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Model Structure. Our study builds on a spatially explicit, discrete
time patch occupancy model (Eq. 1). The model structure as-
sumes that local population dynamics are fast relative to colo-
nization dynamics, as seems reasonable for the focal ecosystem.
It also assumes that metapopulation extinction only occurs when
it is the deterministic outcome of the colonization and extinction
dynamics. It does not predict stochastic global extinctions, as
might be likely when metapopulation sizes are small.
Here, we provide a more detailed description of the metapopu-

lationmodel.Themodelassumes that the change in theprobabilityof
occurrence (p) of a focal species in a patch is the difference between
the colonization probability (C) and extinction probability (E). As
given in Eq. 1, the probability of colonization for patch i is:

CiðpÞ= SiðpÞ
SiðpÞ+ 1

c

;  where Si
�
p
�
=
X
j≠i

μAjpjKij; [S1A]

and the probability of extinction is:

EiðpÞ= eDið1−CiðpÞÞ;  where Di = ð1=μAiÞ: [S1B]

The patch area is denoted A, and μ represents the seed pro-
duction of the focal species per unit area of patch. In annual
plants, seed production is a measure of both local population
size and the number of potential dispersers. The colonization
probability (Eq. S1A) is a saturating function of the distance-
weighted seed production in all other patches (S) and has a value
of 0.5 when the number of seeds (S) equals 1/c. The dispersal
probability between patches (Kij) is developed further below.
Extinction is inversely related to the population size in the focal
patch Eq. S1B). The species-specific parameter e gives the
probability that a small patch (supporting one individual, on
average) would go locally extinct in the absence of a rescue ef-
fect. This rescue effect, [1 − Ci(p)], reduces the chance of ex-
tinction.
The function gi(p), where

giðpÞ= CiðpÞ=EiðpÞ; [S2]

describes the expected frequency of colonization events relative
to extinction events for each patch i. Building on the methods
developed by Ovaskainen and Hanski (1), our model is what they
characterize as a Levins-type model, with giðpÞ= cSiðpÞ=eDi

. For
these types of models, when evaluated at P = 0, the leading
eigenvalue (λ) of the Jacobian matrix of the function g [the
mathematical matrix M with elements ∂gi(p)/∂pj] defines the in-
vasion capacity of the metapopulation (i.e., whether the meta-
population can grow from an initial low occupancy). The leading
eigenvalue also defines the metapopulation capacity, the non-
zero equilibrium for the metapopulation; it provides a very close
approximation of the spatially weighted equilibrium site occu-
pancy for the spatially realistic Levins model (p* ≈ 1−1/λ)
(1, 2). We use this relationship to arrive at Eq. 5.
Standard estimation techniques for determining metapop-

ulation parameters assume that the metapopulation under study
is in a quasiequilibrium state, meaning that the incidence (site
occupancy) of a species reflects its colonization and extinction
rates (3). However, when an extinction debt is present, the
metapopulation does not have a nonzero quasiequilibrium by

definition. As a result, site occupancy cannot be used to infer
colonization and extinction rates. Instead, the individual pa-
rameters of the model (Eq. 4) must be estimated experimentally.
Our approach of evaluating the ratio of eigenvalues (Eq. 5) al-
lows us to eliminate several parameters that do not change fol-
lowing invasion, thus minimizing the number of parameters that
need to be estimated (Eq. S6B).
Dispersal function. The seed arrival function (Si in Eqs. 1B and 3
and Eq. S1A) describes the number of seeds that are expected to
arrive at site i. Based on the focal California system, we assume
passive, isometric dispersal. The size and distance of the “target
patch” affect the number of arriving seeds as follows. The
probability that each seed dispersing from patch j arrives in patch
i is first determined by the probability [p(x)] of dispersing the
distance interval dij ± radiusi (Fig. S1). This defines a ring around
the source patch, and the fraction of that ring that is occupied by
the target patch i, dij distance away, is equal to

ffiffiffiffiffi
Ai

p
=ð4dij ffiffiffi

π
p Þ.

With a normal dispersal kernel, this geometric framework gives:

Si = μk
X
j≠i
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ffiffiffiffiffi
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dij−radiusi

exp
�
−x2=2σ2

�
: [S3]

