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Experiment Design. All participants first underwent a resting-state
BOLD scan (8 min with 240 time points), and a resting-state ASL
scan (7.5 min with 50 pairs of control and label images), which
were randomized across the group. During the resting-state runs,
participants were instructed to remain as still as possible with their
eyes closed. In addition, 39 of the participants also underwent
a BOLD scan and an ASL scan while performing an N-back
working-memory (WM) task. The orders for BOLD and ASL
scans were randomized across the subjects. Previously, the data
were used to study regional brain activity during resting and task
states (1). The task was presented as a block paradigm with four
conditions: three active WM tasks (1-back, 2-back, and 3-back)
and a low-level vigilance task (0-back). In the vigilance task,
following the instruction “press for D,” participants pressed one
button each time the letter D (or d) appeared on the screen. In
the three active WM task conditions, following the instruction
“N back” (where n = 2), participants pressed a button when the
current letter shown on the screen matched the one presented
“N” items back. The task included six runs, with one 0-back,
1-back, 2-back, and 3-back block in each run and took a total of
about 27 min. Each block lasted 62 s and contained a 2-s in-
struction indicating task difficulty level followed by 30 consecutive
trials of single letter stimuli (500-ms duration; 1,500-ms in-
terstimulus interval). Each run therefore lasted 4 min and 24
seconds beginning with an 8-s fixation followed by the 0-back
block and then the randomized 1-, 2-, and 3-back blocks. Addi-
tional 8-s fixation occurred at the end of each run. Visual stimuli
were presented and responses were collected using E-Prime
(Psychology Software Tools, Inc.). The stimuli were back-pro-
jected on a screen inside the scanner using an LCD projector.
The reason we adopted separate scans for ASL and BOLD is to
get higher SNR and larger spatial coverage for ASL scans, which
was facilitated by the pseudo-continuous arterial spin labeling
(pCASL) sequence.

Data Acquisition. Scanning was performed on a 3 Tesla Siemens
AllegraMRScanner (Siemens) equippedwith a quadrature volume
head coil. High-resolution anatomical images were acquired using
a 3-D MPRAGE T1-weighted sequence with 160 slices, 1.0-mm
isotropic voxels, repetition time (TR)= 2,500ms, echo time (TE)=
4.38 ms, flip angle (FA) = 8°. Functional BOLD images were ac-
quired using a gradient-echo EPI sequence with TR = 2000 ms,
TE = 27 ms, FA = 77°, thirty-nine 4-mm slices without interslice
gap, field of view (FOV) = 220 × 220 mm2, and an in-plane
resolution of 3.44 × 3.44 mm2. Functional ASL data were ac-
quired using a pseudocontinuous arterial-spin–labeling (pCASL)
technique. Interleaved control and label images were acquired
using a gradient echo EPI sequence with TR = 4,500 ms, TE = 21
ms, FA= 90°, twenty 5-mm slices with 20% gap, FOV= 220× 220
mm2, and an in-plane resolution of 3.44 × 3.44 mm2, labeling
duration = 1.6 s, label offset = 80 mm, postlabeling delay = 1.2 s,
and bipolar gradients = 9 s/mm2. During the WM task, TR of
pCASL sequence was adjusted to 4 s to better fit the duration of
task blocks and bipolar gradient was reduced to 2 s/mm2 with
minimum TE as 13 ms. Other parameters were the same as those
of the resting-state scan. Head movement was minimized using
individually custom-made foam padding, and earplugs were used
to attenuate scanner noise.

Image Preprocessing. Both BOLD and ASL images were pre-
processed using the AFNI software package (3), which are briefly
outlined as follows.
BOLD imaging. Data preprocessing of both resting state and task
state included slice-timing correction, head-motion correction,
linear trend removal, temporal band-pass filtering (0.01–0.1 Hz),
and spatially smoothing (FWHM = 6 mm). Before the pre-
processing we removed the first four volumes of resting-state
data to allow for signal to reach a steady state. Task-state BOLD
series of each run was divided into separate conditions (0-back,
1-back, 2-back, and 3-back) as follows: for each 60 s block in
each run, the first four volumes (8 s) were discarded and two
volumes (4 s) of the next block were included to minimize the
effects of hemodynamic delay from previous conditions (4). Then,
all BOLD data were aligned to their corresponding T1-weighted
images, and normalized BOLD images were created by applying
the transformation of T1-weigthed images to the ICBM452 tem-
plate. Finally, several nuisance variables, including six head-mo-
tion parameters, the global brain signal, the averaged signal from
white matter and ventricles, were removed by multiple linear re-
gression analysis.
ASL imaging. For resting-state and task-state ASL data preprocess-
ing, a control/label image with the fewest outliers was chosen from
the entire resting-state or task-state scan session as a reference for
motion correction, and were linearly registered to each other.
Then control and label images in resting state and in each run of
task state were separately realigned to their reference images.
Following spatial smoothing (FWHM = 6 mm), CBF-weighted
time series were created by pairwise subtraction of the label and
control images. After these, for each run in task-state, images in
each condition (0-back, 1-back, 2-back, and 3-back) were ex-
tracted from their corresponding blocks. Then, absolute rCBF
time series were approximated using a one-compartment model
(5), and averaged together to get individual-level absolute rCBF
maps. Finally, rCBF maps were aligned to their corresponding
T1-weighted images and then normalized into the standard
Talairach space by applying the abovementioned transformation
of T1-weigthed images to ICBM452 template.

