Supplemental Material:

Identification of a target gene and activating stimulus for the YpdA/YpdB histidine kinase/response regulator system in Escherichia coli

Luitpold Fried^{1#}, Stefan Behr^{1#}, and Kirsten Jung^{1*}

¹Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology,

Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany

[#]These authors contributed equally to this work

Running title: The YpdA/YpdB-system in E. coli

*To whom correspondence should be addressed: Dr. Kirsten Jung Ludwig-Maximilians-Universität München Department Biologie I, Bereich Mikrobiologie Großhaderner Str. 2-4 82152 Martinsried Germany Phone: +49-89-2180-74500 Fax: +49-89-2180-74520 E-mail: jung@Imu.de

TABLE S1. Plasmids used in this study.

Plasmid

Description

Reference or source

pRed/ET	λ-RED recombinase in pBAD24; Amp ^r	Gene Bridges
pCP20	FLP-recombinase, λcl 857⁺, λpR Rep¹s; Amp′, Cm′	(1)
pBAD33-Cm	Arabinose-inducible P _{BAD} promoter, pBR322 ori; Kan ^r	(2)
pBAD33- <i>ypdB</i>	6his-ypdB cloned in the AfIII and XbaI sites of pBAD33-Cm; Cm ^r	This work
pBAD24	Arabinose-inducible P _{BAD} promoter, pBR322 ori; Amp ^r	(2)
pBAD24- <i>ypdB</i>	6his-ypdB cloned in the EcoRI and XbaI sites of pBAD24; Amp ^r	This work
pBAD24- <i>ypdB</i> D53E	<i>ypdB</i> D54E cloned in the NdeI and XbaI sites of pBAD24- <i>ypdB</i> ; Amp ^r	This work
pBAD24- <i>ypdB</i> D53N	<i>ypdB</i> D54N cloned in the Ndel and Xbal sites of pBAD24- <i>ypdB</i> ; Amp ^r	This work
pBAD24-yehS	<i>yehS</i> cloned in the Ndel and Xbal sites of pBAD24- <i>kdpE</i> ; Amp ^r	This work
pBAD24- <i>ypdA</i>	ypdA cloned in the EcoRI and XbaI sites of pBAD24; Amp ^r	This work
pBAD24- <i>ypdA</i> H371Q	ypdA H371Q cloned in the EcoRI and XbaI sites of pBAD24; Amp ^r	This work
pBAD24- <i>yhjX</i>	<i>yhjX-6hi</i> s cloned in the EcoRI and XbaI sites of pBAD24; Amp ^r	This work
pBAD24- <i>ypdAB</i>	<i>ypdAB</i> cloned in the EcoRI and XbaI sites of pBAD24; Amp ^r	This work
pBAD24- <i>ypdABC</i>	ypdABC cloned in the EcoRI and XbaI sites of pBAD24; Amp ^r	This work
pUC19	IPTG-inducible P _{Lac} promoter, pMB1 ori, Amp ^r	(3)
pUC19 P _{yjiY-212/+88}	$P_{y\bar{y}\bar{y}'^{-212/+88}}$ cloned in the EcoRI and BamHI sites of pUC19; Amp^r	(4)
pUC19 P _{yhjX -264/+36}	$P_{\textit{yhjX-264/+36}}$ cloned in the EcoRI and BamHI sites of pUC19; Amp^r	This work
pUC19 P _{yhjX-264/-165}	$P_{\textit{yhjX}}$ -264/-165 cloned in the EcoRI and BamHI sites of pUC19; Amp^{r}	This work
pUC19 P _{yhjX-164/-65}	$P_{\textit{yhjX}-164/-65}$ cloned in the EcoRI and BamHI sites of pUC19; Amp^r	This work
pUC19 P _{yhjX-64/+36}	$P_{\textit{yh}\!/\!X\text{-}64/+36}$ cloned in the EcoRI and BamHI sites of pUC19; Amp^r	This work
pRS415	Operon fusion vector	(5)
pRS415 P _{yhjX -264/+36}	$P_{\textit{yh}\!\textit{X}\text{-}264/+36}$ cloned in the EcoRI and BamHI sites of pRS415; Amp^r	This work
pRS415 P _{yhjX up_rpImt}	$P_{\textit{yhjX} \textit{up_rpimt}}$ (replacement of 15 bp upstream of M1) cloned in the EcoRI	This work
	and BamHI sites of pRS415; Amp ^r	
pRS415 P _{yhjX M1}	$P_{\textit{yh}\!\!/\!\!XM1}$ (replacement of M1) cloned in the EcoRI and BamHI sites of	This work
	pRS415; Amp ^r	
pRS415 P _{yhjX spacer}	$P_{\textit{yh}\!/\!X\textit{spacer}}$ (replacement of spacer) cloned in the EcoRI and BamHI sites	This work
	of pRS415; Amp ^r	
pRS415 P _{yhjX M2}	$P_{\textit{yhjX}M2}$ (replacement of M2) cloned in the EcoRI and BamHI sites of	This work
	pRS415; Amp ^r	
pRS415 PyhjX down-rplmt	$P_{\textit{yhjX}down_rplmt}$ (replacement of 15 bp downstream of M2) cloned in the	This work
	EcoRI and BamHI sites of pRS415; Amp ^r	
pRS415 PyhjX M2S1	$P_{\textit{yhjX}M2S1}(replacement of bp 1 and 10 in M2)$ cloned in the EcoRI and	This work