The constant k, which is equal to 2−3/2π−1, normalizes the
dispersal kernel and the target area approximation such that the
total probability of dispersal to all possible locations is equal to 1.
We checked this approximation with simulations in which large

numbers of seeds produced in a source patch dispersed following
a normal dispersal kernel and the probability of arriving at other
patches of varying size (radius) and at various distances away from
the source patch was measured. These simulations showed that
the approximation (Eq. S3) accurately describes the effect of
target size and distance on seed arrival (R2 = 0.998) when the
minimum distance between the closest edges of two patches is
greater than the rms dispersal distance (σ) and underestimates
the probability of seed arrival when this distance is smaller than
σ. With this rule, the proportion of pairwise site distances in our
study system that are underestimated is 0.001.
Eq. S3 was then used to estimate the impact of reducing patch

size on the dispersal between patches, including the fact that
patches become effectively further apart. It should be noted that
this “target area” effect is appropriate when invasive species have
caused patch areas to shrink by encroaching on the edges of pre-
invasion habitat area. In areas where patches have been invaded
such that the area remains constant but native densities decline,
only the per area seed production (μ, Table S1) term changes.
Eq. S3 assumes that dispersal cannot proceed by spreading

through the matrix over successive generations. To include this
process, we first rewrite the equation such that it expresses the
probability that a single seed disperses to the target patch:

Pðone seed arrivingÞ= k
ffiffiffiffiffi
Ai

p
σdij

Z
exp

�
−x2=2σ2

�
; [S4A]

where the integral is again defined by the interval dij ± radiusi.
Given that plants in our system can produce seeds in the matrix
(but still have finite rates of increase less than 1), we developed
a prediction for dispersal when a seed landing in the matrix could
potentially produce other seeds. In particular, we modeled dis-
persal through the matrix as a random walk that allows the focal
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seed or its offspring to disperse from habitat patch j to i. Each step
in the walk, apart from the initial dispersal from patch j, is taken
with probability R (the finite rate of increase or average number of
offspring per seed in the matrix). The probability of a seed (or its
offspring) dispersing from patch j to patch i in n generations is
defined by its kernel, Qn. The probability of the seed dispersing
in the first generation (i.e., directly) is given in Eq. S4A. The prob-
ability of it arriving in the second generation is given by:

Q2 =Rk
ffiffiffiffiffi
Ai

p
ffiffiffi
2

p
σdij

Z �
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�
−x2=2

� ffiffiffi
2

p
σ
�2��

dxð1−Q1Þ: [S4B]

The final term inEq. S4B (1−Q1) accounts for the fact that a seed
cannot colonize a patch twice (i.e., the probability can never sum to
more than 1). The √2 that scales the rms dispersal distance (σ) is
a result of the randomwalk. The variance of a randomwalk is equal
to nσ2, where n is the number of steps taken and σ2 is the variance
of the normal dispersal kernel. The integral remains unchanged
from Eq. S4A because it measures the distance between patches.
Following this random walk over several generations gives:

Q3 =R2k
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The total probability of a seed, or its offspring, reaching patch i
[i.e., Kij] is the sum of these probabilities:

Kij =
X∞
n=1

Qn: [S5]

The formulations given in Eqs. S4 and S5 are based on
a model in which a seed and its offspring can only disperse
between two patches. They also assume that the surviving
progeny of any seed is only considered to disperse if the seed did
not reach patch j (the 1−Qn−1 term in the final brackets in Eq.
S4); this term eliminates multiple colonization events. In reality,
and for areas with multiple “recipient” patches, this correction
factor for multiple colonization events should include the
probability of the seed establishing on any other patch, because
a seed can only colonize a single patch (i.e., 1 − ∑Qn−1, with the
summation calculated over all sites). However, simulations in-
dicate that this probability is low enough for sparsely distributed
habitats (habitats occupying <12% of the region; our study site
is ∼5% of the region) that it has little effect on the probability
of dispersal.
We checked the approximation of our dispersal model, in-

cluding multigenerational spread through the matrix with sim-
ulations. As before, we assembled hypothetical landscapes with
patches varying in distance from the source patch but now in-
cluding multigenerational dispersal through the matrix with 0 <
R < 1. These simulations indicate that Eq. S5 provides a good

fit to dispersal probabilities even for landscapes with multiple
patches, as long as those patches are sparsely distributed (all R2

values >0.996).
Although Eq. S5 should be calculated over an infinite number of

generations, the low survival rates in the matrix between rocky
outcrops (the Rn−1 term) quickly reduces the probability of coloni-
zation to near zero after about 10 generations. For example, nu-
merical analysis shows that even for relatively large sink populations
with R = 0.33 (i.e., one in three seeds, on average, produces a viable
seed), Rn−1 ≈ 10−7 in 15 generations. The largest estimate of R in
our study was for Salvia (R = 0.34), and the lowest was for Chae-
nactis (R = 0.01; Table S2).
We evaluate the effects of invasion on dispersal probabilities

by multiplying the finite rate of increase rate in the matrix (R)
by R′, the finite rate of increase rate in the invaded matrix
relative to that in the native bunchgrass (Eq. S6). All species
but one had nonzero finite rates of increase when grown
among exotic grasses; for these species, R′ estimates ranged
from one-half to 1/17 (Table S2). Invasion also modifies the
area of patches, which reduces both Ai and the range of the
integral evaluated in Eqs. S3–S5. These latter effects are
shown in Fig. 3.
Incorporating invasion into the model. When we incorporate the
effects of invasion on seed production, habitat area, and matrix
permeability into our model, the elements of the metapopulation
matrix become:

mij =
ckμ2A1:5

i Aj

eσdij

�
w0HF

�2
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;

