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Supplementary Figures  

 

                                   (a) 

 

                                   (b) 

Supplementary Figure S1| Charge stability diagram of the double quantum dot and 

coherent oscillations of the charge qubit. (a) The QPC differential transconductance as a 

function of the gate voltages ܸଷ and ܸଷ. The notation (n,m) represents the effective left and 

right dot occupancy. The black ovals and green dashed lines indicate the various charge 

configurations. In the remainder of the paper, we focus on the regime denoted by the large oval. 

(b) The coherent oscillations of the qubit are exhibited in the QPC differential transconductance 

signal when a square-shaped non-adiabatic pulse of width ݐ୮ is applied. The anti-crossing 

energy gap 2߂ can be determined from the period of the coherent oscillations of the qubit 

between two charge states. Figure S1b shows a typical example of a period on the order of 200	ps.   



 

                 (a) 

 

                 (b) 

Supplementary Figure S2| Simulations of the qubit dynamics. Simulation results of the charge 

qubit probability ܲ|ۧ using the realistic pulse shape, which displays (a) coherent oscillations as 

a function of the detuning ߳ and the pulse time ݐ୮, and (b) the interference pattern as a 

function of the energy position ߳	 and the driven pulse amplitude ܣ. 



 

Supplementary Figure S3| Single qubit operation fidelity. Simulation results of the operation 

fidelity as a function of the pulse duration time ݐ୮	and the dephasing time ଶܶ. The operation is a 

LZS pulse with an amplitude of 800 μeV. 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Discussion 

(1) Charge Qubit and the Driven Pulse 

The charge qubit in a double quantum dot is typically described by a Hamiltonian of a 

two-level system on the basis of |Lۧ and |Rۧ, as follows 13,18: ܪ = 12 ߪ(ݐ)ߝ +  .୶ߪ߂
The level detuning is ߝ = ୖܧ −  are the energy levels for an electron in ୖܧ  andܧ , in whichܧ

the left and right dots, respectively. The value ߂ is the tunneling between the two dots, and ߪ୶ 

and ߪ are the Pauli matrices. We denote the eigenstates of the above Hamiltonian as the ground 

and excited states |0ۧ and |1ۧ with the corresponding eigenvalues ܧ and ܧଵ. 

In practice, one thinks of ߂ as being fixed by the system properties and ߝ as a control 

parameter13,18. Our detuning pulse for the quantum manipulation of the charge qubit is illustrated 

in Figure 2a of the main text.  

 

(2) LZS interference as unitary operations  

First, we define the single-qubit rotation operators as follows: 

R୶(ߠ) = ൮cos 2ߠ ݅sin 2݅sinߠ 2ߠ cos 2൲ߠ ,
R(߶) = ൮exp ൬−݅߶2 ൰ 00 exp ൬݅߶2 ൰൲ ,

	
on the basis of the ground and excited states |0ۧ and |1ۧ. 

In many previous experiments, the authors implemented periodic microwave diving field on 

the two-level system and observed the LZS interference (for an excellent review, please see Ref. 

[13], for a very recent example, please see Ref. [18]). Here we use an alternative method 

replacing microwave with a single pulse. The LZS interference process consists of three stages: 

(1) The system begins in the |Rۧ state and adiabatically evolves along the ground state |0ۧ 
until the first LZ transition occurs at the anti-crossing point. The initial state becomes a coherent 

superposition of the ground and excited states, |0ۧ and |1ۧ. (2) The two trajectories evolve 



independently and accumulate a relative phase. (3) Upon return to the anti-crossing point, the 

second LZ transition occurs. 

The effects of the passage through an anti-crossing point can be written as an unitary 

transformation13,22,27-29: 

U = ൮cos 2ߠ exp(݅߶) ݅sin 2݅sinߠ 2ߠ cos 2ߠ exp(−݅߶)൲ 

in which the angle ߠ = 2 sinିଵ ඥ ܲ  depends on a Landau-Zener transition probability 

ܲ = exp(−2߂ߨଶ ⁄ݒ ) , and ݒ  is the sweep velocity of the driving pulse through the 

anti-crossing point. The angle ߶ = ߶ୱ − గଶ  is related to the Stokes phase ߶ୱ = గସ +arg ቂΓ ቀ1 − ݅ ௱మ
௩ቁቃ + ௱మ

௩ ቀln ௱మ
௩ − 1ቁ, and Γ is the Gamma function. Thus, the transformation can 

be presented, using the Euler angle decomposition, as a product of the form U = R(−߶)R୶(ߠ)R(−߶). 
In the second stage, the qubit undergoes a single rotation about the ݖ-axis (also called a 

phase-shift gate operation) R(߶୧), in which ߶୧ is the phase accumulation. 