Network Analysis. Functional hubs.Hubs were mapped by computing
FCS. For resting-state data, the BOLD time course of each voxel
within the predefined GM mask was first extracted and a corre-
lation matrix is calculated. Because the removal of global signal
mathematically induces negative correlations and remains con-
troversial (6, 7), we restricted our analysis to positive correlations
unless otherwise stated. For each subject, the resulted correla-
tion matrix with negative correlations set to zero was directly
applied as a weighted network G with N nodes. FCS at a given
voxel x0 was computed as the average of functional connectivity
between x0 and all other voxels in the brain. Voxels with high
FCS (>mean) were identified as functional hubs, representing
that they were of high connectivity to the rest of the brain. Two
other nodal centrality measures, efficiency and betweenness,
were also computed to identify functional hubs. For a given node
i, the efficiency is computed as Ei = 1

N − 1

P

j≠i∈G

1
li;j
, where li;jis the

shortest path length between node i and j. Nodal efficiency
measures the ability of a node to propagate information with the
other nodes in a network. The betweenness for a given node i is
calculated as Bi =

P

m≠i≠n∈G

σmnðiÞ
σmn

, where σmnis the total number of

shortest paths from node m to node n and σmnðiÞis the number of
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shortest paths from node m to node n that pass through node i.
Betweenness captures the influence that a node has over the flow
of information between all other nodes in a network. To further
explore the influence of physical distance on FCS–rCBF re-
lationship, at a given voxel x0, we also computed short-range and
long-range FCS. The former was computed as the average cor-
relation between x0 and a set of voxels, to which the Euclidean
distance (approximately physical distance) were less than 75 mm
from voxel x0. The latter was computed as the average correla-
tion between x0 and another set of voxels that were more than
75 mm from x0. For task data, at each condition, voxelwise cor-
relations of BOLD time courses were computed within each
block and then averaged across the six runs in the same condition.
FCS was then examined using the same strategy as for the resting-
state data. For computational efficiency, we down-sampled the
data to 4-mm isotropic voxels (a total of 16,589 voxels in GM).
Modular analysis. Modules refer to a set of nodes that are highly
interconnected but less connected with the rest of the network (8).
Detection of modular structure in the brain system can help
identify groups of brain regions that are associated with specific
functions. A group-weighted brain network was obtained by av-
eraging graphs across all subjects, and subjected to modular
analysis. We use the Louvain algorithm, which is a fast and ac-
curate community detection algorithm for large networks (9).
After module detection, we determined the within-module FCS

in each identified module as the average functional connectivity
between a given voxel and all other voxels within its own module.
The resulted within-module FCS in each module was then nor-
malized as follows:

ZFCS
�
i
�
=

FCS
�
i
�
−FCS

σðFCSÞ ;

where FCS(i) is the within-module FCS of a node i in module
s. FCSis the average within-module FCS of all nodes in mod-
ule s. σðFCSÞ is the SD of within-module FCS of all nodes
in module s.
rCBF/FCS ratio analysis. To evaluate the metabolic consumption per
unit connectivity strength, we computed the ratio of rCBF to FCS.
Regions with higher rCBF/FCS ratio tend to have higher meta-
bolic demands to connect them to the rest of the brain. For in-
terindividual comparison purpose, the rCBF/FCS ratio maps for
each subject were standardized to z scores using the following
formula:

ZrCBF=FCS
�
i
�
=

rCBF=FCS
�
i
�
− rCBF=FCS

σðrCBF=FCSÞ ;

where rCBF=FCS is the mean rCBF/FCS across all of the
voxels within the GM mask, and σðrCBF=FCSÞis the SD within
the GM mask.