[S6A]

and

with w′ defined as the ratio of seed density postinvasion to
preinvasion. It depends on both the seed production in habitat
lost to invaders and the fraction of habitat remaining (HF). In
particular, if υ is the ratio of seed production in habitat lost to
invaders to seed production in refugia (Fig. 2 and Table S1),
w′= 1

HFð1− υÞ+ υ . The effects of seed loss and reduced connectivity
can be separated using Eq. S6B, with the effect of lost seed
production (on colonization and extinction) given by the term
(w′HF)

2 and the remainder of the equation giving the loss in
connectivity due to reduced target area (patch size) and reduced
matrix permeability. Changes to seed production act as a scalar,
such that λpostinvasion = λpreinvasion (w′HF)

2 in the absence of
a change in connectivity. Unlike seed production, connectivity
depends on the geographic positions of refugia relative to each
other, and changes in connectivity therefore do not scale λ in
a uniform manner. The complete list of parameters included in
our model and how they are parameterized is given in Table S3.
Model assumptions. To estimate the effects of invasion in this
landscape, three important assumptions about the population
dynamics of the species were needed. The first assumption is that
extinction probability in a patch scales inversely with local pop-
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ulation size (Eq. 1C and Eq. S1B). This assumption follows
Hanski’s model of local extinction (3, 4), where extinction ∝ 1/
Ax. A small value of x corresponds to a high level of environ-
mental stochasticity; in our study system, species’ finite rates of
increase had coefficients of variation that ranged from 0.36 to 1
when measured over 3 y (5), indicating a high level of variability
consistent with x ≈ 1, as was used in our model. Increasing the
value of x increases the sensitivity of the metapopulation to
habitat loss, and our estimates here are therefore conservative in
terms of the impacts of habitat loss.
The second assumption is related to the consistency of pop-

ulation growth rates over time. Although the model allows for
fluctuating population growth rates through time, we assume that
the (geometric) mean population growth rate on refugia has not
changed from that before invasion. Similarly, we assume that the
mean ratio of population growth rates on refugia to those in the
invaded portion of habitat patches stays constant over time.
The third assumption is in the dispersal approximation, which

assumes that seeddispersal is representedwell by anormal dispersal
kernel (Eq. S4). This shape of kernel can be derived from first
principles and is appropriate for many plant species (6). However,
a “fat-tailed” distribution may be more appropriate for some spe-
cies. The random walk that we used to model matrix permeability
(Eq. S4) tends to a normal distribution of dispersal distances over
many generations, even when a different kernel describes seed
dispersal in a single generation (6). The normal distribution is
numerically tractable for this reason, whereas other kernels are not.
Although we are not able to find a numerical solution for fat-tailed
distributions, a sensitivity analysis with the exponential dispersal
kernel (a fatter tailed kernel) indicates that the results of Eq. S4 are
more sensitive to mean dispersal distance than to the shape of the
kernel, especially for refugia that are relatively close together (and
therefore contribute more strongly to λ). Similarly, a sensitivity
analysis showed that a change in the mean dispersal distance of
a normal kernel (as used here) causes a larger change in meta-
population viability (λ) than changing the shape of the dispersal
kernel [sensitivity tested using fatter tailed distributions − the ex-
ponential distribution and the t-distribution with 3 df (7), all scaled
to an equal mean dispersal distance]. Because of this greater sen-
sitivity to mean dispersal distance, our use of a high dispersal dis-
tance (σ = 1) likely underestimates the impacts of changing
connectivity on metapopulation persistence. To provide a range of
realistic predictions, we also consider a dispersal distance within
the expected range of the focal species (σ = 0.5; Figs. S2 and S3).

Model Simulations and Numerical Solutions. We used numerical
solutions of the model to determine the loss of metapopulation
viability following invasion and how this loss is partitioned be-
tween connectivity effects and seed production effects (Fig. 3,
Fig. S4, and Eq. S6B). Our estimates of extinction thresholds for
each species (Eq. 5 and Fig. 4A) and the effects of invasion on
dispersal rates (Eqs. S4 and S5 and Fig. 2C) are also based on
numerical solutions.
Simulation modeling was used for two purposes. First, as de-

scribed in the section on the dispersalmodel, we used simulations to
test our analytical approximations of the dispersal function (e.g.,
Eqs. S3–S5). Second, we used simulations to generate time lines to
extinction (Fig. 4B and Fig. S5). Although our model does predict
the conditions under which extinction debts will occur (Eq. 5),
simulations are needed to give expected time lines for extinction.
For all such simulations, we used the metapopulation modeling
approach outlined by Hanski (8), in which all refugia are modeled
as distinct, circular patches surrounded by matrix habitat. This
approach is different from one in which the matrix is divided into
a lattice of patches of suboptimal quality; our dispersal kernel (Eqs.
S4 and S5) accounts for the matrix habitat without requiring this
step. The extinction time line simulations were run as follows.

