Primer	Sequence ¹	Promoter
PHO-47	ATGGGTCCTCCAGGGTTCGA	SCO0255
PHO-48	CGCTGCCAGGAGTTGAGGAT	
PHO-49	GAGCATCACCGCTTCGGCAT	<i>ureA</i> (SCO1236)
PHO-50	CGTGCGGGGTCAGTTGCATT	
PHO-51	GGTCCGCCACCGTGTGAAGT	SCO2195
PHO-52	CCTGCATCGTGGAGGTCCCC	
PHO-53	GGACGATCGATTTGCAGGTC	SCO1863
PHO-54	CGGATACTCGCACAAGCAGA	
GLN-01	CGAAACAAATGGG <u>AA</u> ACGCCCGAGAAATCACC	glnA-M1
GLN-02	GGTGATTTCTCGGGCGT <u>TT</u> CCCATTTGTTTCG	
GLN-03	GGTTAACTTCTGCG <u>TC</u> ACAAATGGGTCACG	glnA-M2
GLN-04	CGTGACCCATTTGT <u>GA</u> CGCAGAAGTTAACC	
GLN-05	GGAGGGAGCCGGTT <u>CG</u> CTTCTGCGAAAC	glnA-M5
GLN-06	GTTTCGCAGAAG <u>CG</u> AACCGGCTCCCTCC	
GLN-07	GCGAAACAAATGGG <u>GA</u> ACGCCCGAGAAATCACC	glnA-M7
GLN-08	GGTGATTTCTCGGGCGT <u>TC</u> CCCATTTGTTTCGC	
GLN-09	GGAGGGAGCCGG <u>GA</u> AACTTCTGCGAAAC	glnA-M8
GLN-10	GTTTCGCAGAAGTT <u>TC</u> CCGGCTCCCTCC	
GLN-11	GGTTAACTTCTGC <u>TG</u> AACAAATGGGTCACG	glnA-M9
GLN-12	CGTGACCCATTTGTT <u>CA</u> GCAGAAGTTAACC	
GLN-13	CGAAACAAATGGGTCA <u>AC</u> CCCGAGAAATCACC	glnA-M10
GLN-14	GGTGATTTCTCGGG <u>GT</u> TGACCCATTTGTTTCG	
CAR87	ATTCGCATGCATGAAGCCAGCGTAAAG	SCO0888
CAR88	ATTCACGCGTCGGACAGACATGAGTAC	
CAR89	ATTCGCATGCGACTTGACCAGCGGAAC	SCO7155
CAR90	ATTCACGCGTCGGTGTCGTAGCGCAAG	

Table S1. List of primers used in this work.

1 Nucleotides changed for directed mutagenesis are shown with double underline. Restriction sites added to the sequences are underlined. **Supplementary Figure S1.** DNase I footprints of the GST-PhoP^{DBD} protein bound to the promoter regions of SCO0255 (**A**), SCO1863 (**B**, **C**), and *ureA* genes (**D**). Blue electropherograms are control reactions without protein; the red ones correspond to reactions containing 4 μ M of GST-PhoP^{DBD}. The protected nucleotides are indicated by asterisks and the peak shadowed areas. Hypersensitive sites created by protein binding are highlighted by vertical arrows. The correspondence between fluorescence peaks and nucleotide bases was determined using the sequencing reactions shown below.

Supplementary Figure S2. Analysis by EMSA of the binding of PhoP and GlnR to the *phoRP* and *pstS* promoters. The conditions of binding reaction were those described previously for GlnR (24). P, probe without protein. Numbers indicate the protein concentration (μ M). The film was overexposed to show that no bands are formed with the GlnR protein. PhoP shifted bands are indicated by arrows.

Supplementary Figure S3. Analysis by EMSA of binding of PhoP and GlnR to the *glnA* promoter. Lanes 1 and 6, probe without proteins; lanes 2-5 increasing concentrations of GlnR protein (from 0.125 to 1 μ M); lanes 7-10, increasing concentrations of GST-PhoP^{DBD} protein (from 0.125 to 1 μ M). Shifted bands are shown by arrows. Note that the most retarded band by GlnR has a similar size to that retarded by PhoP.

IGCATGACTGCCGCGCAAGCAGACCTGC

С

٨ CCCG AAACO GGT M Ar

ureA promoter, complementary strand

Figure S2. Sola-Landa et al.

Figure S3. Sola-Landa et al.