from a given reference genome.(2) Apply a cubic spline smoothing and then transform
the GC proportion based on the fitted curve so that the transformed GC proportion and logarithm
of the read-depth are linearly correlated. (3) The transformed GC proportion is median-centered
and is referred to as GC content hereafter.

Mappability score is calculated a priori in four steps: (1) Identify K-mers where each K-mer
consists K consecutive bases starting at each base position from the reference genome. (2) Align the
K-mers back to the reference genome using a desired aligner, e.g. BWA (37). Ideally, the aligner
and the alignment parameters are chosen to match what was used for generating read alignment files
from the sample genomes. (3) Identify mappable base positions where the corresponding K-mers
map back to themselves unambiguously (i.e. there is a single best hit and it is the true position of
the K-mer). For example, the X0 field produced by BWA (37) relates a K-mer from a specific place
in the genome to the number of best hits of that K-mer in the entire genome. If a K-mer has a X0
value of 1, the corresponding base can be identified as a mappable base. (4) Compute mappability
score as the proportion of mappable bases in a given window, which measures the uniqueness of
specific regions of the reference genome.

In summary, the input data is a triplet for each window represent by
{0,G,L} ={o1......or, g1......g1, l1.....l7 }, where T is the total number of windows of a chromosome,
o; denotes the read-depth, g; denotes the GC content, and [; denotes the mappability score of the

tth window.

3 Model Introduction

3.1 HMM setup

We use a time-homogeneous discrete hidden Markov model (HMM) to segment the genome to
regions of same copy number. In our HMM, time represents the sliding windows tiled along a
chromosome, denoted by t.

The state represents the underlying copy number (CN). The state variable ¢ = C'N; is hid-



den and discrete with N possible values, (0,1,..., N — 1), where N, is derived from the data by
K-mean clustering the logarithm of the read-depth. A particular sequence of the states is described
by ¢ = (q1,...,qr), where T' is the total number of sliding windows of a chromosome. Let 7; be
the initial state probability, the probability that the state of the first window is state j. The un-
derlying hidden Markov chain is defined by state transitions P(g:|g:—1) and is represented by a
time-independent stochastic transition matrix A = {a;,} = P(q; = z|q1—1 = j)-

Each copy number state emits an observation, the read-depth. The observation variable, Oy, is
a discrete count variable. A particular sequence of the observations is described by o = (01, ..., 07).
The emission probability of a particular observation at a particular time ¢ for state j is described
by e(t,j) = P(O; = o¢|gs = j). For a detailed description of the emission probability, see Section
3.2.

We use the Baum-Welch algorithm (Baum et al 1970) to find the maximum likelihood estimates
(MLE) of the HMM parameters. Following Bilmes (1998), we define the complete-date likelihood
and solve the @ function in order to find the maximum likelihood estimates (MLE) of the HMM
parameters.

A standard HMM assumes the Markov property, P(q:|qt—1,qt—2,Gt—3,---q1) = P(qt|gz—1). An
additional assumption that is often employed is that the observations are independent given the
states, Oy L O;(i # t)|g, which is valid when the windows are non-overlapping. When the win-
dows are overlapping, this assumption is invalid; and instead, the observations are drawn from an
autoregression process (Juang and Rabiner 1985). We have implemented an autoregressive HMM

to model this feature of the data. For details of the autoregressive HMM, see Section 5.

3.2 Emission probability

The emission probability of the read-depth, e(t,j) = P(O; = 0¢|¢: = j), is modeled as a mixture of

a uniform distribution and a negative binomial distribution.
e(t,j) = ¢/Rm + (1 = c)eVP(t, ) (1)

where c is the proportion of the random uniform component and is fixed as constant for each state;
and R, is the largest read-depth among all windows and thus 1/R,, is the uniform density.