In summary, the LZS interference can be treated as successive unitary operations as shown 

in Figure 2a of the main text: |Ψ୭୳୲ۧ = UR(߶୧)U|Ψ୧୬ۧ= R(−߶)R୶(ߠ)R(−߶)R(߶୧)R(−߶)R୶(ߠ)R(−߶)|Ψ୧୬ۧ= R(ߠ, ߶)|Ψ୧୬ۧ.  

The above formula indicates that one can drive a two-level system from the state |0ۧ to any 

desired state by controlling the speed of passage and the accumulated phase; essentially, an 

arbitrary one-qubit rotation R(ߠ, ߶) can be realized.  

 

(3) Phase accumulation in the LZS interference 

Although the realistic pulse profile is Gaussian in this research, it is simply approximated as 

a triangular pulse. Using this approximation, one can obtain an analytic expression of the LZS 

interference that can be used to extract information from the experimental data. The pulse can be 

parameterized by the initial value of the detuning ߝ, the amplitude ܣ, and the rise time ݐ୰. One 

can easily obtain the time-dependent detuning as follows 



(ݐ)ߝ = ߝ − ,ݐݒ   0 < ݐ < (ݐ)ߝ,୰ݐ = ߝ − ܣ + ݐ)ݒ − ,(୰ݐ ୰ݐ < ݐ <  .୰ݐ2
The accumulated phase can then be calculated as ߶୧ = න ሾܧଵ(ݐ) − ௧౨௧బݐሿ݀(ݐ)ܧ + න ሾܧଵ(ݐ) − ଶ௧౨ି௧బ௧౨ݐሿ݀(ݐ)ܧ  

in which ܧଵ,(ݐ) = ±ඥ(ݐ)ߝଶ +  ଶ represents the eigenvalues of the Hamiltonian of the(߂2)

system and ݐ is the time required to reach the anti-crossing point ߝ = 0. Substituting the 

explicit expression for (ݐ)ߝ into the above integral yields ߶୧ = 2න 2ඥ(ߝ − ଶ(ݐݒ + =௧౨௧బݐଶ݀(߂2) 2න 2ඥ(ݐݒ)ଶ + =௧౨ି௧బݐଶ݀(߂2) ୰ݐ)ݒ2 − ୰ݐ))ඨݐ − )ଶݐ + ൬2ݒ߂ ൰ଶ + 2 ݒଶ(߂2) ln ቮݐ)ݒ୰ − ߂)2ݐ + ඨ1 + ቆݐ)ݒ୰ − ߂)2ݐ ቇଶቮ	 .
 

Given that ݐ୰ = ௩, and ݐ = ఌబ௩ , the following can be written: 

߶୧ = ܣ)2 − ܣ)ඨ൬ߝ − ݒߝ ൰ଶ + ൬2ݒ߂ ൰ଶ + 2 ݒଶ(߂2) ln ቮܣ − ߂2ߝ + ඨ1 + ൬ܣ − ߂2ߝ ൰ଶቮ	. 
In our experiment, a short pulse (߂ ⁄ݒ ≪ 1) is applied; thus the above formula can be 

simplified to ߶୧ = 2 ܣ) − ݒ)ଶߝ 	. 
The total phase ߶ = ߶୧ − 2߶ =  .gives rise to the constructive interference fringes ܰߨ2

Neglecting a small contribution from 2߶, we obtain the following for each interference node: ߶ = 2 ܣ) − ܣ)ଶߝ  .	୰ݐ
Rearranging the equation, we find the interference-node locations ߝ() as a function of the 

interference order ܰ, ߝ() = ܣ − ඥ2ߨܰܣ ⁄୰ݐ , which is the form we have used in Figure 2c of 

the main text. 

 

(4) Determination of the total rotation angles in the LZS interference 



Far from the anti-crossing point, the ground and excited states are roughly the charge 

eigenstates |Rۧ and |Lۧ. Thus following the LZS interference, the project readout can be 

performed to measure the |Rۧ state for |0ۧ, and the |Lۧ state for |1ۧ, respectively. 

Evaluating the successive operations starting from the |0ۧ state,  |Ψ୭୳୲ۧ = R(−߶)R୶(ߠ)R(−߶)R(߶୧)R(−߶)R୶(ߠ)R(−߶)|Ψ୧୬ۧ, 
we find that the final probability of reaching the |Lۧ state is as follows: ܲ|ۧ = 2 ܲ(1 − ܲ)ሾ1 + cos(߶୧ − 2߶)ሿ. 
The charge state probability ܲ|ۧ is measured using the QPC sensor. To model the experimental 

results in Figure 3b, we include the decoherence time and a phenomenological term to account 

for pulse-induced damping effects10.  