	BamHI sites of pRS415; Amp ^r	
pRS415 P _{yhjX M2S2}	$P_{\textit{yh}\textit{X}\text{M2S2}}(\text{replacement of bp 1,2,9 and 10 in M2})$ cloned in the EcoRI	This work
	and BamHI sites of pRS415; Amp ^r	
pRS415 P _{yhjX M2S3}	$P_{\textit{yhjX}\text{M2S3}}$ (replacement of bp 1,2,3,8,9 and 10 in M2) cloned in the	This work
	EcoRI and BamHI sites of pRS415; Amp ^r	
pBBR1-MCS5-TT-RBS-lux	luxCDABE and terminators lambda T0 rrnB1 T1 cloned into pBBR1-	(6)
	MCS5 for plasmid-based transcriptional fusions; Gm ^r	
pBBR <i>yhjX-lux</i>	$P_{\textit{yhjX-264/+36}}$ cloned in the BamHI and EcoRI sites of pBBR1-MCS5-TT-	This work
	RBS- <i>lux</i> ; Gm ^r	

TABLE S2. Oligonucleotides used in this study

Oligonucleotide

#

Oligonucleotide Sequence (5´-3´)

Plasmid or strain construction		
YpdB Ndel sense	AACATATGGTGAAAGTCATCATTGTTGAA	pBAD24- <i>ypdB</i>
YpdB Xbal antisense	CCTCTAGATTAAAGATGCATTAACTGGCG	pBAD24- <i>ypdB,</i> pBAD24- <i>ypdAB</i>
ypdB B53E sense	GCCATTTTTCTGGAAATCAATATTCCG	pBAD24- <i>ypdB-</i> D53E
ypdB B53E antisense	CGGAATATTGATTTCCAGAAA AATGGC	pBAD24-ypdB-D53E
ypdB D53N sense	ATAACCGCGTCGACGCCATTT TTCTGAATATCA ATATTCCGTCGCTGG ATGGCG T	pBAD24- <i>ypdB-</i> D53N
ypdB D53N anti	ACGCCATCCAGCGACGGAATATTGATATTCAGAAAAATGGCGTCGAC GCGGTTAT	pBAD24- <i>ypdB-</i> D53N
yehS Ndel sense	ATGCGCCATATGCTAAGTAACGATATTCTGC	pBAD24- <i>yeh</i> S
yehS Xbal antisense	CTCTCTAGATTAGCCTTTTTTCACATGCT	pBAD24- <i>yehS</i>
yhjX EcoRI sense	CAGGAGGAATTCATGACACCTTCAAATTATCAGC	pBAD24- <i>yhjX</i>
yhjX Ndel anti	GGAATTCCATATGAAGGGAGCCATGCGCCTCACGCAAC	pBAD24- <i>yhjX</i>
YpdA EcoRI sense	CCGAATTCGTGCACGAAATATTCAACATG	pBAD24- <i>ypdA,</i> pBAD24- <i>ypdAB,</i> pBAD24- <i>ypdABC,</i> pBAD24- <i>ypdA</i> H371Q
YpdA Ndel antisense	AACATATGAAGCAATAACGTAGCCTGTGA	pBAD24- <i>ypdA,</i> pBAD24- <i>ypdA</i> H371Q
YpdC Xbal	CCTCTAGATTAGCCCTGAAAACGGGCGCT	pBAD24-ypdABC
ypdA H371Q sense	TCGCGCCCTGCAAAGCAAAATTAATCCCCAGTTTCTGTTTAACGCTCT GAACGCTATTTCA	pBAD24-ypdA H371Q
ypdA H371Q anti	TGAAATAGCGTTCAGAGCGTTAAACAGAAACTGGGGATTAATTTTGCT TTGCAGGGCGCGA	pBAD24- <i>ypdA</i> H371Q
pBAD24 anti	CAAATTCTGTTTTATCAGACCGCTTCTGCG	pBAD24 sequencing
pBAD24 sense	TCGCAACTCTCTACTGTTTCTCCATA	pBAD24 sequencing
rev24	TTCACACAGGAAACAGCTATGACC	pUC19 sequencing, labeling EMSA
uni24	ACGACGTTGTAAAACGACG	pUC19 sequencing
up yhjX 300bp BamHI sense	AATCCGGATCCCTAACTCAGGCAGAAAATACCA	pBBR <i>yhjX-lux</i>
up yhjX EcoRI anti	ATACCGGAATTCGGCAGTATTCCTGCAGTAATAAAAAG	pBBR <i>yhjX-lux</i>
Up YpdA	AGCCTTCAGGTTACCTATCATAGAGGTTTAATCCTTATTCAGAGTCAC CCAATTAACCCTCACTAAAGGGCGG	E. coli MG20 construction
Low YpdC	CGTAATACGACTCACTATAGGGCTCG	construction
YpdBC-rpsL-neo-	AACAGGAACTGAGCTGGCTAATTAAAGAGCACAGCCAGATGGAGATT	E. coli MG21
up YpdBC-rpsl -neo-	GTCGGCACCTTTGGGCCTGGTGATGATGGCGGGATCG GCAAGATGCACAAAGTATCCTGACGCTGCTGGAAACAGAATTAACCT	construction
down	TCTGACGTCAGAAGAACTCGTCAAGAAGGCG	construction
RED-Kan anti	CGAGACTAGTGAGACGTGCTAC	control primer
RED-Kan sense	TATCAGGACATAGCGTTGGCTACC	control primer
ypdB sense	CGTTACTTAGCATGAGGCCTT	control primer
ypdB +84 sense	TGTGAGCCTGATAGTTACACC	control primer
ypdA +350 s	CCGGACCGTCCGAGCGACGCT	control primer
ypdA +50 s	AGCCTTCAGGTTACCTATCAT	control primer
ypdC + 50 a	GATGCACAAAGTATCCTGACG	control primer
ypdC + 350 a	CGCACTGAACATCCGTTTGAG	control primer

Description

down-ypdB-rpsl -D53 up ypdA rpsl neo down ypdA rspl neo ypdA sense ypdA anti YpdA+up50bp sense YpdA-down50bp anti YpdB+up50bp sense YpdB-down50bp anti up yhjX down yhjX

yhjX-200

Northern Blot **DNA probes**

cpxP anti	CTAC
cpxP sense	ATG
entC anti	TTAA
entC sense	ATG
entE anti	TGC
entE sense	ATG
fecA anti	GCA
fecA sense	ATG
fecB anti	TCAT
fecB sense	ATG
fhuA anti	GCA
fhuA sense	ATG
fhuF anti	TCAT
fhuF sense	ATG
guaC anti	TTAC
guaC sense	ATG
iraP anti	TTAC
iraP sense	ATG/
rpoD anti	AATO
rpoD sense	ATG
yahM anti	CTAC
yahM sense	ATG
yehS anti	TTAC
yehS sense	ATG
ygbK anti	TTAC
ygbK sense	ATG
ygbL anti	TTAA
ygbL sense	ATG/
yhjX anti	CAA
yhjX sense	ATG
yjiY anti	TGA
yjiY sense	ATG
ynjH anti	TTAT
ynjH sense	GTG
ypdB anti	TTAA