Relationship Between Functional Network Connectivity and rCBF. For
each participant, both FCS and rCBF values were standardized to
z scores so that they could be averaged and compared across
subjects (10). To quantitatively evaluate the relationship be-
tween FCS and rCBF, we performed correlation analyses across
voxels and across participants (11, 12) for both resting and task
data. To further identify the contributions of physical distance to
the FCS–rCBF relationship in resting brains, for each partici-
pant, we separately computed the across-voxel correlation be-
tween rCBF and short- and long-range FCS. After Fisher’s
transforming the two sets of correlation coefficients to z scores,
a paired t test was performed to evaluate in which distance range
the FCS would be more correlated with rCBF. Across-subject
correlation analysis was performed at each voxel within the GM

mask to investigate the relationship between rCBF and short-
and long-range FCS at rest, respectively. The threshold for
across-subject correlation maps was set to a corrected P < 0.05
(which corresponded to an uncorrected single voxel significance
level of P < 0.05 and a minimum cluster size of 3,840 mm3).
It has been demonstrated that regional rCBF is related to both

GM volume (13) and structural network connectivity (14), thus
the relationship between functional network connectivity and
rCBF could result from a common underlying morphological
basis. To exclude the potential role of anatomical structures in
explaining the FCS–CBF relationship at rest, gray matter volume
(GMV) and structural connectivity strength (SCS) were com-
puted from T1-weighted images. In brief, segmentation was per-
formed using unified segmentation model developed in SPM8
(15). The rigidly aligned gray matter and white matter images
were further aligned using a nonlinear registration algorithm
(DARTEL) (15). A custom template was created based on the
registration results and each individual’s GM images were trans-
formed to the DARTEL template space, modulated by the de-
terminant of the Jacobian of the transformation. Finally,
modulatedGM images were transformed to Talairach space using
AFNI and spatial smoothed with Gaussian kernel of 6 mm. For
each voxel, SCS was computed as the average of correlations of
GM volume between that particular voxel and the rest voxels in
the GM mask across subjects (16). Across-voxel correlation
analyses were separately performed between rCBF and GM vol-
ume or SCS. Furthermore, we also calculated a partial correlation
between rCBF and FCS across voxels, controlling for the effects of
GM volume or SCS.
To evaluate the task effects of increasing working-memory load

on the relationship between FCS and rCBF, the across-voxel
correlations were converted to z scores using Fisher’s trans-
formation to allow for paired t tests between every two pairs of the
four task states. Using Bonferroni correction for multiple testing,
the significance threshold was set at 0.05/6 = 0.0083. To further
estimate the task effect on rCBF/FCS ratio, the normalized rCBF/
FCS maps for each task state were included in a voxel-by-voxel
repeated-measures ANOVA model, with task load as a within-
subject fixed effect, to identify significantly modulated brain re-
gions during WM tasks. The threshold was set to a corrected P <
0.05 (which corresponded to an uncorrected single voxel signifi-
cance level of P < 0.05 and a minimum cluster size of 3,840 mm3).
Subsequently, paired t tests were performed on the average rCBF/
FCS values of the significantly modulated brain regions during
WM tasks between different task loads. Bonferroni-corrected
significance threshold was set at 0.05/6 = 0.0083.

Brain–Behavior Relationship at Working-Memory Task States. To test
whether WM task-related changes in FCS and rCBF might
correlate with behavioral performance, we conducted voxelwise
correlation analyses between changes in FCS and rCBF and
behavior performance, dprime, which is a measurement of hit rate
that penalizes for the false alarm rate (17). Task-related changes
in rCBF or FCS was calculated as rCBF or FCS under each level
of WM conditions divided by rCBF or FCS under baseline (0-
back); behavioral performance was accordingly calculated as the
ratio of dprime under each task load to that under 0-back. The
analyses were performed for the 2-back and 3-back conditions
only, as performance in the 1-back condition was at ceiling.
Brain–behavior correlation analyses at each load condition were
conducted within masked regions that showed significant task
activation or deactivation in FCS (Pcorrected < 0.05) or rCBF
(Pcorrected < 0.001). The rationale of using a task activation/de-
activation mask was to ensure that regions showing the brain–
behavior relationship colocalized within significant task regions.
The threshold was set to P < 0.05 (uncorrected single voxel
significance level of P < 0.05 and a minimum cluster size based
on the size of the activation/deactivation mask of each load).
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Validation Analysis. To evaluate the reliability of our results, we
examined the influences of different preprocessing and analysis
strategies. First, we explored the possible effects of global signal
removing, given that the removal of global signal is associated with
the emergence of negative correlations, which are still difficult
to interpret (6, 18, 19). Second, several studies have shown that
network parameters could vary considerably across different
spatial scale of node parcellation (20–22), we thus evaluated the
spatial resolution effects on connectivity strength by down-sam-
pling the resting-state data to 8-, 12-, and 16-mm isotropic voxels.
Third, we examined the influence of different connection in-
clusion criteria on the resulting FCS. Given the disagreements in
treating negative correlations in R-fMRI network studies (6, 7,
23), we recomputed FCS based on the whole correlation matrices
consisting of both positive connections and negative connections
(absolute values). Given that the weak correlations among voxels
could be attributing to signal noise, we also recomputed FCS on

the correlation matrices including only the strong connections
(r > 0.25) and repeated all of the analyses.