We created a grid of plant densities (values of μ) by habitat loss
scenarios. In total, we used 22 values of μ and 11 habitat loss
values (HF ranging from 1 to 0.5) for 242 scenarios. For all pa-
rameters (Table S3), we used the average value from all species
in our experiment (Table S5 and additional parameters for
simulation, as explained below), except for average seeds per
unit area (μ). Given all the parameters (except μ), we first solved
Eq. S6B for the ratio of λ preinvasion vs. postinvasion. This ratio
can then be used in Eq. 5 to determine the critical p* value at
which an extinction debt would emerge. Because the leading
eigenvalue of the mathematical matrix M has a known re-
lationship with μ (λ ∝ μ2; seen from the scalar μ2 in M in Eq.
S6A), we were then able to select a range of values for μ to
generate a range of p* values below this critical value.
For each value of μ andHF, we solved themetapopulationmodel

for the expected occupancies of each patch before invasion. In
particular, in accordance with the study by Ovaskainen and Hanski
(1) (equations 3 and 4 in ref. 1), we define h(p) as a function such
that hi(p) = gi(p)/(1 + gi(p)). We then iteratively solved for p using
the equation pt+1 = h(pt) employing an initial value for p (p0) that
was uniformly low in all patches. The solution to the iteration gave
the expected occupancy of each patch before invasion [full details
are provided in the study by Ovaskainen and Hanski (1)].
We then created 150 “preinvasion landscapes” for each combi-

nation of habitat loss and plant density. These landscapes were
spatially identical to the current postinvasion landscape (Fig. 1B),
except that the area of each patch iwas equal to its preinvasion size,
Ai/HF. In each of these 150 landscapes, the initial occupancy of
each patch was random (determined by a Bernoulli trial) with
a probability equal to the expected occupancy before invasion (Eq.
S6A with w′ = 1, HF = 1, and R’ = 1); the initial occupancy was
therefore a vector of values of 0 and 1, with each element corre-
sponding to a patch. We then began the simulation of colonization
and extinction dynamics of each patch following Eq. 1, with the
vector p replaced by the vector of initial occupancies and using the
vital rates and patch area of the postinvasion metapopulation; in
other words, this was the onset of invasion in our simulations.
Changes in occupancy for each patch (from occupied to empty or
vice versa) were determined using Bernoulli trials with the proba-
bility given by Eq. 1A. We ran these simulations until the meta-
population went extinct or persisted for more than 2,000
generations. In Fig. 4B and Fig. S5, we report the time until all
patches went extinct as themedian time across the 150 simulations
for a given combination of habitat loss and mean seed density.

Additional Parameters for Simulating Time to Extinction. The
parameters c and e (Eq. 1 and Eq. S6A) are not necessary for de-
termining the change in metapopulation viability (Eq. S6B), but
they are necessary for simulating time to extinction when an ex-
tinction debt is present (Fig. 4B). We do not have direct estimates
for these parameters, but reasonable estimates are available from
our data, and we explored the effects of uncertainty in parameter
estimation. Our estimates are based on scaling from our field-based
results on individual seed success; these results give an indication of
the number of seeds required to colonize successfully (informing
our estimate of c) and the likelihood that a small number of seeds
will go extinct without producing more offspring (i.e., the param-
eter e). Our estimates were generated as follows.
Let the seed germination rate be g, the survival rate of un-

germinated seeds be su, the survival rate from germinated seed to
plant be sp, and the seed production of surviving plants be Poisson-
distributed with mean m. The probability that a single seed will
produce zero seeds in one generation is g(1−sp)+ (1−g)(1−su)+ e−m;
the probability that it will produce one seed is (1−g) su +me−m; the
probability of producing n seeds, where n > 1, is the Poisson
probability of n seeds multiplied by gsp. Assuming no intraspecific
density effects at the earliest stages of population growth, these
probabilities can be used for multiple seeds while treating each
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seed as independent; the total number of seeds in generation 2 is
then equal to the sum produced by the individual seeds from
generation 1. Our experiments provided direct measurements of g,
sp, and su. We combined these estimates from all species, giving
mean values of g = 0.16, sp = 0.44, and su = 0.24 (Table S5). In
addition, we could solve numerically for m by assuming positive
population growth rates, where the expected finite rate of increase
E(R) is:

EðRÞ= mgsp + ð1− gÞsu: [S7]