CTGGGAACGTGAGTTGCT CGCATAGTTACCGCTGCC TGCAATCCAAAAACGTT GATACGTCACTGGCTGAG CAAACACCTGCTGCAACT AGCATTCCATTCACCCGC GGCTGTTGAAGGTGTGCA ACGCCGTTACGCGTTTTT TTCACAACGGTAAGCGG FTGGCATTTATCCGTTTT GGTTCTGACGCACAGTAA GCGCGTTCCAAAACTGCT TTCAGCGTACAATCGCC GCCTATCGTTCCGCACCG CAGGTTGTTGAAGATGCG CGTATTGAAGAAGATCTG CTGACGAGGATGCTTCAA AAAATCTCATTGCTGAG CGTCCAGGAAGCTACGCAGC GAGCAAAACCCGCAGTCAC CGTAATCAACCTGATTTG GCGGTCCAACTTTTCAAA GCCTTTTTTCACATGCTG CTAAGTAACGATATTCTG CCACGGCACGCCGGGGAAAT ATCAAGATTGGCGTTATC CTCCTTAATTCCGCAAT AGCGATTTCGCAAAAGTA AGAACTCACTGACCAGTG ACACCTTCAAATTATCAG **FGAACAGGAACGGGAACA** GATACTAAAAAGATATTC GGCTTTACGCGCCGCCA AGTCGAGCATTGTTCGCC TTAAAGATGCATTAACTGGCG

cpxP probe cpxP probe entC probe entC probe entE probe entE probe fecA probe fecA probe fecB probe fecB probe *fhuA*probe *fhuA*probe fhuF probe fhuF probe guaC probe guaC probe iraP probe iraP probe rpoD probe rpoD probe yahM probe yahM probe yehS probe yehS probe ygbK probe ygbK probe ygbL probe ygbL probe yhjX probe yhjX probe yjiY probe yjiY probe ynjH probe ynjH probe ypdB probe