One can easily observe that the measured ܲ|ۧ exhibits clear oscillations as the total phase ߶ = ߶୧ − 2߶ =  which qualitatively confirms the experimental observations in the ,13ܰߨ2

charge-stability diagram (Fig. 2b), the time domain (Fig. 4), and the pulse amplitude space (Fig. 

3a) of the driven pulse in the main text.  

As shown in Figure 2a of the main text, the total ݔ- rotation is maximized when the ݖ- 

rotations bring the Bloch vector back to the starting meridian of the Bloch sphere. Thus, at the 

positions under which the constructive interference occurs, we obtain the total rotation angles 

around the ݖ- and ݔ-axes as follows: ߶ = 2 ܣ) − ܣ)ଶߝ ߠ ,	୰ݐ = =ߠ2 4 sinିଵ൫ඥ ܲ൯= 4 sinିଵ ቀඥexp(−2߂ߨଶ ℏݒ⁄ )ቁ= 4 sinିଵ ቀඥexp(−2߂ߨଶݐ୰ ℏܣ⁄ )ቁ . 
Using the above two equations, we can fit the experiment data in Figure 3c and d of the 

main text to provide insights into the role of the control parameter ܣ.  

 

(5) Numerical simulations of the LZS interference 

The time evolution of the charge qubit is given by solving the time-dependent master 

equations of the density matrix as follows: 



ݐ݀ߩ݀	 = −
݅
ሾߩ, ሿܪ +  ,ܮ

In which ܪ  is the Hamiltonian introduced in Section 3. The standard Lindblad form ܮ 

describes the incoherent process, including the appropriate relaxation and dephasing 

terms30-32,11,9. The solution of ߩ involves a series of differential equations solved numerically 

using the Runge-Kutta method. The calculations shown in Figure S2 are in reasonable agreement 

with the experimental results (as compared with Figs. 4 and 3a of the main text). 

 

(6) Operation fidelity of the LZS pulse 

We can estimate the fidelity of each pulse-induced rotation on the Bloch sphere. The fidelity 

of a gate operation is defined as follows30: 

ܨ	                               = Trൣඥߩ୲ୣߩඥߩ୲൧, 
In which ߩ୲ is the density matrix of the desired target state and ୣߩ is the density matrix of the 

real final state. In general, the fidelity is equal to the overlap between the ideal target state and 

the real final state after the control30,33-35. As previously explained, each LZS pulse-induced 

manipulation may be modeled as a rotation R(ߠ, ߶) of the Bloch vector. From a comparison of 

the ideal predicted signal and the measured signal after a LZS-type operation, we can estimate a 

fidelity of 80% for a rotation of ߠ = 225°, and ߶ = 360° (the second resonance in Fig. 3b in 

the main text).  

Duration of a gate operation, the interactions of the charge states with their environment 

lead to a loss of fidelity33,36-39. Thus the fidelity depends on the specific properties of the 

environment and the parameters of the control pulse. As shown in Figure S3, we plot the fidelity 

of a specific operation pulse as a function of the pulse duration time and decoherence time. 

These results reveal that given an appropriate regime of charge-state decoherence, the value of 

the fidelity can be maintained above 90%. Further improvements can be expected from more 

advanced pulse-optimization methods15,16, and fidelity values higher than 99% can be achieved. 

 

(7) Decoherence time in a 2D Fourier transform of the amplitude spectroscopy 

We use a different approach introduced by Rudner et al.25 to determine the dynamics of a 

qubit in terms of two times: the intrinsic dephasing time ଶܶ  and the ensemble-averaged 

dephasing ଶܶ∗.  



In an analogy to the interaction picture, we introduce a state vector as follows: |Ψ(ݐ)୍ۧ = exp(− ݅߮σ 2⁄ ) |Ψ(ݐ)ۧ, ߮ = න ᇱ௧ݐ݀(ᇱݐ)ߝ
 . 

The new state evolves according to the Schrödinger equation ݅ℏ ୢ|ஏ(௧)ۧୢ୲ =  with the ୍ۧ(ݐ)Ψ|୍ܪ

transformed Hamiltonian ୍ܪ = 12 ൬ 0 ∗߂ exp(− ߪ߮݅ 2⁄ ∗߂( exp(݅߮ߪ 2⁄ ) 0 ൰. 
Next, we introduce the decoherence by including a correlated noise term (ݐ)ߝ +  with (ݐ)ߝߜ

the spectral density as follows: ܵ(߱) = නߨ12 ݐ݀ exp(݅߱ݐ) ୬ୱାஶୣ〈(0)ߝߜ(ݐ)ߝߜ〉
ିஶ . 