To describe the negative binomially distributed component, V5 (¢, j), we first explain the re-



lationship between the Poisson and the negative binomial distributions. The Poisson distribution
imposes that the variance equals to the mean. The negative binomial distribution allows overdis-
persion. Specifically, if O follows a Poisson distribution with mean p, and p follows a gamma
distribution, the resulting distribution for O is a negative binomial distribution. The variance
of negative binomial distribution is u; + ¢u?, where ¢u? is the overdispersion part of the vari-
ance. As ¢ — 0, fnp(os; e, ) reduces to a Poisson distribution with mean u; and variance p;.
fe(ot; ) = w

Next, the mean value of the negative binomially distributed component is expressed as a function

of a set of covariates to account for confounders.
pj = oo x (CN)P x (1)%  (g0)" (2)

where t denotes the t** window, j is the index of the copy number state, j emphasizes the dependency
of the mean p; on the copy number CNy, I; is the mappability score, g; is the GC content. For
computational convenience, we set C Ny = 0.5 when j = 0, and set CN; = j when j > 0.

We then employ a log link function to acknowledge the fact that p,; > 0 and obtain:

log(pej) = Po+ Brx1og(CNy) + B2+ log(ly) + B3 * log(g:) (3)

Bo, B1, B2, B3 are the regression coefficients. Specifically, Sy = log(ayp), is the intercept parameter
and is interpreted as the average level of read-depth signal when all covariates are equal to zero. (;
is the amount of increase of read-depth for every unit increase of copy number, CN. 35 is the amount
of increase of read-depth for every unit increase of the mappability score, [. (3 is the amount of
increase of read-depth for every unit increase of the GC content, g.

Thus, given the above regression model for the mean, the negative binomial probability distri-

bution function is expressed as the following:

NB N . o F(Ot+1/¢') 1 1/ ¢'Nt' ot
€ (taj) *fNB(Otaﬂtjﬁ(bj) - ot'F(1/¢]; <1+¢j/’[’tj) <1+]¢]Ltj) (4)

The complete emission probability is then expressed as the following:

. T(or + 1/6; 1 1/9s dine \”
et.j) = ¢/Fm+(1-0) o(t!l“(l/?bj)) <1+¢jﬂtj) (%) ?




4 The Program Flow of HMM inference

A time-homogeneous HMM has been implemented in C-++-.

e HMM input: {O,G,L} and Ag. Here {O} is the read-depth, {G} is the GC content, and
{L} is the mappability score computed for each sliding window. Ay is either the initial values
of the HMM parameters or the parameter estimates from the previous iteration. The HMM

parameters include the state parameters and the emission parameters.

e HMM output: The estimated HMM parameters A;. The log likelihood from each iteration,
log(p(O|A)).

e A one-step update of the Baum-Welch algorithm (Baum et al 1970) is illustrated below. The
expectation (E-step) and the maximization (M-step) procedures iterate until the convergence

criterion (smaller than 10~% change in the log-likelihood) is reached.

e Most of the computations are carried out in log scale to avoid underflow or overflow. A
utility function logsumexp is used to facilitate the computation. Specifically, it is defined as

logsumexp;(v) = log (Z] exp(vj)>, where v = {v;} is a vector.

e For efficient implementation, we estimate the log(y;) directly using the IRLS method. Al-

ternative approach could be estimating the regression coefficients.

4.1 Model Initialization:

(a) The number of states:
N is found from the data by finding the number of k-mean clusters of log(O). Here we assume
N=7, for CN = 0,1,2,3,4,5,6-+.
(b) Initial state probability, 7;:
For state CN = 2: 0.9995; for other states: (1-0.9995)/(N-1).
(c) Initial state transition probability, a;.:
Self-transition probability: for state CN = 2: 0.9995; for other states: 0.995;
Transition probability to other states, i.e. a;, when z # j:

Transiting from CN = 2 to CN < 2: (1-0.9995)/3; from CN = 2 to CN > 2: (1-0.9995)/12;



Transiting from CN < 2 to CN = 2: (1-0.995)/9; from CN < 2 to CN < 2: (1-0.995)/90;
from CN < 2 to CN > 2: (1-0.995)/400;

Transiting from CN > 2 to CN < 2: (1-0.995)/40; from CN > 2 to CN = 2: (1-0.995)/1.25;
from CN > 2 to CN > 2: (1-0.995)/20;

(d) Initial mean values of the negative binomially distributed component, log(s;):
Assume normal copy number (CN=2) for all windows.
Set B3 = 0.5. 3 is the coefficient for GC content. 0.5 is the empirically determined value.
intercept=log(median(0)) — log(2) — median(log(L)) — S3median(G).
for 7 =0, offset = log(0.5) + log(l:).
for j =1..N — 1, offset = log(j) + log(l;).
log(ju¢;) = intercept + offset + f3g;.