E. coli MG 24 / MG 25

construction

F. coli MG23

construction

control primer

control primer

control primer

E. coli MG 23

E. coli MG 23

E. coli MG 24 / MG 25

E. coli MG 24 / MG 25

construction

construction

construction

construction

E. coli MG26

construction

E. coli MG26

construction

control primer

CACGCGGTGATGAACACAATAAACGGTTTATGGGCGAACTGGCTGAT

AATGCTTATCTGCCTGTTCTTTCTCATCCGTATCCGCCTGTTTCGCGA

AATGTAAAACGCAATTTCCGTCCCCGGCTCCAGGCGGCGGATATGCA

AGCCTTCAGGTTACCTATCATAGAGGTTTAATCCTTATTCAGAGTCAC

TGCCAGGAATTCGTCTTCAACAATGATGACTTTCACAATATCACTCCG

ACCCCAGTCGCCTCACAGGCTACGTTATTGCTTTGAGCCGGAGTGAT

AAAAATTGTTGATCGGCGGGCAAGCCTGGTGCTTTCATGAAAGTTCC

TATGGTTGTCGGCAGAGATTTTTCCTTTTTATTACTGCAGGAATACTG

ATGCGTTTGATGCACACGGAAGCTGAAGCCCAGTAGCTCGCGGCTG

GTTTCAGAAGAACTCGTCAAGAAGGCG

ACGGCCTGGTGATGATGGCGGGATCG

GCCTCAGAAGAACTCGTCAAGAAGGCG

GTGCACGAAATATTCAACATG

CCGTGCACGAAATATTCAACATG

GCTCAAAGCAATAACGTAGCCTGT

ATTGTGAAAGTCATCATTGTTGAAGA

CCAATTAACCCTCACTAAAGGGCG

GCAAAGGGAAAAAGTGTGGGGA

CGATTAAAGATGCATTAACTGGCGAAAT

AGCATAATACGACTCACTATAGGGCTC

TCAAAGCAATAACGTAGCCT

ypdB sense

EMSA/footprin

GTGAAAGTCATCATTGTTGAA

ypdB probe

L		
6-FAM uni24	[6-FAM]ACGACGTTGTAAAACGACGGCCAG	EMSA labeling DNA- fragments
yhjX 1 sense	TTGAATTCTTCTGATGGCATTTCATG	pUC19 P _{yhjX-64/+36}
yhjX 1 anti	TTGGATCCGGCAGTATTCCTGCAGTA	pUC19 P _{yhjX-264/+36} , pRS415 P _{yhjX-264/+36} + derivates
yhjX 2 sense	TTGAATTCTAACAATAGTTGTGGCGA	pUC19 P _{yhjX-164/-65}
yhjX 2 anti	TTGGATCCCGGAATGAAATGCCTTAG	pUC19 P _{yhjX-164/-65}
yhjX 3 sense	TTGAATTCCTAACTCAGGCAGAAAAT	pUC19 P _{yhjX-264/-165} , pUC19 P _{yhjX-264/+36}
yhjX 3 anti	TTGGATCC TTTAATGGTTTCAATTGT	pUC19 P _{yhjX-264/-165}
yjiY-5P-1 anti	TTTTTTGGATCCAGTAAAACCTGGCATGTA	pUC19 P _{yji} Y-212/+88
yjiY-5P-3 sense	TTTTTTGAATTCCGCCGAGTGAATTTTATTCA	pUC19 P _{yjiY-212/+88}

In vivo reporter

upstream- replacement as	GGCTGGACTTCCGTCATGACGCGACAATTATTC	pRS415 P _{yhjX up_rplmt}
upstream-		pRS415 PubiXup rolmt
replacement s	GACGGAAGTCCAGCCGGCATTTCATTCCGTTCT	
replacement as	CGTCCCGTAATTAGTTCAGGAATGAATG	pRS415 P _{yhjX M1}
motif 1 replacement s	TTACGGGACGTCCGTTCTGATGGCATTT	pRS415 P _{yhjX M1}
spacer		nRS415 P
replacement as	CGACTCCATTCATGAAATGCCTTAGTTCA	proder of yhjx spacer
replacement s	GAATGGAGTCGGGCATTTCATGCCGTTTT	pRS415 PyhjX spacer
motif 2	CGTCCCGTAAATCAGAACGGAATGAAAT	pRS415 P _{yhjXM2}
motif 2		
replacement s	TTACGGGACGGCCGTTTTTCCCCAGGCA	рк3413 F _{yhj} x м2
replacement as	AGTTTTCCCCCATTAATGAAATGCCATCAGAAC	pRS415 PyhjX down_rplmt
downstream-	TAATGGGGGAAAACTGCATAAAGTGCACTTCGT	pRS415 PyhjX down_rplmt
motif shortening 1	TATGGGGGAAACTGCATAAGTGCACTTCGT	DC 115 D
as motif chartoning 2	ATCAGAACGGACTGAAATGCATTAGTTCAGGAATGAATG	μκ3413 Ρ _{yhj} χ _{M2} G/T
as	ATCAGAACGGACGGAAATGAATTAGTTCAGGAATGAATG	рRS415 Р _{уһјХ М2 GG/АТ}
motif shortening 3		pRS415 P _{vhiXM2 GGC/CAT}
as motif shortening 1	ATCAGAACGGACGTAAATTAATTAGTTCAGGAATGAATG	»DC 445 D
S matif ab artanian O	TCCGTTCTGATTGCATTTCAGGCCGTTTTTCCCCAGGCA	рк3415 Р _{уһјХ М2 G/Т}
s	TCCGTTCTGATTTCATTTCCGGCCGTTTTTCCCCAGGCA	pRS415 P _{yhjX M2 GG/AT}
motif shortening 3		pRS415 Pvbix M2 GGC/CAT
8	TUUGTTUTGATTTAATTTAUGGUUGTTTTTUUUUAGGUA	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

TABLE S3: Influence of C-sources and additives on *yhjX* expression. Strain and cultivation conditions were the same as described in Figure 4B.

