Table S1. Statistical analysis of the energy minimized family of conformers and of the mean structure of apoNTKII from *Listeria monocytogenes*.

	REM ^a <rem>^a</rem>								
RMS violations per meaningful distance constraint (Å) ^b	(20 structures)	(mean)							
Intraresidue (238)	0.0168 ± 0.0025	0.0183							
Sequential (314)	0.0212 ± 0.0019	0.0186							
Medium range ^c (266)	0.0975 ± 0.0021	0.0082							
Long range (451)	0.0189 ± 0.0014	0.0190							
Total (1269)	0.0177 ± 0.0009	0.0170							
RMS violations per meaningful dihedral angle constraints (deg) ^b									
φ (45)	0.5865 ± 0.4500	0.00							
ψ (37)	0.00	0.00							
χ ₁ (44)	0.3074 ± 0.2500	0.00							
Average number of violations per structure	l								
Intraresidue	6.45 ± 1.50	7							
Sequential	6.30 ± 1.10	5							
Medium range ^c	3.95 ± 1.24	4							
Long range	12.45 ± 1.68	11							
Total	29.15 ± 2.60	27							
φ	1.06 ± 0.86	0							
Ψ	0.00	0							
χ1	0.66 ± 0.41	0							
	·								
Average no. of NOE violations larger than 0.3 Å	0.0 ± 0.0	0.00							
Average NOE target function (Å ²)	0.43 ± 0.04	0.40							
Average angle target function (rad ²)	0.05 ± 0.01	0.04							
RMSD to the mean structure (Å) (BB) ^d (HA)	0.42 ± 0.09 Å 1.17 ± 0.07								
Structural analysis ^e									
% of residues in most favorable regions	78.6	84.1							
% of residues in allowed regions	15.6	11.1							
% of residues in generously allowed regions	4.9	3.2							
% of residues in disallowed regions	1.0	0.0							
H-bond energy (kJ mol ⁻¹)	2.86 ± 0.12	2.84							
Overall G-factor	-0.22 ± 0.02	-0.22							

^aREM indicates the energy minimized family of 20 structures, <REM> is the energy minimized average

KEW indicates the energy infinitized family of 20 structures, <KEW> is the energy infinitized average structure of the ensemble.
^bThe number of meaningful constraints for each class is reported in parenthesis.
^cMedium range distance constraints are those between residues (i,i+2), (i,i+3), (i,i+4) and (i,i+5).
^dThe RMSD to the mean structure is reported considering residues (4-68).
^eResulted from the Ramachandran plot analysis. In the PROCHECK statistics, the average hydrogenbond energy within 2.5-4.0 kJ mol⁻¹ and overall G-factor over -0.5 is expected to be a good-quality structure.

Table S2. Acquisition parameters for NMR experiments performed on apo and CdNTKII

from Listeria monocytogenes.

Experiments ^a	Dimension of acquired data			Spectral width			n ^b		
	(nucleus)			(ppm)					
	t_1	t_2	t ₃	F_1	F_2	F ₃			
[¹ H- ¹ H]-NOESY ^c	1024(¹ H)	2048(¹ H)		15	15		64		
[¹ H- ¹ H]-TOCSY ^d	1024(¹ H)	2048(¹ H)		15	15		64		
¹ H- ¹⁵ N-HSQC ^c	512(¹⁵ N)	1024(¹ H)		40	15		8		
$^2J_{\rm NH}$ - $^1\rm H$ - $^{15}\rm N$ -HSQC ^e	256(¹⁵ N)	2048(¹ H)		180	25		64		
¹⁵ N-edited [¹ H- ¹ H]-NOESY ^c	272(¹ H)	40(¹⁵ N)	1024(¹ H)	15	40	15	16		
HNHA ^c	128(¹ H)	40(¹⁵ N)	1024(¹ H)	15	40	15	16		
HNHB ^f	128(¹ H)	40(¹⁵ N)	1024(¹ H)	15	40	15	32		
15 N R ₁ ^g	256(¹⁵ N)	2048(¹ H)		40	15		8		
$^{15}N R_2^{g}$	256(¹⁵ N)	2048(¹ H)		40	15		8		
¹ H– ¹⁵ N NOEs ^g	256(¹⁵ N)	2048(¹ H)		40	15		48		
^a All 3D and 2D spectra were collected at 298 K, processed using the standard Bruker software (XWINNMR) and analyzed through the XEASY program. ^b Number of acquired scans. ^c Data acquired on the 700 MHz spectrometer. 2D NOESY and 3D NOESY- ¹⁵ N HSQC maps were acquired with a mixing time of 100 ms and a recycle time of 1.5 s. ^d 2D TOCSY spectra were recorded on the 600 MHz spectrometer with a spin-lock time of 90 ms and a recycle time of 1.5 s. ^e To identify the tautomeric state of His 62, a ¹ H- ¹⁵ N HSQC experiment was performed for measuring ² J _{NH} coupling constants within the His ring. In this experiment, the INEPT delay was set to 22 ms ^f Data acquired on a 500 MHz spectrometer equipped with a triple reconance									
cryoprobe. ^g In all experiments the water signal was suppressed with 'water flipback' scheme.									

A recycle delay of 3 s was used for R_1 and R_2 relaxation experiments, while of 5 s for ${}^{1}H^{-15}N$ NOE experiments. A refocusing delay of 450 μ s were used in the R_2 measurements.

Fig. S1. ¹⁵N relaxation parameters R₁, R₂ and heteronuclear NOE versus residue number of apoNTKII (A) and CdNTKII (B) collected at 600 MHz.

Fig. S2. Spectral density functions $J(\omega_N)$, $J(\omega_H)$ and J(0) versus the residue number as obtained from ¹⁵N relaxation data of apoNTKII (A) and CdNTKII (B).

B

Fig. S1

Fig. S2