The parameter 1/c defines the half-saturation point of the
colonization probability, meaning that when 1/c seeds arrive in
a patch, there is a 50% chance of colonization. We ran simu-
lations to determine the number of seeds required to reach
a colonization probability of 0.5, where colonization was scored
as a “fail” if the population reached zero and as a success if it
reached 100 (again, assuming density independence in all cases).
We found that for all finite rates of increase >2.2, which oc-
curred with m > 29, this probability converged at the maximum
1/c = 7.85. The estimate of c = 0.127 is therefore the maximum
estimate possible with our data. At finite rates of increase be-
low 2.2, the parameter c varied from 0.031 [E(R) = 1.1] to 0.111
[E(R) = 2.2].
The parameter e gives the probability that a population with

a size of one will go extinct. For annual plants, we defined this as
the probability that a population of size one would go extinct
without producing a new viable seed (i.e., we assume that a seed
that has survived in the seed bank cannot disperse to another
patch but that its offspring can). The probability that at least one
new seed will be produced is:

pðx≥ 1Þ= gsp
�
1− e−1

�X
i=0

fð1− gÞsugi =
gsp

�
1− e−1

�
1− suð1− gÞ: [S8]

The parameter e is equal to 1 − Eq. S8, which is 0.944 for our
data. The estimates for c and e that we used were based on an
“average species,” meaning that we averaged the germination
and survival rates for all species. Because these estimates could
presumably alter the time lines of an extinction debt (Fig. 4B),
we reran these simulations with each parameter ± 0.1 but with
maximum e set at 1 (i.e., the largest symmetrical differences
possible while maintaining parameters within the bounds of 0–1).
These simulations were used to determine the sensitivity of ex-
tinction time lines to the parameters c and e (Fig. S5). In some
cases, this caused the extinction probability to be greater than 1
in some patches (i.e., in patches with μ * Ai < 1); in such case, we
used the convention that Ei = min (1, Ei) (1, 3).

Focal Species and Habitat. We selected seven native annual species
that occur on refugia and that are abundant enough to provide
sufficient seed for our experiments: Chaenactis galibriuscula, Chori-
zanthe palmerii, Lasthenia californica, Lotus wrangelianus, Micropus
californicus, Plantago erecta, and Salvia columberiae. We conducted
field-based experiments and sampling in an area of ∼8 ha at the
northern edge of the Sedgwick Reserve (34° 44’ 20” North, 120° 01’
34”West) in Santa Barbara County, California. The area has a nat-
ural metapopulation structure, with refugia of annual native plants
occurring on slightly raised mounds with coarse soils (9). The area
between refugia is almost completely covered with exotic grasses,
mainlyAvena fatua,Avena barbata, andBromus sp. Pockets of native
bunchgrasses (mainly Stipa pulchra, Stipa lepida, and Stipa cernua)
persist in small patches among these invasive grasses.
To develop the spatial metapopulation model, we surveyed re-

fugia locations and areas within a 5.1-ha area of our study site
(Sedgwick Reserve). This area, demarcated by a road on one side
and natural boundaries (i.e., stream, different habitat types) on

other sides, contained a total of 118 refugia. Refugia varied in size
from 0.1 to 181m2 and covered a total of 5.5%of the surveyed area.
Refugia were identified either through the presence of indicator
native annual plants or as areas without native annuals but with
similar characteristics (open, coarse-grained soils) and lacking
dense invasive grasses. For model simplification, we calculated the
centers and area of refugia and modeled them as circles on the
landscape.

Field Experiments. Habitat quality experiment. Exotic grass invasion
makes it difficult to determine the degree to which native species
once performed in now invaded areas. Therefore, seed production
rates in different portions of the landscape were estimated using an
exotic grass competitor removal experiment, with 20 × 20-cm plots
placed on refugia and at small distances from the refugia edge in
the matrix. In all plots, all competitors were initially removed and
the same density of native annual seed (3 g species−1·m−2) was
sown. These densities were higher than those that are typically
observed on refugia (5) to ensure that plants were in a competitive
environment. All habitat quality plots were paired, with one plot
used to estimate seed production and the other used to measure
germination and seedling survival (to maturity) rates. A total of 96
plots were established.
Seed production for each pair of plots was estimated as the

number of viable seeds produced, plus su (1−g), where g is the
germination fraction and su is the survival rate of ungerminated
seeds (5). The survival of ungerminated seeds (su) was estimated by
testing their viability before and after a year of burial in nylon mesh
bags (5). All seed production values were divided by mean seed
production on refugia to give the ratio of the finite rates of increase
in invaded areas relative to those on refugia (parameter υ).
Significant differences in seed production between locations (i.e.,