Medium	Additional C-source	Concentrat ion C-source	Additive	Concentration additive	Average of max. <i>yhjX</i> expression [RLU/OD ₆₀₀]	Standard deviation of max. <i>yhjX</i> expression [RLU/OD ₆₀₀]
LB medium	Glucose	0.4%	Pyruvate	20 mM	41,710	3,020
LB medium	Pyruvate	20 mM			38,810	1,270
LB medium	-	-	-	-	35,450	3,670
LB medium	Glucose	0.4%	-	-	10,820	1,910
M9 medium	Pyruvate	20 mM	-	-	479,070	46,060
M9 medium	Yeast extract	0.5%	-	-	38,240	4,460
M9 medium	Gluconic acid	0.4%	-	-	7,260	620
M9 medium	Glucuronic acid	0.4%	-	-	4,120	860
M9 medium	Lactate	20 mM	-	-	1,000	160
M9 medium	Phosphoenol	20 mM	-	-	370	80
M9 medium	Glycerol	0.4%	-	-	360	70
M9 medium	L-Serine	20 mM	-	-	360	50
M9 medium	Acetate	0.4%	-	-	320	30
M9 medium	Lactose	0.4%	-	-	300	20
M9 medium	Casamino acids	0.4%	-	-	260	30
M9 medium	L-Proline	20 mM	-	-	260	40
M9 medium	Fumarate	20 mM	-	-	250	50
M9 medium	Mannose	0.4%	-	-	250	50
M9 medium	Succinate	0.4%	-	-	250	40
M9 medium	Galactose	0.4%	-	-	230	30
M9 medium	Oxaloacetate	20 mM	-	-	230	30
M9 medium	Peptone	0.4%	-	-	220	60
M9 medium	L-Asparte	20 mM	-	-	210	40
M9 medium	Mannitol	0.4%	-	-	210	40
M9 medium	Fructose	0.4%	-	-	200	40
M9 medium	Xylose	0.4%	-	-	200	50
M9 medium	Maltose	0.4%	-	-	170	40
M9 medium	Glucose	0.4%	-	-	160	150
M9 medium	L-Glutamate	0.4%	-	-	130	40
M9 medium	Tryptone	0.4%	-	-	10	10
M9 medium	Cas amino acids	0.4%	Glucose	0.4%	22,640	520
M9 medium	Cas amino acids	1.5%	PIPES (pH 5.5) + Glycerol	20 mM + 0.8%	9,910	720
M9 medium	Cas amino acids	1.5%	PIPES (pH 7.0) + Glycerol	20 mM + 0.8%	7,620	240
M9 medium	Pyruvate	20 mM	Fumarate	20 mM	528,780	66,840
M9 medium	Pyruvate	20 mM	Glucose	20 mM	281,270	28,830
M9 medium	Pyruvate	20 mM	Glucose	1 mM	270,880	41,130