(e) Initial overdispersion parameters, ¢;:
In this study, we have one overdispersion parameter ¢ for different states jointly through setting

¢; = ¢. And set ¢ =1 for initialization.

(f) Initial mixing probability, c:

¢ = 0.01. The mixing probability is the same for the normal state and the other states.

(g) Initial parameter for the uniform distribution, R,,:

R, =max(0O).

4.2 E-step

Given the current parameter estimates Ay, we efficiently compute the desired quantities.

4.2.1 The Emission Probability

. Dot 1/) (1 N by \*
e(t,j) = ¢/Rm+(1—c¢) 0T(1/6;) <1+¢jutj) (W) 0



4.2.2 The Forward Probability

f(t,j) = P(o1,02,...00,q: = j ends at t|Ag)
Algorithm
1. Initialization:
f(L,7) = me(l,])
log(f(1,7)) = log(m;) +log(e(1, 7))

2. Recursion, for t € (2:T) and for j € (1: N),

f(t7]) = 6(t7])z.f(t717])af(z7])

log(f(t,7)) = log(e(t,j)) + Logsumexp; [log(f(t — 1, 7)) +log(as (3, 2))]

3. Termination: computation of the overall likelihood log(p(O]|Ap))

p(OlAg) = > f(T,z)

log(p(O[Ag)) = logsumexp, log(f(T)2))

4.2.3 The Backward Probability

b(t,z) = P(0t+1,0t42,...07|qs =2z ends at t|Ag)
Algorithm
1. Initialization:
b(T,z) = 1
log(b(T,2)) = 0



2. Recursion, for t € (T': 2) and for z € (1: N),

bt=1,2) = D lan(zj)e(t, j)b(t. ) (17)

log(b(t —1,2)) = logsumexp [log(as(z,7)) +log(e(t, 7)) +log(b(t, 5))] (18)

4.2.4 The Posterior Probability

'7<t7j) = P(Qt:j‘ovAO) (19)
Algorithm
N ft )b g)
v(t,j) = “p(O[Ag) (20)
log(v(t,7)) = log(f(t, 7)) +log(b(t, ) — log(p(O[Ao)) (21)
4.3 M-step

4.3.1 Estimate the initial state probability 7,

The initial probability 7; is simply the posterior probability of being state j at position 1, therefore

the new estimate of 7;, denoted by 7;, is computed as the following:

(W) (X)
TS TH0m) .

log(7;) = log(f(1,7)) +log(b(1, 7)) — log(p(O|Ag)). (23)

4.3.2 Estimate the transition probability a;.

The estimated a;, is denoted by @, for j # z, and is computed as the following:

((td,2) = f(tge(t+1,2)b(t+1,2) (24)

log(¢(t,7,2)) = log(f(t,7)) +log(e(t +1,2)) +log(b(t + 1, 2)) (25)
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4.3.3 Estimate the emission parameters, an overview:

Because we fix ¢ and R,,, as constant, parameter estimation will only concern the negative binomially
distributed component.

To estimate the negative binomial parameters, a weighted GLM function is implemented in C++-.
The argument of this function include "family", "observation", "covariate", "offset", and "prior".
The argument "family" means either Poisson or negative binomial. The argument "prior" means
the probability that each observation belongs to the negative binomially distributed component.