refugia vs. matrix) were first tested using a nested distance-based
permutation multivariate ANOVA (MANOVA) (10). Following
a significant result, the ratio of seed production between habitats
was tested for each species using generalized least squares (gls),
which accounted for heterogeneous variances and the nested ob-
servations at each refugia. The gls results were confirmed by testing
the number of viable seeds produced in each habitat using a gen-
eralized linear mixed model with a quasi-Poisson distribution and
determining the ratio from the output of that model. These two
approaches produced nearly identical results, and we therefore
only report the results of the gls analyses. These and all other
analyses were performed using R (11).
Ineachof the refugia thatwereused toconduct thehabitatquality

experiment, we also collected data from two 0.25-m2 control
quadrats (i.e., undisturbed quadrats). We calculated species rich-
ness in these combined quadrats, including our focal species and
five other common refugia species. We calculated the area of each
of these refugia and tested the correlation between refugia size and
species richness per 0.5 m2 to determine if larger refugia contained
more species per unit area (Fig. S2), as predicted by theory (12).
Matrix permeability experiment.We estimated our focal species’ finite
rates of increase in the matrix (R) before and after invasion by
sowing seeds into remnant native bunch grass locations and exotic
annual grass locations. We first located remnant patches of native
bunchgrass and placed paired plots in native bunchgrasses and in
adjacent (<1.5-m distant) patches of invasive grass. Exotic grasses
were weeded from between bunchgrass clumps and counted, and
the same number of exotic grass stems was weeded at random from
patches of invasive grasses.
Two plots were placed in each type of grass: full-density seeding,

using the seed densities from natural refugia, and low-density
seeding, with the latter used to determine if population growth rates
differ when only small amounts of seed are present. These two
treatments represent situations in whichmany or a few native seeds
land among grasses. Finite rates of increase in low- and high-density
plots did not differ significantly (P > 0.05 for all species), indicating
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that species mainly experienced competition from surrounding
grasses; thus, these estimates were combined for analysis. Finite
rates of increase were determined as viable seeds produced/viable
seeds added. These estimates assume that ungerminated seeds do
not contribute to population growth, which is appropriate when
seed germination is consistently close to zero, as was the case
among the grasses. Because seeds in native bunchgrass plots were
only sown between clumps, finite rates of increase in these plots
were scaled by the proportion of each plot that was not occupied by
bunchgrass bases (where native annuals cannot establish). A nested
distance-based permutation MANOVA (10) was first used to test
for significant differences between bunchgrass and exotic grasses.
Following a significant result, individual tests were performed for
each species with generalized linear mixed models using penalized
quasilikelihood and a quasi-Poisson distribution.
Seed dispersal estimates. Seed dispersal rates were first estimated
from well-established relationships between dispersal distances,
plant height, and dispersal syndrome (13), and they were then
validated. According to these relationships, mean dispersal dis-
tances for our species range from 0.1 to 0.5 m, with the lower
estimate for the shortest plant with no dispersal mechanism and
the higher estimate for the tallest of the wind-dispersed plants.
When approximated using a normal (Gaussian) dispersal kernel,
these dispersal distances correspond to rms dispersal distances
(σ) of 0.25 to 0.63 m. We used two empirical methods to test the
validity of these seed dispersal estimates. We created “false re-
fugia” in 2008 by clearing circular, 50-m2 areas of invasive
grasses. These false refugia were placed across the study area,
with nearest edges ranging from 0.5 to 7 m from the nearest
refugia. Germinants of our focal species were counted in 2009,
with this number likely overestimating colonization because it
included any extant seed bank. In addition, in 2009, we chose two

refugia that contained all species and placed seed traps (28 × 52
cm, 92 total seed traps) at up to 8 m from the refugia, with more
traps placed at greater distances to account for the change in
total area. Seed trap data could not be attained for Lasthenia due
to small seed size or for Lotus because congeneric species made
identification unreliable; for these taxa, we were restricted to
using colonization rates on false refugia.
Very low colonization rates of false refugia and an almost