M9 medium	Pyruvate	20 mM	Lactate + PIPES (pH 7.0)	20 mM + 20 mM	240,000	16,200
M9 medium	Pyruvate	20 mM	Glucose	5 mM	201,370	6,160
M9 medium	Pyruvate	20 mM	Acetate	20 mM	165,180	20,310
M9 medium	Succinate	0.4%	Pyruvate	20 mM	274,060	17,380
M9 medium	Succinate	0.4%	Fumarate	20 mM	9,940	1,130
M9 medium	Succinate	0.4%	Lactose	0.4%	3,350	790
M9 medium	Succinate	0.4%	Guanidine hydrochloride	1 mg/ml	660	390
M9 medium	Succinate	0.4%	Methanol	1%	600	480
M9 medium	Succinate	0.4%	Fosfomycin	1 µg/ml	570	480
M9 medium	Succinate	0.4%	Crystal violet	0.05 µg/µl	560	450
M9 medium	Succinate	0.4%	D-Leucine	20 mM	540	40
M9 medium	Succinate	0.4%	L-Histidine	20 mM	530	380
M9 medium	Succinate	0.4%	Sulfamethazine	0.5 µg/ml	510	30
M9 medium	Succinate	0.4%	Arsenate	20 µg/ml	500	190
M9 medium	Succinate	0.4%	Imipenem	0.05 µg/ml	480	210
M9 medium	Succinate	0.4%	Plumbagin	8 µg/ml	470	240
M9 medium	Succinate	0.4%	D-Argine	20 mM	410	430
M9 medium	Succinate	0.4%	D-Proline	20 mM	410	180
M9 medium	Succinate	0.4%	Maltose	0.4%	390	60
M9 medium	Succinate	0.4%	Xylose	0.4%	380	50
M9 medium	Succinate	0.4%	Antimony(III)chl oride	5 µg/ml	370	140
M9 medium	Succinate	0.4%	Hdroxyurea	100 µg/ml	350	200
M9 medium	Succinate	0.4%	Paromomycin	0.01 µg/ml	350	150
M9 medium	Succinate	0.4%	Paromomycin 5,7-Dichloro-8-	0.005 µg/ml	340	130
M9 medium	Succinate	0.4%	hydroxyquinaldi ne	1 µg/ml	330	360
M9 medium	Succinate	0.4%	D-Tyrosine	20 mM	330	110
M9 medium	Succinate	0.4%	Oxalate	30 mM	330	220
M9 medium	Succinate	0.4%	Propanol	1%	330	330
M9 medium	Succinate	0.4%	Thiamphenicol	1 µg/ml	300	160
M9 medium	Succinate	0.4%	Polymyxin B	0.005µg/ml	290	130
M9 medium	Succinate	0.4%	Deoxycholate	100 µg/ml	280	340
M9 medium	Succinate	0.4%	Lactulose	30 mM	280	250
M9 medium	Succinate	0.4%	Natriumphosph at (pH 7) 7-	200 mM	280	250
M9 medium	Succinate	0.4%	Hydoxycoumari n	10µg/ml	270	220
M9 medium	Succinate	0.4%	Tobramycin	0.01 µg/ml	270	460
M9 medium	Succinate	0.4%	Arsenite	10 µg/ml	260	10
M9 medium	Succinate	0.4%	L-Alanine	20 mM	260	60
M9 medium	Succinate	0.4%	lodacetic acid	10 µg/ml	250	240
M9 medium	Succinate	0.4%	L-Leucine	20 mM	240	230
M9 medium	Succinate	0.4%	Lactate	20 mM	230	90
M9 medium	Succinate	0.4%	Deoxycholate	50 µg/ml	210	220