For the t" window and state j, the "prior" is denoted by p; ; and is computed as the following:

(1 — C)eNB(t’j)’Y(t’j)
¢/Rm + (1 —c)eNB(t, j)

Dtj (27)

Following the implementation function MASS/glm.nb in R (Venables and Ripley, 2002), we use
an alternating iterative estimation procedure to obtain the new estimate of log(f;), denoted by

log(f,;), and the new estimate of ¢, denoted by 0.

e First, we fix ¢ and compute log(ﬁtj) by fitting weighted GLM using the iteratively reweighted
least squares (IRLS) method. For details, see Section 4.3.4.

e Then, we fix log(7i;;) and compute ¢ using the Newton-Raphson method with weight. For

details, see Section 4.3.5.

e The above two steps alternated until convergence.

4.3.4 Estimation of log(y;;) using the IRLS method

4.3.4.1. Define the necessary variables for estimating log(u;), where t = 1..T, CN; = ¢, =
0...5..(N — 1).

e "Prior"
bt = {pt,07 -~ Dt gy "'7pt,N71}
p={p1,.--Pt; -, 0T}

11



e "Observation"

yr = {0t,...0t, ...01} (o; repeats for N times)

Y= {yh <Yty "ayT}

e "Covariates"

Let cov denote covariates and let M denote the number of covariates.

If GC content (G) is the only covariate, M = 1 and define the covariate vector as:
xe = {9t .-Gt -, g1} (gr repeats for N times)
x={x1,..x¢, .., T7}

If M > 1, each covariate will be inserted into = like G
covy = {covy g, covy 1, ..., COVy N1}
cov = {covy,...covy, .., covr}

x = {cov!,...,covM}

o "Offset"
offset, = {[log(C'N, = 0.5)+log(l,)], [log(CNy = 1)+log(l})], ...[log(C N, = j)+log(l,)], .., [log(CN, =
N = 1) + log(1)]}
offset = {offsety, ...offset, .., offsetr }

e "The weighted log-likelihood function"

T N
Lm= ; Z(:) [log (T(or +1/¢)) — <; + 0t> log(% + pe5) + log(or + 1.0) + o, log(pee;) | pej  (28)
-1 j=

4.8.4.2. Fit a weighted Poisson regression model using the IRLS procedure.

4.3.4.3. Perform a score test
The score test (Dean 1992) is used to test whether the overdispersion parameter, ¢, is significantly

greater than 0. If the score test is significant, we
e Estimate ¢ using the Newton-Raphson method as described in Section 4.3.5.

e Proceed to Section 4.3.4.4.

12



4.8.4.4. Fit a weighted negative binomial regression model using the IRLS method.

4.3.5 Estimation of overdispersion using the Newton-Raphson method

Given log(p;), we use the Newton-Raphson method to estimate the overdispersion parameter, ¢.
In this study, we estimate one overdispersion parameter ¢ jointly for all states, and set ¢; = ¢ for
j=0.N—1.

The following weighted log-likelihood and its first, second derivatives are used in the Newton-

Raphson method to estimate ¢. The weighted log-likelihood is the same as Equation (28).

T N

L = 303 g (Mor +1/6) = (5 + 00 ) 0wl + ) + oo +1.0) + orlogl)| i

t=1j=0
It is computationally slightly easier to estimate ¢ = 1/¢. Then,

T N

Lm = Y ) [log (T(or +¢)) — (¢ + or) log(p + pu;) + log(or + 1.0) + o, log ;)] pi
t=1 j=0

Thus the score function is

N-1

+o
[ (00 + ) — ‘I’(QO)_Lt,
i=0

8Lm d
Score(p) = Z Py

—log(p + pej) + 1+ 10g(<ﬂ)] Pij
t=1 j

where U(z) = dlogI'(z)/0x, the digamma function. The observed Fisher information is

N—

,_.

5 T
Info(p) = 8 Lm = >

i—o 1 1
[ Yot +¢) +¥(p) + By — 2+ —} Dtj
t=1 =0

(o) oty

where 1 (z) = 8% logI'(z) /022, the trigamma function.

