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Appendix A. Other Electrokinetic Effects

A.1. Departures from electroneutrailty in the bulk

The mathematical formulation presented in Section 2 is based on the premise of local
electroneutrality. Since electric fields (E) can only be created by charges, local electroneu-
trality must necessarily be an approximate rather than an exact constraint. The clearest
exposition is achieved in the context of asymptotic theory. In a dimensionless formula-
tion, the problem contains a small parameter ε = (λD/ℓ)2, where λD is the Debye length
and ℓ is a characteristic dimension, in terms of which the (dimensionless) electric charge
density may be expanded: ρ = ρ0+ερ1+· · ·. Local electroneutrality refers to the fact that
ρ0 = 0 in the bulk fluid outside of the Debye layer. However, there is still a small (order
ǫ) charge density in the bulk, that under certain conditions could provide a significant
body force. This O(ǫ) charge is associated with conductivity (σe) variations as can be
seen from a combination of the current (Je) conservation equation, Ohm’s law

∇ · Je = ∇ · (σeE) = 0

and Gauss’ law (in a medium with permittivity ǫd)

ǫd∇ · E = −4πρe.

Thus, we have the charge density

ρe = −
ǫd

4π

∇σe ·E

σe

.

It has been shown (see the papers by Chen et al. and Oddy et al. in the Reference
section) that body forces arising out of such order ε charge density can drive instabilities
in certain problems characterized by conductivity variations.

Here we provide an estimate of the possible role of such a small residual charge density

in the bulk for our problem. Following the notation of the paper, σe = σ∞[1−αc/c
(∞)
n ]−1,

so that

ρe = −
ǫd

4π

∇σe ·E

σe

= −
ǫdα

4π

E · ∇c

c
(∞)
n

∼
ǫdαE0

4πw0
.

The body force in the channel (per unit span) arising out of such unbalanced charges is

fbulk ∼ ρeE0w0 ∼
ǫdαE2

0

4π

whereas the net force originating from within the Debye layer is

fedl ∼
ǫdζE0

4πλD

.

Therefore,

fbulk

fedl

∼ α
E0w0

ζ

λD

w0
∼ 10−3
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if we use as estimates α ∼ 1, E0 ∼ 30 kV /m, ζ ∼ 100 mV, w0 ∼ 50 µm and λD ∼ 10
nm. Thus, though the force due to the residual bulk charge could be important under
certain circumstances, they are generally small compared to the forces arising from the
charged Debye layers in the present problem.

A.2. Diffusiophoretic contribution to electro-osmotic slip

Diffusiophoresis occurs in systems where there is a variation in the ionic concentration
along the slip plane. A mathematical exposition was given Prieve et al. cited in Refer-
ences. There are two components that contribute to diffusiophoresis. First, when there is
differential diffusion of ions, an electric field arises in order to restore electroneutrality.
This electric field then contributes to electro-osmotic slip. Secondly, the pressure forces
necessary to maintain equilibrium in the Debye layer varies along the slip plane creat-
ing a pressure gradient which contributes to flow in the Debye layer. In our case, the
former mechanism is not relevant (the diffusivities being equal) but the latter can still
contribute. To estimate the magnitude of the effect, we use Equation (2.22) of the paper
by Prieve et al. for a binary Z −Z electrolyte (this is sufficent for an estimation, though,
strictly speaking we have a three ion system)

uslip = −
ǫd

2πη

(

kBT

Ze

)2

ln(1 − γ2)∇ lnC∞

dropping the contribution due to differential diffusion. Here γ = tanh
(

Zeζ
4kBT

)

, ǫd is the

permittivity of the electrolyte, η is its viscosity, kB is Boltzmann’s constant, T is the
absolute temperature of the electrolyte, and C∞ is the concentration field outside of the
Debye layer. For convenience, we assume, γ ≪ 1, so that the expression for the slip
velocity may be simplified to estimate the diffusiophoretic contribution to the slip:

δudiff = −
ǫd

2πη

(

kBT

Ze

)2

ln(1 − γ2)∇ lnC∞ ∼
ǫdζ

2

32πη
∇ lnC∞ ∼

ǫdαζ2

32πηw0

This must be compared to the variation of the Helmholtz-Smoluchowski electro-osmotic
slip due to conductivity induced variations of the electric field in the order of αE0:

δueof ∼
ǫdζαE0

4πη
.

Thus, the ratio

δudiff

δueof

∼
ζ

8E0w0
∼ 0.008

if we use the estimates E0 ∼ 30 kV/m, w0 ∼ 50 µm, ζ ∼ 100 mV. Thus, the diffu-
siophoretic contribution is typically small and may be ignored, except when the ratio
ζ/(E0w0) happens to be of order unity or larger.

Appendix B. Details of Numerical Computations

Equation (3.23) is the main result of the paper. To solve it, the dimensionless form
was used:

∂φ̄

∂t̃
+

∂

∂x̃

[(

u∗ +
1

1 − αφ̄

)

φ̄

]

=
∂

∂x̃

(

Deff
∂φ̄

∂x̃

)

(B 1)

where t̃ = v0t/w0, x̃ = x/w0, u∗ = ueo/v0 and Deff = Pe−1 + ku2
∗
Pe

(

αφ̄

1−αφ̄

)2

. The

equation can be further simplified by transforming to a reference frame moving with the
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constant velocity u∗ + 1:

∂φ̄

∂t̃
+

∂

∂x̃

[(

1

1 − αφ̄
− 1

)

φ̄

]

=
∂

∂x̃

(

Deff
∂φ̄

∂x̃

)

. (B 2)

Equation (B 2) was the one actually solved numerically.
Since the peak could display sharp fronts, adaptive grid refinement was used in order

to enable fine grids in the region of sharp gradients while keeping the total number of
grid points modest. The Matlab library “Matmol” was applied for this purpose. This
library provides a user-friendly solution for implementing adaptive grids in PDE models.
The subroutine examines the concentration distribution at pre-determined intervals (for
example every 50 steps) and evaluates a “monitor function” based on some measure of
sharpness of the profile such as the absolute value of the derivative or the curvature. When
preset limits are exceeded, a new grid is generated and the concentration interpolated on
to the new grid points.