M9 medium	Succinate	0.4%	L-Arginine	20 mM	210	180
M9 medium	Succinate	0.4%	L-Isoleucine	20 mM	200	40
M9 medium	Succinate	0.4%	L-Tyrosine	20 mM	200	190

M9 medium	Succinate	0.4%	N-Acetyl- Glucosamine	0.4%	170	40
M9 medium	Succinate	0.4%	Deoxycholate	500 µg/ml	160	280
M9 medium	Succinate	0.4%	NaCl	2%	160	40
M9 medium	Succinate	0.4%	PIPES (pH 7.0) + Oxalate	20 mM + 30 mM	160	40
M9 medium	Succinate	0.4%	Apramycin	0.005 µg/ml	150	140
M9 medium	Succinate	0.4%	Benzoate	30 mM	140	120
M9 medium	Succinate	0.4%	Ethanol	5%	130	230
M9 medium	Succinate	0.4%	Peptidoglycan E. coli	1/20 fold dilution	130	100
M9 medium	Succinate	0.4%	PIPES (pH 7.0) + Mitomycin	20 mM + 0.3 µg/ml	130	30
M9 medium	Succinate	0.4%	D-Cycloserine	0,5 µg/ml	120	190
M9 medium	Succinate	0.4%	D-Serine	20 mM	120	110
M9 medium	Succinate	0.4%	Ethanol	1%	120	200
M9 medium	Succinate	0.4%	Gly-Gly	20 mM	100	300
M9 medium	Succinate	0.4%	L-Asparagine	20 mM	100	140
M9 medium	Succinate	0.4%	L-Threonine	20 mM	100	180
M9 medium	Succinate	0.4%	PIPES (pH 7.0)	20 mM	90	20
M9 medium	Succinate	0.4%	D-Alanine	20 mM	80	130
M9 medium	Succinate	0.4%	L-Glutamate	20 mM	80	130
M9 medium	Succinate	0.4%	L-Proline	20 mM	80	140
M9 medium	Succinate	0.4%	Chlorambucil	50 µg/ml	70	120
M9 medium	Succinate	0.4%	Ethanol	2%	70	110
M9 medium	Succinate	0.4%	L-Glycine	20 mM	70	120
M9 medium	Succinate	0.4%	methylsufonyl- fluorid	200 µg/ml	60	110
M9 medium	Succinate	0.4%	PIPES (pH 7.0) + Formate	20 mM + 30 mM	60	20
M9 medium	Succinate	0.4%	L-Serine	20 mM	50	80
M9 medium	Succinate	0.4%	Peptidoglycan Bacillus	1/20 fold dilution	50	30
M9 medium	Succinate	0.4%	Peptidoglycan Lactobacillus	1/20 fold dilution	50	90
M9 medium	Succinate	0.4%	Amitriptylin	10 µg/ml	40	40
M9 medium	Succinate	0.4%	Formate	30 mM	40	70
M9 medium	Succinate	0.4%	L-Aspartate	20 mM	40	30
M9 medium	Succinate	0.4%	Methylglyoxal	0,7 mM	40	10
M9 medium	Succinate	0.4%	Peptidoglycan Lactobacillus	1/2000 fold dilution	40	20
M9 medium	Succinate	0.4%	D-Ala-D-Ala	20 mM	30	20
M9 medium	Succinate	0.4%	Dulcitol	0.4%	30	50
M9 medium	Succinate	0.4%	Methylglyoxal	0,2 mM	30	10
M9 medium	Succinate	0.4%	Peptidoglycan Bacillus	1/2000 fold dilution	30	40
M9 medium	Succinate	0.4%	PIPES (pH 7.0) + Benzoate	20 mM + 30 mM	20	10

