Human CLPP reverts the longevity phenotype of a fungal *ClpP* deletion strain

Fabian Fischer, Andrea Weil, Andrea Hamann & Heinz D. Osiewacz

SUPPLEMENTARY INFORMATION

Supplementary Figures S1 to S5

Supplementary Figure S1 | Susceptibility of $\Delta PaClpP$ to various oxidative stressors and DTT-induced ER stress is not altered.

Supplementary Figure S1 | (a) Growth rate of wild type (n = 16) and $\Delta PaClpP$ (n = 16) on M2 medium containing 0, 20, 80, or 150 μ M paraquat. Growth rate of $\Delta PaClpP$ was unchanged compared to the wild type at any concentration tested. (b) Growth rate of wild type (n = 16) and $\Delta PaClpP$ (n = 16) on M2 medium containing 0, 100, 200, or 400 μ M CuSO₄. Growth rate of $\Delta PaClpP$ was unchanged compared to the wild type at any concentration tested. (c) Growth rate of wild type (n = 16) and $\Delta PaClpP$ (n = 16) on M2 medium containing 0, 0.04, 0.06, or 0.1 % H₂O₂. Growth rate of $\Delta PaClpP$ was unchanged compared to the wild type at any concentration tested. (d) Growth rate of wild type (n = 16) and $\Delta PaClpP$ (n = 16) on M2 medium containing 0, 0.5, 5, or 10 mM DTT. Growth rate of $\Delta PaClpP$ was unchanged compared to the wild type at any concentration tested. Data points depicted in all graphs are mean growth rate ± s.e. in centimetres per day.

Supplementary Figure S2 | Southern and Western blot verification of a $\Delta PaClpP/\Delta Palap$ double deletion strain.

Supplementary Figure S2 | (a) Southern blot analysis of *Bg/*II digested genomic DNA from wild type, $\Delta PaClpP$, $\Delta Palap$, and of four dikaryotic offspring, two of which were resistant (Spore A and C) and two of which were sensitive (Spore B and D) to phleomycin, isolated from a single recombined ascus resulting from a cross between $\Delta PaClpP$ and $\Delta Palap$. The two offspring Spore A and C contain the concomitant deletion of *PaClpP* and *Palap*, as verified by absence of these genes in their genomic DNA and presence of two phleomycin resistance genes (*ble*) instead, and were termed $\Delta PaClpP/\Delta Palap$. For subsequent experiments, monokaryotic offspring were isolated from selfcrosses of these dikaryotic $\Delta PaClpP/\Delta Palap$ strains. (**b**) Representative Western blot analysis of mitochondrial protein extracts from wild type, $\Delta PaClpP$, $\Delta Palap$, and $\Delta PaClpP/\Delta Palap$. Detection with a PaCLPP- and a PalAP-specific antibody confirms absence of PaCLPP and PalAP in the double deletion strain. PaPORIN (PaPOR) was detected as a loading control.

3

Supplementary Figure S3 | CLPP and *i*-AAA are cooperatively involved in a mitochondrial heat stress response.

а

Supplementary Figure S3 | (a) Lifespan of wild type (10.8 ± 0.2 ; n = 109), $\Delta PaClpP$ (10.0 ± 0.5 ; n = 26; P = 0.36), $\Delta Palap$ (8.5 ± 0.2 ; n = 43; P = 2.2E-11), and $\Delta PaClpP/\Delta Palap$ (8.8 ± 0.8 ; n = 39; P = 2.8E-05) isolates at 37 °C. Data given in parentheses are mean lifespan \pm s.e. in days. *P*-values were determined in comparison to the wild-type sample by two-tailed Wilcoxon rank-sum test. (**b**) Growth rate of wild type (0.50 ± 0.01 ; n = 109), $\Delta PaClpP$ (0.44 ± 0.01 ; n = 26; P = 2.4E-04), $\Delta Palap$ (0.41 ± 0.02 ; n = 43; P = 2.1E-04), and $\Delta PaClpP/\Delta Palap$ (0.38 ± 0.02 ; n = 37; P = 1.1E-07) isolates at 37 °C. Data given in parentheses are mean growth rate \pm s.e. in centimetres per day. *P*-values were determined in comparison to the wild-type sample by two-tailed Wilcoxon rank-sum test. (**c**) Female fertility of wild type (100 ± 36.1 ; n = 11) and $\Delta PaClpP$ (105 ± 46.7 ; n = 11; P = 0.82 by two-tailed Wilcoxon rank-sum test) isolates at 37 °C. Data given in parentheses are mean female fertility \pm s.e. in %.

Supplementary Figure S4 | LON protease abundance is unchanged in $\Delta PaClpP$.

Supplementary Figure S4 | (a) Representative Western blot analysis of mitochondrial protein extracts from wild type and $\Delta PaClpP$. The PaLON1-specific antibody detects the ~118 kDa PaLON1 monomer in both samples. PaPORIN (PaPOR) was detected as a loading control and for quantification. (b) Quantitative Western blot analysis of mitochondrial protein extracts from wild type (1.00 ± 0.13; n = 6) and $\Delta PaClpP$ (0.95 ± 0.12; n = 6; P = 0.63 by two-tailed Student's t-test). The PaLON1 protein level was normalised to that of PaPOR and the mean wild-type PaLON1/PaPOR quotient was defined as 1-fold PaLON1 level. Data given in parentheses are mean PaLON1 level ± s.e. in arbitrary units.

Supplementary Figure S5 | Southern blot verification of $\Delta PaClpP/HsClpP_OEx$ transformants.

Supplementary Figure S5 |Southern blot analysis of *Hin*dIII digested genomic DNA from wild type and the hygromycin B resistant $\Delta PaClpP/HsClpP_OEx$ transformants T2-T10. The *HsClpP*-specific hybridization probe visualises integration of the plasmid pHsClpPEx1, containing the full-length ORF of the human *ClpP* cDNA, into the transformants' genome. 5 ng of *Hin*dIII digested pHsClpPEx1 plasmid DNA were used as a control for the *HsClpP*-specific hybridization probe. The two independent transformants T2 and T6, each with a single integration of the vector into their genome, were selected for subsequent experiments and termed $\Delta PaClpP/HsClpP_OEx1$ and 2, respectively.