complete lack of seed dispersal into seed traps (Table S4) indicate
that our species were as dispersal-limited as predicted from rela-
tionships established in the literature. For example, Plantago is one
of the most abundant species on refugia, with ∼730 seeds per
square meter. Only two Plantago plants were found on the 11 false
refugia placed on the landscape, even though these false refugia
each had an area of 50 m2 and were placed from 0.5 to 7 m from
occupied refugia. Plantago had a greater colonization rate than four
other species on the false refugia and a lower rate than two species
(Table S4). Likewise, a total of 10 seeds were found in seed traps
between 0 and 2 m from the refugia edge; when correcting for area
sampled, ∼2.5% of Plantago seeds disperse between 0.1 m and 2 m
from the patch edge. Compared with the dispersal of a plant with
an rms dispersal distance of 1 m, Plantago had about one-sixth the
proportion of seeds expected. Because metapopulation models are
sensitive to assumptions about dispersal, we chose to use this large
estimate of seed dispersal (i.e., σ = 1 m) in all the tests presented in
the main text to represent the most conservative scenario for the
development of an extinction debt. We also generate estimates
assuming an rms dispersal distances (σ) of 0.5 m to generate a
range of estimates (Figs. S2 and S3). We chose to alter mean dis-
persal distances instead of the shape of the kernel both for logistical
reasons and because the model was more sensitive to mean dis-
tance (Model assumptions).
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Fig. S1. Effect of the receiver patch area on the probability of seed recruitment. The seed must disperse between the distance dij ± radiusi. Seeds that disperse
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Fig. S2. Species richness in a fixed sampling area (0.5 m2) increases significantly with the total area of the refugia. This positive trend is predicted by met-
apopulation theory (12), which posits that larger patches should accumulate more species per unit area because of their greater colonization-to-extinction rate
ratios. Although this pattern is correlational and need not reflect metapopulation mechanisms, most factors that covary with patch area, such as increased
environmental heterogeneity in larger patches (at a scale larger than our 0.5-m2 sampling plots), do not predict an increase in richness per unit area.
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Fig. S3. Ratio of colonization probability postinvasion to preinvasion due to invasion of the matrix when the rms dispersal distance (σ) is 0.5 m. Expected
colonization was estimated from Eq. S5, with the summation calculated over 30 generations. Colors and species labels are as in Fig. 2C.

Chaenactis MicropusLotus 

Chorizanthe SalviaPlantagoLasthenia

Fig. S4. Reduction in metapopulation viability following invasion for each species with an rms dispersal distance (σ) of 0.5 m. The change in viability (y axis) is
the ratio of the leading eigenvalue of the metapopulation postinvasion to preinvasion, and it is further explained in SI Materials and Methods. Panels cor-
respond to the species listed by genus name (full names are given in Fig. 2).
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Fig. S5. Median time to extinction for an average species with a given mean density and proportion of habitat loss. The sensitivity of extinction debt time
lines to changes in two of the estimated parameters, e and c, is shown. Variation in these parameters causes slight changes in the range of densities at which an
extinction debt arises (y axis to the left); however, in all parameter ranges, extinction debts often persist for 200–800 y after invasion. Each panel is based on
24,200 simulations using the parameters stated, along with parameters averaged for all species.
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Table S1. Relative finite rates of increase in refugia and invaded areas at the edge of refugia

Relative finite rate of increase

Species Refugia Invaded area Invaded/refugia

Chaenactis glabriuscula (Cg) 0.96 (0.07) 1.05 (0.09) 1†

Chorizanthe palmerii (Cp) 1.09 (0.37) 2.27 (0.44)** 2.10
Lasthenia californica (Lc) 1.17 (0.15) 1.83 (0.18)*** 1.57
Lotus wrangelianus (Lw) 1.00 (0.20) 1.48 (0.26)+ 1.47
Micropus californicus (Mc) 1.03 (0.20) 1.70 (0.24)** 1.65
Plantago erecta (Pe) 0.92 (0.40) 3.39 (0.62)*** 3.68
Salvia columbariae (Sc) 0.98 (0.39) 3.64 (0.46)*** 3.70

+P < 0.1; *P < 0.05; **P < 0.01, ***P < 0.001; tests if value is significantly different in refugia.
†Set to 1 because of nonsignificant difference between refugia and invaded areas. These data were incor-
porated into Eqs. 4 and S6 through the relative quality of the refugia before and after invasion, w′.
w′= 1

HF ð1− υÞ+ υ where Hf is the fraction of patch habitat eliminated by invasion and υ is the finite rate of increase

in invaded areas/refugia (fourth column in table).

Table S2. Finite rates of increase in matrix areas among native bunchgrasses and exotic grasses

Finite rate of increase (R) among*

Species Exotic grasses Native bunchgrass P

Chaenactis glabriuscula (Cg) 0.00 0.01 (0.004–0.030) NA†

Chorizanthe palmerii (Cp) 0.01 (0.006–0.021) 0.14 (0.113–0.180) 0.003
Lasthenia californica (Lc) 0.02 (0.011–0.026) 0.28 (0.199–0.399) <0.001
Lotus wrangelianus (Lw) 0.04 (0.019–0.070) 0.08 (0.043–0.135) 0.279
Micropus californicus (Mc) 0.002 (0.001–0.003) 0.02 (0.012–0.036) 0.002
Plantago erecta (Pe) 0.06 (0.027–0.113) 0.25 (0.187–0.342) 0.062
Salvia columbariae (Sc) 0.07 (0.042–0.133) 0.34 (0.254–0.448) 0.029

Values in parentheses give the mean ± SE. P values are from species-specific generalized linear mixed models
using penalized quasilikelihood and a quasi-Poisson distribution to test if the two grass types differed signifi-
cantly.
*Estimates for each grass type (exotic vs. native) were used in model predictions for all species (Figs. 2C and 3
and Figs. S2 and S3).
†Could not be tested because Chaenactis did not produce seeds when grown in exotic grass patches.
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Table S3. Parameters included in model and sources for parameter estimates

Parameter Explanation Source of estimate

Models S5 and S6B Model S5: matrix permeability
Model S6B: change in metapopulation viability

w’ Ratio of seed density postinvasion to preinvasion;
determined from the habitat fraction (HF) and the
ratio of finite rates of increase on habitat lost to
invaders and habitat remaining postinvasion
(υ; see explanation for Eq. S6B).