We use the Newton—Raphson method given the score function and the fisher information.
Zt 12:] 0 p”

t=1 Zj\rzo Pt](ot ,Utj)2

WHILE (ABS(Dev) > Toleration) {

Score(p)
Dev = Toroto)

Initialize ¢ =

13



@ = @+Dev

5 Autoregressive HMM

When overlapping windows are used, the observed read-depth is drawn from an autoregressive
process. We implemented an autoregressive HMM. Specifically, a residual term is included as an
additional predictor in the negative binomial regression model assuming first order autoregression.

Given the notations defined in Section 4.3.4, we obtain:

e log(fy;): estimated using IRLS method. The number of covariate M = 1, x = {cov!},

cov! = {cov},...,covh}, cov} = {gs,...gt, .., 9+ } (g+ repeats for N times).

o log(7i,): estimated using IRLS method. The number of covariate M = 2, z = {cov!, cov?},
covl = {covi,..,covki},covi = {0,...,0} (0 repeats for N times),cov; = {log(o;_1) —
log(1¢—1,0), log(0r—1)—log(tt—1.1), ---s Jog(os—1)—log(pi—1.n—-1)}, 1 <t < T,cov? = {cov?, ..., covZ},

cov? = {g¢, .--Gt, -, gt} (g¢ repeats for N times).

The fitting process is implemented as the following;:

Step 1: Fit initial weighted GLM to obtain log(fi;;) as in Section 4.3.4.

Step 2: Compute residual r;—; ; = log(o;—1) — log(fz;_4 ;) for ¢ > 1 and let 71 ; = 0.

Step 3: Refit weighted glm to obtain log(ﬁéj) including r,_; as covariate cov'.

Step 4: Compute emission probability using log(fi;)-

Step 5: Compute Forward, Backward, Posterior probability as before.

Step 6: Parameter update for transition probability as before.

Step 7: Refit weighted glm to obtain log(7z;;) as in Section 4.3.4 using updated posterior prob-
ability.

Step 8: Update r;_1 = log(0;—1) — log(fi;_; ;) for t > 1 and let ry ; = 0. where log(7i;;) is from
the Step7.

Step 9: Refit weighted glm to obtain log(f};) including r¢_; as covariate cov', using updated
posterior probability.

Step 10: Iterate steps 4-9 until E-M converges.

14



6 Post-segmentation Processing

A predicted CNV region cnv is a succession of sliding windows with the same state CN predicted by
HMM. cnv can be described by a tuple (cnvgype, CnUe f¢, cnUright ), which gives the type cnvgype, and
the boundaries cnue i, CnUrighs. cnUey: is the start point of the first window in cnv, and cnvrign:
is the end point of the last window in cnwv.

Given the predicted CNV regions CNV = {cnv;......cnvg}, where S is the number of the
predicted CNV regions, a two steps post-segmentation processing will be carried out to refine
CNYV. The first step is to remove the small CNV regions, and the second step is to merge the CNV
regions with their nearby similar regions.

Stepl. Remove every small CNV region from the predicted CNV regions CNV. A predicted CNV
region cnv is a small CNV region if cnvy;gns — cnvjepr < threshold value (e.g. 1). After the removal,
those remaining regions are denoted as CN V4 ge.

Step2. Merge the regions in CNVgrge. CNV regions in C NV, g Will be scanned from left to right
in the order of the position of their boundaries. A CNV region cnv® and its next right CNV region

cnv? can be merged if they satisfy the following two conditions.

J _ i i _ i J _ J
Cnvright Cnvleft S 0.5 * (Cnvright Cnvleft + Cnvright Cnvleft)
i .

J i ; i J
CNUY, pe = CMUepy < MAN(CNU gy — CRUJ gy, CRU — CnVy, )

J
right

The merged CNV region cnv’ is described by the tuple (cnugype, cnoj, o cnv?

- ght). CNUype 1s decided

by the majority state of the windows between cnvlie FesCNU And cnov? and env? will be replaced

iight'
from CNVigrge by env’. The scanning will continue from env’ and its next right CNV region. The

scanning stops when it reaches the right-most CNV region.
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