Head-Motion Analysis. To moderate the effects of head motion on
estimates of functional connectivity, we censored volumes within
each subject’s fMRI time series that were associated with sudden
head motion (24). For each subject, fMRI volume was censored
if its derivative values have a Euclidean norm above 0.35. Eleven
out of 48 subjects had motion censoring according to the above
criteria and all of them had more than 125 frames (∼5 min) of
data remaining after motion censoring. We recalculated FCS
and short-/long-range FCS using censored time courses, and all
our previous observations remain hold: (i) FCS and rCBF highly
correlated (r = 0.45, P < 0.0001); (ii) both short-range (r = 0.29,
P < 0.001) and long-range (r = 0.57, P < 0.0001) FCS were
significantly correlated with rCBF, with the long-range FCS–
rCBF correlation higher than the short-range FCS–rCBF cor-
relation (P = 0.008).
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Fig. S1. Scatterplot of the spatial correlations across Brodmann areas between PET-derived metabolism measures and (A) rCBF and (B) FCS, short-range and
long-range FCS at resting state.
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Fig. S2. Role of structural variables. (A) Map of SCS. (B) Scatterplot of GMV and rCBF (Left) and its residuals plotted against FCS (Right). (C) Scatterplot of SCS
against rCBF (Left) and its residuals plotted against FCS (Right).
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Fig. S3. Across-subject correlations between rCBF and FCS in validation analyses. (A) Effects of different spatial resolutions. (B) Effects of different connection
criteria while controlling negative and weak (r < 0.25) functional correlations. (C) Effects of global brain signal.

Fig. S4. Across-subject correlation between rCBF and short-range and long-range FCS.
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Fig. S5. Distance-dependent rCBF/FCS ratio map at resting and working-memory task states.
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Fig. S6. Maps of (A) functional hubs, (B) rCBF, and (C) short-range and (D) long-range hubs at working-memory task states.

Fig. S7. Across-subject FCS–rCBF correlations at working-memory task states. (A) rCBF vs. FCS. (B) rCBF vs. short-range FCS. (C) rCBF vs. long-range FCS.
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Table S1. Across-voxel correlations between FCS and rCBF
without global signal regression

Without global signal
regression

Brain metrics r P

FCS vs. rCBF 0.41 <0.0001
SCS vs. rCBF 0.25 <0.0001
FCS vs. rCBF (control for SCS) 0.39 <0.0001
GMV cs. rCBF 0.29 <0.0001
FCS vs. rCBF (control for GMV) 0.35 <0.0001

Table S2. Across-voxel correlations between FCS and rCBF under different spatial resolutions

8 12 16

Brain metrics r P r P r P

FCS vs. rCBF 0.46 <0.0001 0.43 <0.0001 0.50 <0.0001
SCS vs. rCBF 0.19 <0.0001 0.18 <0.0001 0.20 <0.0001
FCS vs. rCBF (control for SCS) 0.44 <0.0001 0.42 <0.0001 0.50 <0.0001
GMV cs. rCBF 0.28 <0.0001 0.24 <0.0001 0.24 <0.0001
FCS vs. rCBF (control for GMV) 0.41 <0.0001 0.40 <0.0001 0.48 <0.0001

Table S3. Across-voxel correlations between FCS and rCBF under different connection inclusion criteria

All absolute
correlations

Strong absolute
correlations

Strong positive
correlations

Brain metrics r P r P r P

FCS vs. rCBF 0.30 <0.0001 0.35 <0.0001 0.31 <0.0001
SCS vs. rCBF 0.26 <0.0001 0.16 <0.0001 0.10 <0.0001
FCS vs. rCBF (control for SCS) 0.25 <0.0001 0.35 <0.0001 0.31 <0.0001
GMV cs. rCBF 0.29 <0.0001 0.29 <0.0001 0.29 <0.0001
FCS vs. rCBF (control for GMV) 0.28 <0.0001 0.31 <0.0001 0.27 <0.0001
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