_

FIG. S1. Evaluation of potential YpdB target genes. A) Northern blot analysis was used to measure the effect of overproduction of YpdB on the expression of the genes identified by transcriptome analysis (see Table 1) and *rpoD* (control) in *E. coli* MG21 (Δ *ypdB*). The expression levels of these genes were also assessed in the *E. coli* strain MG21 (Δ *ypdB*) in the absence of YpdB (*E. coli* MG21 transformed with the empty pBAD24 vector) (lanes 2) or upon overproduction of YpdB (lanes 1). 20 µg of total RNA was loaded per lane, and the transcripts were detected with the corresponding gene-specific DNA probes. Transcripts of the corresponding genes are marked by an arrow.

Fig. S2. In vitro phosphorylation of YpdB. Purified YpdB-6His was mixed with phosphorylation buffer. Phosphorylation was started by adding a mixture of $[\gamma^{-32}P]$ acetyl phosphate and MgCl₂. At the indicated times, the reaction was stopped by adding SDS-sample buffer, the samples were subjected to SDS-PAGE and Semi Dry Western Blotting. As negative control, protein was denatured by adding SDS-sample before the reaction was started (+SDS). Phosphorylated YpdB was detected by autoradiography using a phosphor screen and a PhosphorImager Storm. The autoradiograph is representative of three independent experiments.

Fig. S3. *yhjX* induction is independent of YhjX feedback regulation. *Escherichia coli* MG1665 (wild-type) and MG26 ($\Delta yhjX$) were transformed with pBBR *yhjX*-lux and grown aerobically in LB medium. Growth and luciferase activity were monitored continuously. The maximal luciferase activity normalized to an optical density of 1 (RLU/OD600) was used as a measure of the degree of induction of *yhjX*. Data were obtained from at least three independent experiments, and average values were used for calculations.

References:

- 1. **Cherepanov PP, Wackernagel W.** 1995. Gene disruption in *Escherichia coli*: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene **158:**9-14.
- 2. **Guzman L, Belin D, Carson M, Beckwith J.** 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. **177:**4121-4130.
- Yanisch-Perron C, Vieira J, Messing J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103 - 119.
- 4. **Kraxenberger T, Fried L, Behr S, Jung K.** 2012. First insights into the unexplored two-component system YehU/YehT in *Escherichia coli*. J. Bacteriol. **194**:4272-4284.
- 5. Simons R, Houman F, Kleckner N. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene **53**:85-96.
- 6. **Godeke J, Heun M, Bubendorfer S, Paul K, Thormann KM.** 2011. Roles of Two *Shewanella oneidensis* MR-1 Extracellular Endonucleases. Appl Environ Microbiol **77:**5342-5351.