The finite volume method is used for discretizing space. Thus, Equation (B 2) is first
written in conservative form

∂φ̄

∂t̃
=

∂

∂x̃

[

−

(

1

1 − αφ̄
− 1

)

φ̄ + Deff
∂φ̄

∂x̃

]

. (B 3)

Integrating over a grid interval then reduces it to a system of ode’s. This is the so called
method of lines (MOL) technique. For the integration on time the MATLAB solver
“ode15s” was used (See Shampine, & Reichelt in the Reference section). The solver
is designed for stiff problems and enables variable marching steps determined by user
specified absolute and relative tolerances. We set these parameters at Reltol = 1.0e-6,
Abstol = 1.0e-9.

To validate the code, the case of pure diffusion, that is, α = 0 in Equation (B 3), was
tested first. The compute domain was set as x = [0 120]. The system was initialized with
a Gaussian peak: centroid at x = 40, variance 1 and peak height 0.1. The code provides
a parameter, “tolx” determining the grid quality. The smaller tolx is, the finer the grid
will be. To check grid independence, the same test case was run twice, once with tolx =

1e-3, and again with tolx = 2e-3 (Figure 1). The numerical results agree well with each
other and with the well known analytical solution (the Fourier law of diffusion). Next,
a test case using the full Equation (B 2) was run with α = 0.5, Pe = 200 and u∗ = 10
(Figure 1). Once again, no grid dependence is seen between tolx = 1e-3 and the coarser
grid tolx = 2e-3. The adaptive grid setting was therefore set to tolx = 1e-3 for all the
other cases.

Appendix C. Alternate Representations of Simulation Results

In this section we provide some additional graphs obtained from the numerical solution
of Equation (3.23) to complement the ones already presented in the paper.

Figure 2 presents the same data as Figure 2 in the paper. However, instead of the rate
of increase of variance, the variance itself is shown as a function of time. Since the curves
are a bit difficult to tell apart, in the bottom panel we show the difference between the
variance with a given value of u∗ with a reference case where u∗ = 0. Figure 3 shows the
increase of variance with time at different sample loadings, for a fixed value of the flow,
u∗ = 2. Clearly the variance is higher the greater the sample loading as one would expect.
In Figure 4 we present the same data presented in Figure 3 of the paper but plotted in a
different way. We show how N changes with the capillary length L when the electric field
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is kept fixed. It is seen that N ∝ L† which is the classical result. However, the slope of
these N vs. L curves depend on the sample loading (P ) and the flow rate (u∗). Generally,
higher P correspond to smaller slopes. Figure 5 is similar, but it shows how the variance
itself increases with time. Figure 6 provides an alternate way of looking at Figure 5 in
the paper. Here instead of plotting φ̄ as a function of time at a fixed detector location,
we show φ̄ as a function of axial distance at fixed times.

† if the voltage was kept fixed instead, this would correspond to N being independent of L.
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Figure 1. Tests of numerical accuracy showing computed concentration profiles at a fixed
dimensionless time t̃ = 100. Parameters are (Upper panel): Pe = 200, α = 0 corresponding to
pure diffusion with diffusivity Pe−1. (Lower panel): Pe = 200, α = 0.5 and u∗ = 10. There is no
discernible difference between the solutions obtained with the coarse and fine grid. Furthermore,
in the pure diffusion case, the numerical computation agrees well with the analytical solution
for the diffusion problem (Fourier’s solution).
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Figure 2. Time evolution of the variance (upper panel) for three different values of the di-
mensionless electro-osmotic flow strength u∗ = ueo/v0 = 0, 2 and 4. In the lower panel the
difference in the variance between the indicated value of u∗ and the case with u∗ = 0 is shown.
Electro-osmotic flow results in an initial increase in the variance but a drop in the variance at
later times.
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Figure 3. The dependence of the variance on the sample loading as measured by the Peclet
number (P ). The dimensionless electro-osmotic flow strength u∗ = ueo/v0 = 2 is kept fixed.
Electromigration dispersion causes the variance at a given time to be larger for higher values of
P .
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Figure 4. The number of theoretical plates N = L2/σ2 as a function of the injection to detection
distance, L for different values of the dimensionless electro-osmotic velocity u∗ = ueo/v0 and
sample loading measured by the Peclet number, P . The applied electric field is kept fixed when
L is varied.
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Figure 5. The normalized variance, σ2

0/w2

0 , as a function of the dimensionless time v0t/w0 for
different values of the dimensionless electro-osmotic velocity, u∗ = ueo/v0 and sample loading
measured by the Peclet number, P .
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Figure 6. Concentration profiles at fixed dimensionless times: v0t/w0 = 200 (upper panel), 1000
(middle panel) and 5000 (lower panel), for several values of u∗. The Peclet number, P = 50.
Here xc is the location of the centroid in the reference case with α = 0, that is, in the absence
of electromigration dispersion.