If the system begins at the state |Rۧ and, the time evolution operator can be calculated in the 

first order of (ݐ)ܷ ୍ܪ = 1 − ℏ݅න ᇱ௧ݐ݀(ᇱݐ)୍ܪ
 . 

Thus, we find the transition probability as follows: ܲ(ݐ) = 14 ቤ− ℏ݅න ߂ exp൫݅߮(ݐᇱ)൯ ᇱ௧ݐ݀
 ቤଶ

= 14ℏଶ න ᇱݐ݀ න ଶexpൣ݅൫߂ᇱᇱݐ݀ ߮(ݐᇱ) − ߮(ݐᇱᇱ)൯൧expൣ݅൫δ߮(ݐᇱ) − δ߮(ݐᇱᇱ)൯൧௧


௧
 . 

We define the phases as ߮(ݐ) = ߮(ݐ) + δ߮(ݐ), ߮(ݐ) = න ᇱ௧ݐ݀(ᇱݐ)ߝ
 , (ݐ)߮ߜ = න ᇱ௧ݐ݀(ᇱݐ)ߝߜ

 . 
Finally, we average over the noise realizations (ݐ)ߝߜ to obtain 〈ܲ(ݐ)〉ୣ୬ୱ = 14ℏଶ න ᇱݐ݀ න ଶ߂ᇱᇱݐ݀ expൣ݅൫ ߮(ݐᇱ) − ߮(ݐᇱᇱ)൯൧ 〈expൣ݅൫δ߮(ݐᇱ) − δ߮(ݐᇱᇱ)൯൧〉ୣ୬ୱ௧


௧
 . 

For the white noise model, we have 〈expൣ݅൫δ߮(ݐᇱ) − δ߮(ݐᇱᇱ)൯൧〉ୣ୬ୱ = expሾ−ݐ|߁ᇱᇱ − ᇱ|ሿݐ . 
Thus the decay law of the qubit is characterized by the rate ߁, which corresponds to the intrinsic 

dephasing time ଶܶ = 1 ⁄߁ . 

In more general situations, the dephasing also occurs for a single two-level system in the 

time-ensemble measurement due to the low frequency noise, similar to the NMR averaging over 



spin ensembles due to spatial inhomogeneities. We consider a Gaussian-distributed noise which 

yields the following: 〈expൣ݅൫δ߮(ݐᇱ) − δ߮(ݐᇱᇱ)൯൧〉ୣ୬ୱ = exp ቈ− ଶ2ݐ න ݀߱ܵ(߱) sinଶ(߱ݐ 2⁄ ݐ߱)( 2⁄ )ଶାஶ
ିஶ  = exp −12 ଶ൨∗߁ଶݐ . 

The rate ߁∗ = 1 ଶܶ∗⁄  is introduced as the root-mean-square amplitude of the noise. Thus, the 

decay law is replaced by a function that contains the ensemble-averaged dephasing time ଶܶ∗. 
Usually, the ensemble-averaged and intrinsic dephasing processes can be distinguished 

using Ramsey and echo experiments, respectively. However, we demonstrate their differences 

using the 2D Fourier transform of the LZS interference pattern. 

With the Fourier transformation 

ܲ(݇ఌ, ݇) = න න exp(−݅݇ܣ − (ఌ݇ߝ݅ ,ߝ)ܲ ାஶܣ݀ߝ݀(ܣ
ିஶ

ାஶ
ିஶ , 

we can conveniently repeat the calculation in Ref. [25] and find that the prefactor expሾ−ݐ|߁ᇱᇱ − |ᇱݐ 2⁄ ሿ in the time domain leads to the corresponding prefactor in the amplitude 

domain ܲ(݇ఌ, ݇)୧ ∝ exp(−݇߁ఌ). 
Similarly, the ensemble-averaged Fourier transformation can yield the following: 

ܲ(݇ఌ, ݇)ୣ ∝ exp ൬−12߁∗ଶ݇ఌଶ൰. 
Obviously, the Fourier intensity with intrinsic dephasing corresponds to a linear relationship, 

while that with ensemble-averaged dephasing corresponds to a parabolic relationship. Hence, the 

2D Fourier transformation has the great advantage of providing an effective way to distinguish 

between the types of dephasing time (as shown in Fig. 5 of the main text). 
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