Habitat quality experiment. Results for
υ are given in Fig. 2A and Table S1.

HF Fraction of native annual habitat remaining after
invasion

This parameter is not empirically estimated.
We calculate all impacts over an HF

ranging from 1 (no habitat loss) to 0.5
(50% habitat loss).

R Native annual population growth rate in matrix
among native bunchgrasses

Matrix permeability experiment. Results are
given in Fig. 2B and Table S2.

R’ Native annual population growth rate in matrix
among exotic grasses

Matrix permeability experiment. Results are
given in Fig. 2B and Table S2.

σ Rms dispersal distance Dispersal estimated from published sources
and two sampling experiments. Due to
uncertainty in this parameter, all impacts
were calculated for estimated dispersal
distances and greater dispersal distances
(σ = 0.5 m in Fig. S3 and σ = 1 in Fig. 3,
respectively). Results in all main figures
were produced with the larger dispersal
distance to generate a conservative impact
of fragmentation.

Simulation of times to extinction These simulations required the parameters listed
above, plus the following

c Determines the rate at which the probability of
colonization increases as more seeds arrive.
In particular, the number of seeds required
for a 50% probability of colonization is 1/c.

Estimated with data from the habitat quality
experiment (SI Materials and Methods,
Additional Parameters for Simulating Time
to Extinction). Because this estimate may vary
from year to year, and our uncertainty in its
component vital rates, we reran simulations
with c ranging symmetrically around this
estimate.

e Per-individual extinction rate Estimated with data from the habitat quality
experiment. (SI Materials and Methods,
Additional Parameters for Simulating Time
to Extinction). Because this estimate may vary
from year to year, and our uncertainty in its
component vital rates, we reran simulations
with e ranging symmetrically around this
estimate.

μ Average density of the focal species
(individuals m−2) within patches

This parameter was varied in simulations
(y axis on left for Fig. 4 and Fig. S4) to
assess the sensitivity of extinction to
mean local abundance.
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Table S4. Seed dispersal results from seed traps and false refugia

Species
No. of seeds in traps

<2 m from refugia edge*
Density (seeds m−2)
on nearby refugia, μ†

Total no. of “false
refugia” colonized‡

Chaenactis glabriuscula (Cg) 0 343 0
Chorizanthe palmerii (Cp) 0 431 1
Lasthenia californica (Lc) — 6,290 7
Lotus wrangelianus (Lw) — 137 6
Micropus californicus (Mc) 0 218 0
Plantago erecta (Pe) 10 704 2
Salvia columbariae (Sc) 0 878 0

*Fifty-five seed traps for a total coverage of ∼7.5 m2. Traps were placed to be more numerous at larger distances such that ∼13% of the
total area between 0 and 2 m from refugia was covered with seed traps. Species marked “—” had seeds that were too small to reliably
find (Lc) or had multiple congeners with similar seeds (Lw).
†Estimates of density were obtained from the habitat quality experiment.
‡Eleven false refugia were created by clearing 50 m2 of invasive grasses at 11 locations ranging in distance from 0.5 to 7 m from the
nearest refugia.

Table S5. Parameter estimates for each species studied

Species
Ungerminated
seed survival, su

Seed
germination, g

Germinant survival
to reproduction, sp

Chaenactis glabriuscula (Cg) 0.12 0.14 0.15
Chorizanthe palmerii (Cp) 0.15 0.15 0.37
Lasthenia californica (Lc) 0.20 0.12 0.50
Lotus wrangelianus (Lw) 0.13 0.04 0.08
Micropus californicus (Mc) 0.09 0.04 0.50
Plantago erecta (Pe) 0.66 0.36 0.50
Salvia columbariae (Sc) 0.34 0.29 0.49

Two parameters (su and g) were used to determine the finite rate of increase of species in refugia and invaded areas (Fig. 2A), and the
average of these rates across species were used in simulations of times to extinction (Fig. 4 and Fig. S4). These, along with germinant
survival to reproduction, sp, were also used to estimate c and e for simulations of times to extinction (SI Materials and Methods,
Additional Parameters for Simulating Time to Extinction). Estimates for parameters g and sp were obtained from the habitat quality
experiment, whereas the estimate for su was obtained from seeds that were buried in mesh bags over one growing season.
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